Übungen zu Physik 1 für Maschinenwesen

Größe: px
Ab Seite anzeigen:

Download "Übungen zu Physik 1 für Maschinenwesen"

Transkript

1 Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung , Übungswoche Bla 4 1. Billard Beim Billard-Spiel riff die weiße Kugel mi v = 4,5 m/s auf die schwarze Kugel, die sich in Ruhe befinde. Beide Kugeln haben die gleiche Masse und soßen elasisch. Reibungseffeke werden vernachlässig. Nach dem Soß bewege sich die schwarze Kugel uner einem Winkel von φ s = 36, zur Einfallsrichung der weißen Kugel (s. Abb.). a) Besimmen Sie die Bewegungsrichung der weißen Kugel nach dem Soß, d. h. besimmen Sie die Winkelablenkung φ w der weißen Kugel gegenüber der Einfallsrichung!

2 Impulserhalung: Energieerhalung: p = p s + p w m v = m v s +m v w v = v s + v w 1 2 mv2 = 1 2 mv2 s mv2 w Pyhagoras: a 2 = b 2 + c 2 9, Winkel zwischen v s und v w v 2 = v 2 s + v 2 w Winkelsumme im Dreieck: φ s + φ w + 9, = 18 φ s + φ w = 9, φ w = 9, 36, = 54, Die weiße Kugel wird um φ w = 54, in die engegengeseze Richung abgelenk wie die schwarze Kugel. b) Besimmen Sie die Geschwindigkeien v s und v w beider Kugeln nach dem Soß durch Nuzung der Impuls- und Energieerhalung. Gesuch: v s = v s und v w = v w Impulserhalungssaz: x-richung: mv = mv sx + mv wx y-richung: = v sy + v wy v sy = sin φ s v s ; v wy = sin φ w v w v s = v sin φ w w sin φ s ( ) v 2 = v 2 w sin2 φ w sin 2 + v 2 w = v 2 w 1+ sin2 φ w φ s sin 2 φ s v w = v 1+ sin2 φ w sin 2 φ s v 2 = v 2 s sin2 φ s sin 2 φ w + v 2 s = v 2 s v s = v 1+ sin2 φ s sin 2 φ w = 2,65 m/s ( ) 1+ sin2 φ s sin 2 φ w = 3,64 m/s 2

3 c) Besimmen Sie die Geschwindigkeien v s und v w geomerisch mi den Winkeln φ s und φ w. Aus a) und b) is bekann: v = v s + v w sin φ w = v s v ; v s = v sin φ w = 3,64 m/s sin φ s = v w v ; v w = v sin φ s = 2,65 m/s 3

4 2. Zusammensoß mi Feder Ein zunächs ruhender Gegensand der Masse m 1 = 2, kg befinde sich auf einer horizonalen Oberfläche und is an einer enspannen Feder mi der Federkonsanen k = 6 N m befesig. Auf dieser Oberfläche kann der Gegensand reibungsfrei gleien. Ein zweier Gegensand der Masse m 2 = 1, kg gleie ebenfalls reibungsfrei mi einer Geschwindigkei von v = 6, m s uner einem Winkel von, auf den ersen zu. a) Besimmen Sie die Ampliude der Schwingung, wenn die Gegensände einen idealen inelasischen Soß ausführen. Das bedeue, dass die beiden Massen nach dem Soß aneinanderhafen. Ein Teil der kineischen Energie der Massen is dabei in Verformungsarbei umgewandel worden, Impulserhalung gil aber rozdem. Wie groß is die Schwingungsdauer? Körper hafen aneinander = eine gemeinsame Geschwindigkei beider Körper nach dem Soß: v e Impulserhalung: m 2 v = (m 1 + m 2 )v e = v e = m 2v m 1 + m 2 Dies is gleichzeiig die Maximalgeschwindigkei, da es die Geschwindigkei im Gleichgewichspunk der Feder is: E kin = E po 1 2 (m 1+ m 2 )v 2 e = 1 2 ka2 1 mi A 1 Maximalauslenkung der Feder (m1 + m 2 )v = A 1 = 2 e m 2 2 = v2 (1, kg)2 (6, m k (m 1 + m 2 )k = s )2 3, kg 6 N m =,141 m Nach Vorlesung: ω 2 = k m = Schwingungsdauer T 1 = 1 f = 2π ω = 2π m1 +m 2 k 3, kg = 2π =,444 s 6 m N b) Besimmen Sie Ampliude und Schwingungsdauer im Falle eines elasischen Soßes. Geschwindigkeien nach dem Soß: v 1 bzw. v 2 Impulserhalung: m 2 v = m 1 v 1 + m 2 v 2 Energieerhalung: 1 2 m 2v 2 = 1 2 m 1v m 2v 2 2 Formeln für v 1 und v 2 : siehe Aufgabe Pendelkee (Vorsich mi den Indices) v 1 = 2v 1+ m 1 = 2vm 2 m 2 +m 1 ( = wieder Maximalgeschwindigkei der schwingenden Feder) m 2 = A 2 = m 1 v 2 1 k = E kin = E po 1 2 m 1v 2 1 = 1 2 ka2 2 4m 1 v 2 m 2 2 k(m 2 + m 1 ) 2 = m1 T 2 = 2π k 4 2, kg (6, m s )2 (1, kg) 2 6 N m (3, kg)2 =,231 m = 2π 2, kg 6 N =,363 s m 4

5 c) Beschreiben Sie die Auslenkung des an der Feder befesigen Gegensandes für beide Soßaren als Funkion der Zei, uner der Annahme, der Soß erfolge zur Zei =. Skizzieren Sie die beiden Funkionen. In beiden Fällen harmonische Schwingung mi x() = = x() = A i sin(ω i ) = A i sin( 2π T i ) d) Wo besiz das Sysem nach dem Soß die höchse poenielle Energie und wo die höchse kineische Energie? Poenielle Energie: Bei x = ±A is F maximal, d.h. am Umkehrpunk is die Feder maximal gespann und die Kugel is in Ruhe Geschwindigkei v = = E kin = Wegen Energieerhalung besiz das Sysem an der Selle x = ±A die höchse poenielle Energie. Kineische Energie: Bei x = is F =, d.h. die Feder is enspann Auslenkung x = = E Feder = Wegen Energieerhalung besiz das Sysem an der Selle x = die höchse kineische Energie. 5

6 3. Inerferenz Zwei gleicharige sinusförmige Schwingungen inerferieren mieinander. a) Zeigen Sie anhand von zwei skizzieren Beispielen welche Phasenverschiebungen zu konsrukiver und desrukiver Inerferenz führen können. ϕ = A Ampliude 1. Welle A Ampliude 1. Welle A Ampliude 2 Inerferenz = konsrukive Inerferenz 6

7 ϕ = π A Ampliude 1. Welle A Ampliude 1. Welle A Ampliude 1. Inerferenz = desrukive Inerferenz 7

8 b) Berechnen Sie die Überlagerung dieser beiden Schwingungen für einen Phasenunerschied ϕ. x 1 () = A 1 sin(ω 1 ) x 2 () = A 2 sin(ω 2 + ϕ ) gleicharig = A 1 = A 2 = A ; ω 1 = ω 2 = ω Superposiionsprinzip x 1 () = A sin(ω) x 2 () = A sin(ω+ ϕ ) = Summe Summe zweier Sinusfunkionen: x() = x 1 ()+x 2 () = A[sin(ω)+sin(ω+ ϕ )] sin α+sin β = 2 sin 1 2 (α+ β)cos1 (α β) 2 x() = 2A sin[ 1 2 (2ω+ ϕ )] cos[ 1 2 ( ϕ )] = 2A cos( ϕ 2 ) sin(ω+ ϕ }{{} 2 ) Ampliude c) Für eine Ampliude beider Schwingungen von 9,8 mm und einer Phasenverschiebung von 1, welche Ampliude ha die resulierende Schwingung? A = 2A cos( ϕ ) = 13 mm 2 d) Bei welcher Phasenverschiebung ϕ in rad ha die Schwingung eine Ampliude von 4,9 mm? Wieviel Wellenlängen Unerschied ensprich das? 2 Lösungen möglich! In Wellenlängen: φ = 2 arccos( A ) = 2,6 rad 2A Φ 2π/Wellenlänge = ±,42 Wellenlänge 8

9 4. Rakee Eine voll beanke Rakee des Typs Ariane 5 habe eine Masse von 75, von denen 65 Treibsoff sind. Der verbranne Treibsoff verläss die Rakee mi einer Aussrömgeschwindigkei von v g = 55 m/s und einer Rae von 15 kg/s. Die Rakee befinde sich im Welall, so dass weder Schwerkraf noch Lufwidersand auf sie wirken. Beim Sar ha sie die Geschwindigkei v =, m/s. Für diese Aufgabe wird angenommen, dass die Rakee aus nur einer Sufe beseh, die gleichmäßig verbrann wird. a) Besimmen Sie den Schub der Rakee. Schub: Kraf, die ausgesoßenes Gas durch Impulsüberrag auf Rakee ausüb. F = dp = d(m v) dm = v g + m dv g }{{} = = v g dm b) Besimmen Sie die Brenndauer T der Rakee. = = 55 m/s 15 kg/s = 8,25 MN 65 kg Treibsoff; verlier pro Sekunde 15 kg m(t) = kg s T = 1 T = 65 kg 15 kg s = 433 s c) Leien Sie her, wie sich die Geschwindigkei v() als Funkion der Zei verhäl! (Formel und Skizze) Hinweis: Aus dem 2. Newonschen Axiom erhalen Sie mi dem allgemeinen Ausdruck für die Kraf eine Gleichung, die die zeilichen Ableiungen dm Seien nach der Zei! Newon: F = dp und dv enhäl. Inegrieren Sie beide 9

10 infiniesimale Änderung des Gesamimpuls im Inerialsysem: dp = P( = ) P( = ) P( = ) = (m+dm)v Ri ; P( = ) = m(v Ri + dv Ri )+dm v gi dp = mdv Ri + dm(v gi v Ri ) = mdv Ri + v g dm wobei v Ri = v und v gi relaiv zum Inerialsysem, v g relaiv zur Rakee gemessen; keine äußere Kraf: F = Achung: Inegral: dp = m dv Ri dm + v g = v g dm m = m() = M = m dv }{{} 75 dm }{{} 15 kg/s dv = v g v() v() dv = v g m() 1 dm m m() dm m v() v() = v g (ln(m()) ln(m( = ) }{{}}{{} ( ) v() = v g ln m() M = v g ln 1 M ) dm M Skizze siehe e). d) Wie hoch is die Endgeschwindigkei v end der Rakee? Brennschluss: m(t) = = 1 = v(t) = v g ln m(t) M = 55 m/s ln 1 75 v(t) = 1181,96... m/s = 11,1 1 3 m/s oder 11,1 km/s 1

11 e) Wie hoch wäre die Endgeschwindigkei v g, wenn auf die Rakee während der Brenndauer eine rückreibende Kraf wirken würde, die der Fallbeschleunigung von g = 9,81 m/s 2 auf der Erde ensprich? dp = mg Zusäzliche Kraf ( m g), die der Rakee engegen wirk. Sar von der Erde m dv + v dm g = mg dv = v() = v g ln m() M 1 dm v g m g g v(t) = 683,96... m/s = 6, m/s oder 6,83 km/s 11

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 215/16 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Nitin Saxena, Daniel Moseguí

Mehr

Basiswissen Physik 11. Jahrgangsstufe

Basiswissen Physik 11. Jahrgangsstufe Basiswissen Physik 11. Jahrgangssufe 1. Einfache lineare Bewegungen a) Darsellung von Bewegungen im Koordinaensysem Unerscheide sorgfälig die in der Zei zurückgelege Srecke s() von der zur Zei eingenommenen

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimenalphysik 1 1 Fakulä für Physik Technische Universiä München Bernd Kohler & Daniel Singh Bla 1 - Lösung WS 214/215 23.3.215 Ferienkurs Experimenalphysik 1 ( ) - leich ( ) - miel ( )

Mehr

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse Sinus und Cosinus im rechwinkligen Dreieck Ankahee Hpoenuse. Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Aufgabe: Berechnen Sie die fehlende Seienlänge und den Winkel.

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

Sinus und Cosinus im rechtwinkligen Dreieck ( )

Sinus und Cosinus im rechtwinkligen Dreieck ( ) Sinus und Cosinus im rechwinkligen Dreieck (6.8.8) Ankahee. Hpoenuse Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Was ha das rechwinklige Dreieck mi Schwingungen

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoreische Physik I/II Prof. Dr. M. Bleicher Insiu für Theoreische Physik J.. Goehe-Universiä Frankfur Aufgabenzeel IV 9. Mai hp://h.physik.uni-frankfur.de/ baeuchle/u Lösungen Die Vorlesung wird durch

Mehr

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Seiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve sell die Paramerisierung sin1 r = cos1, R dar? a Ein Kreis. Es gil x + y = sin 1 + cos

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II echn. Mechanik & Fahrzeugdynaik M II Prof. Dr.-Ing. habil. Hon. Prof. (NUS) D. Besle 7. März 05 Aufgabe (7 Punke) Das Rad (Radius r ) roll i der Winkelgeschwindigkei. I Punk A (Absand r / o Mielpunk) is

Mehr

i(t) t 0 t 1 2t 1 3t 1

i(t) t 0 t 1 2t 1 3t 1 Aufgabe 1: i 0 0 1 2 1 3 1 1. Eine Kapaziä werde mi einem recheckförmigen Srom gespeis (s.o.). Berechnen Sie den Verlauf der Spannung für den Anfangswer u( 0 )=0V mi 0 = 0s. 2. Skizzieren Sie den eisungsverlauf

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

2. Grundlagen Schwingungslehre

2. Grundlagen Schwingungslehre Zusammenfassung Harmonische Anregung (5) Zusammenfassung Harmonische Anregung (6) .4 Akive Schwingungsisolaion (1) a) Schuz der Umgebung von Maschinen, die Schwingungen erzeugen (akiv) b) Schuz eines Geräes,

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II echn. Mechanik & Fahrzeugdynamik M II Prof. Dr.-Ing. habil. Hon. Prof. (NUS) D. Besle 8. März Aufgabe (9 Punke) Ein Zahnrad 3 wird über eine Sange on einem Kolben 5 angerieben. Dieses Zahnrad greif in

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

1.1. Grundbegriffe zur Mechanik

1.1. Grundbegriffe zur Mechanik ... Die geradlinig gleichförmige Bewegung.. Grundbegriffe zur Mechanik Ein Körper beweg sich geradlinig und gleichförmig enlang der -Achse, wenn seine Geschwindigkei (eloci) 0 konsan bleib. Srecke Zeiabschni

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch.

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch. Übungen zur Ingenieur-Mahemaik III WS 9/ Bla 3 7.. Aufgabe 59: Berechnen Sie die Bogenlänge der Schraubenlinie r γ() := r h mi π und inerpreieren Sie das Ergebnis geomerisch. Lösung: Der Tangenialvekor

Mehr

u(t) sin(kωt)dt, k > 0

u(t) sin(kωt)dt, k > 0 Übung 7 /Grundgebiee der Elekroechnik 3 WS7/8 Fourieranalyse Dr. Alexander Schaum, Lehrsuhl für verneze elekronische Syseme Chrisian-Albrechs-Universiä zu Kiel mi Im folgenden wird die Fourierreihe = a

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Abiurprüfung Mahemaik 007 Baden-Würemberg (ohne CAS) Pflicheil - Aufgaben Aufgabe : ( VP) Bilden Sie die erse Ableiung der Funkion f mi f () + = ( sin ). Aufgabe : ( VP) ln Berechnen Sie das Inegral e

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

Kurven in der Ebene und im Raum

Kurven in der Ebene und im Raum Kapiel 9 Kurven in der Ebene und im Raum 9. Parameerdarsellung von Kurven Aufgabe 9. : Skizzieren Sie die folgenden Mengen und beureilen Sie jeweils, ob es sich um eine abgeschlossene oder offene Menge

Mehr

Durch Modellierung beschreibt man Vorgänge aus der Natur sowie industrielle Prozesse

Durch Modellierung beschreibt man Vorgänge aus der Natur sowie industrielle Prozesse Kapiel Modellierung Durch Modellierung beschreib man Vorgänge aus der Naur sowie indusrielle Prozesse mi mahemaischen Werkzeugen, zum Beispiel Gleichungen oder Ungleichungen. Modellierung geschieh durch

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 011/1 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Formelsammlung (Fundamentum, ohne zusätzliche Blätter) Grafikfähiger Taschenrechner CAS im Prüfungsmodus (zurückgesetzt)

Formelsammlung (Fundamentum, ohne zusätzliche Blätter) Grafikfähiger Taschenrechner CAS im Prüfungsmodus (zurückgesetzt) BM Mahemaik T Schwerpunk_6 / 0 - Serie Seie: /7 Abschlussprüfung BM Mahemaik Schwerpunk TAL Teil Prüfungsdauer 90 Minuen, ohne Hilfsmiel Formelsammlung (Fundamenum, ohne zusäzliche Bläer Grafikfähiger

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x)

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x) Abschlussprüfung Berufliche Oberschule 9 Mahemaik Technik - A I - Lösung Teilaufgabe. Gegeben is die reelle Funkion f( x) in der Definiionsmenge ID f = IR. Teilaufgabe. (4 BE) Unersuchen Sie das Verhalen

Mehr

5. Schwingungen und Wellen 5.1. Schwingungen Freier gedämpfter harmonischer Oszillator

5. Schwingungen und Wellen 5.1. Schwingungen Freier gedämpfter harmonischer Oszillator 5. Schwingungen und Wellen 5.. Schwingungen 5... Freier gedämpfer harmonischer Osillaor a) Wiederholung freier ungedämpfer harmonischer Osillaor, keine Reibung d Bewegungsgleichung: m d Lösung: sin d k

Mehr

Abschlußprüfung an Fachoberschulen: Physik 1996 Aufgabe III

Abschlußprüfung an Fachoberschulen: Physik 1996 Aufgabe III Abschlußprüfung an Fachoberschulen: Physik 1996 Aufgabe III 1.0 Die Abhängigkeit des Betrags der Coulombkraft F C von den Punktladungen gen Q 1, Q und ihrem Abstand r im Vakuum wird durch das Coulombgesetz

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme WS 8. Wechselsröme 8.1 Einleiung n Wechselsromkreisen spielen neben Ohmschen Widersänden auch Kondensaoren (Kapaziäen) und Spulen (ndukiviäen) wichige Rolle. n diesem Versuch soll am Beispiel einfacher

Mehr

Kapitel II Bewegungen und Kräfte

Kapitel II Bewegungen und Kräfte Kapiel II Bewegungen und Kräfe 3. Translaion und Roaion... 27 4. Soßprozesse... 35 5. Harmonische Schwingungen... 41 6. Gekoppele Schwingungen... 52 7. Gedämpfe und erzwungene Schwingungen... 59 8. Trägheismomen...

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Klausur Nr. 2, WS 2009/2010

Klausur Nr. 2, WS 2009/2010 Physikalisches Prakikum für Sudierende der Biologie Klausur Nr. 2, WS 29/21 Name: Vorname: Mar. Nr.:......... (Bie in Blockschrif) Anschrif: Gruppe:............ (Unerschrif) Für die vollsändige Beanworung

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch Vorkurs Mahemaik-Physik, Teil 6 c 6 A. Kersch Kinemaik In der Kinemaik geh es um die Frage: wie kann ich Bewegungen, also Bahnen von punkförmigen (Kinemaik der Translaion) oder ausgedehnen Körpern (Kinemaik

Mehr

Schwingungen. 1 Schwingung als periodischer Vorgang

Schwingungen. 1 Schwingung als periodischer Vorgang -I.D1- D Schwingungen 1 Schwingung als periodischer Vorgang 1.1 Definiion Voraussezungen für das Ensehen einer mechanischen Schwingung sind eine zur Gleichgewichslage gerichee rückreibende Kraf und die

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartent E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbau, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Casrigiano Dr. M. Prähofer Zenralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zenrum Mahemaik Mahemaik 3 für Physik (Analysis ) hp://www-hm.ma.um.de/ss/ph/ 49. Eine reguläre Kurve ha keinen Knick

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

Übungsblatt 3 ( ) mit Lösungen

Übungsblatt 3 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2011/12 Übungsblatt 3 (25.11.2011) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr

Mehr

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5 Seie von 5 Aufgabe : Eine ganzraionale Funkion. Grades habe die Nullsellen ; ;. Ihr Schaubild gehe durch P( 6). Besimme die Exremsellen. Skizziere den Graphen der Funkion. allgemeine Form einer Funkion.

Mehr

Fouerierreihen - eine Einführung

Fouerierreihen - eine Einführung HBL Kapfenberg Fourierreiehen - eine Einführung Seie 1 von 19 Roland Pichler roland.pichler@hl-kapfenberg.ac.a Fouerierreihen - eine Einführung Mahemaische / Fachliche Inhale in Sichworen: Inegralrechnung,

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Fourier-Transformation Linearität, Symmetrie, Verschiebung, Skalierung, Faltung, Modulation

Fourier-Transformation Linearität, Symmetrie, Verschiebung, Skalierung, Faltung, Modulation Übung 3 Fourier-Transformaion Lineariä, Symmerie, Verschiebung, Skalierung, Falung, Modulaion Lernziele - wissen und versehen, dass der Berag der Fourier-Transformieren einer reellen Funkion gerade is.

Mehr

7.3 ABS: Antriebsleistung und Energie Seite 1. Widerstands- und Beschleunigungsleistung

7.3 ABS: Antriebsleistung und Energie Seite 1. Widerstands- und Beschleunigungsleistung 7.3 ABS: Anriebsleisung und Energie Seie 1 Widersands- und Beschleunigungsleisung Von der Arbeismaschine wird für die Widersandskraf bzw. das Widersandsmomen die Leisung pw = fwv bzw. p W = m W ω. (7.3-1)

Mehr

E1 Mechanik Musterlösung Übungsblatt 6

E1 Mechanik Musterlösung Übungsblatt 6 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik Musterlösung Übungsblatt 6 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Zwei Kugeln der gleichen Masse mit den Geschwindigkeiten

Mehr

Physik II Vorlesung an der Fachhochschule Hannover im Fachbereich Maschinenbau

Physik II Vorlesung an der Fachhochschule Hannover im Fachbereich Maschinenbau Physik II Vorlesung an der Fachhochschule Hannover im Fachbereich Maschinenbau Ulrich J. Schrewe Saus: April 8.. Physik von U. J. Schrewe Physik II Inhal. Mechanik deformierbarer Körper 4. Schwingungen

Mehr

Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen

Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen Physik A VL1 (7.11.1) Schwingngen g nd Wellen II Wellen, Gedämpfe Schwingngen Wellen Gedämpfe Schwingngen schwache Dämpfng aperiodischer Grenzfall Kriechfall 1 Ei Erinnerng: Beschreibng von Schwingngen

Mehr

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016 Inhal.. 3. 4. 5. 6. 7. 8. Gekoppele Oszillaoren Gekoppele Oszillaoren, ifferenialgleichung Gekoppele Oszillaoren, Normalkoordinaen, Normalschwingungen Gekoppele Oszillaoren, Schwebungen Gekoppele Oszillaoren,

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

1. Schularbeit (6R) 24. Okt. 1997

1. Schularbeit (6R) 24. Okt. 1997 . Schularbei (6R). Ok. 997. Vereinfache und selle das Ergebnis mi posiiven Hochzahlen dar. Es sind dabei alle Rechenschrie anzugeben: 7 x x y 8 : x x y. Löse die folgende Wurzelgleichung ohne Verwendung

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung :

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung : Mechaniche chwingungen F r Rück Gleichgewichlage r F Rück F r Rück F r Rück Gleichgewichlage Größen zur quaniaiven Bechreibung : chwingungdauer oder Periode T, Einhei: Frequenz υ /T, Einhei: / oder Hz

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

(no title) Ingo Blechschmidt. 13. Juni 2005

(no title) Ingo Blechschmidt. 13. Juni 2005 (no title) Ingo Blechschmidt 13. Juni 2005 Inhaltsverzeichnis 0.1 Tests............................. 1 0.1.1 1. Extemporale aus der Mathematik...... 1 0.1.2 Formelsammlung zur 1. Schulaufgabe..... 2 0.1.3

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 26/7 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 7 / 3..26. Wegintegral Gegeben sei das Vektorfeld A( r) = ay

Mehr

Anwendungen komplexer Zahlen

Anwendungen komplexer Zahlen nwendungen komplexer Zahlen rbeitsblatt Dieser bschnitt eignet sich für fächerübergreifenden Unterricht mit Physik. In der Physik, speziell der Elektrotechnik, ist das chnen mit komplexen Zahlen ein wichtiges

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Klausur Physik I für Chemiker

Klausur Physik I für Chemiker Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur Physik I für Chemiker Prof. Dr. M. Agio Lösung zu Aufgabe 1: Schiefe Ebene i) Siehe Zeichnung

Mehr

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau) Schrifliche Abiurprüfung 2007 Sachsen-Anhal Physik 13 n (Leisungskursniveau) Thema 2: Bewegungen in raviaionsfeldern 1 Eigenschafen des raviaionsfeldes Erläuern Sie den Feldbegriff anhand des raviaionsfeldes.

Mehr

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Dienstag, 13.02.2017, 10:00-12:00 Prof.

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

5.6: SM: Stoßkurzschluss Seite 1

5.6: SM: Stoßkurzschluss Seite 1 5.6: SM: Soßkurzschluss Seie 1 Soßkurzschluss Die Ausgangsanornung es reiphasigen Klemmenkurzschlusses is in Bil 5.6-1 argesell. Eine leerlaufene Synchronmaschine wir zum Zeipunk mi allen rei Anschlussklemmen

Mehr

Physik A VL10 ( )

Physik A VL10 ( ) Physik A VL 3.. Ilse nd Sösse Ilse nd Ilserhalng Sossgeseze Bewegng bei koninierlicher assenänderng: Rakeenanrieb Der Ils oder rafsoß Ilse nd Sösse rafwirkngen af einen örer sind häfig zeilich begrenz

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Physikaufgabe 97. Abbildung 1. Das Weltall dargestellt als ein zweidimensional sich aufblähender Ballon

Physikaufgabe 97. Abbildung 1. Das Weltall dargestellt als ein zweidimensional sich aufblähender Ballon Home Sarseie Impressum Konak Gäsebuh Aufgabe: Zeigen Sie, daß sih das All mi Lihgeshwindigkei ausdehn und danah wieder zusammenzieh, und daß die Wellinien geshlossene Orhodromen sind, die durh die Singulariä

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen HS Esslingen SS 2016 Fakulä Grundlagen (HS Esslingen) SS 2016 1 / 12 Übersich 1 Vorberachungen zur Dierenzial- und Inegralrechnung Ableiungsbegri

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 0/ Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 0.0.,

Mehr

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 3 Lösungen 1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 1 (a) Nach dem Aufprall m u 1 = p = m v 1 m u 1 = m 2gh 1 e 1 = 12664Ns e 1 F = p t (b) p 2 =

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartent E13 WS 011/1 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbau, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Nachklausur 2003 Physik I (Mechanik)

Nachklausur 2003 Physik I (Mechanik) Institut für Experimentelle Kernphysik WS2003, 8-10-03, 10 00 13 00 Nachklausur 2003 Physik I (Mechanik) Priv. Dozent Dr. M. Erdmann, Dr. G. Barker Name/Vorname : Matrikelnummer : Fachsemester : Übungsgruppe

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Viskoelastizität. Kapitel 4.2. Jana Pardeike & Rainer H. Müller, Freie Universität Berlin

Viskoelastizität. Kapitel 4.2. Jana Pardeike & Rainer H. Müller, Freie Universität Berlin Kapiel 4.2. Viskoelasiziä Jana Pardeike & Rainer H. Müller, Freie Universiä Berlin 1. Gundlegendes Wirken mechanische Kräfe auf einen Körper, so reen in diesem Körper Maerialspannungen auf. Es komm zu

Mehr