2 Gravitation. Himmelsmechanik. Eine Präsentation von Tobias Denkinger LK Physik /2007

Größe: px
Ab Seite anzeigen:

Download "2 Gravitation. Himmelsmechanik. Eine Präsentation von Tobias Denkinger LK Physik /2007"

Transkript

1 2 Gravitation Himmelsmechanik Eine Präsentation von Tobias Denkinger LK Physik /2007

2 Gliederung 2.1 Das Gravitationsgesetz 2.2 Das Gravitationsfeld 2.3 Bewegung im Gravitationsfeld Ende Quellen Zitate

3 2.1 Das Gravitationsgesetz A Das Sonnesystem B Die Erforschung von Gestalt und Größe der Erde und der Planetenbewegung Die Ägypter und Babylonier Die Griechen Die Ägypter Galileo und Newton C Newtons Gravitationsgesetz Mondrechnung Bestimmung der Gravitationskonstanten D Anwendung der Gravitationsgesetzes

4 A Das Sonnensystem Die Sonne steht in einem der Brennpunkte der elliptischen Erdbahn. Neben den 8 Planeten, die ihre Bahnen um die Sonne ziehen, gibt es noch Planetoiden, Kometen und Meteore. Die einzelnen Planeten werden von Monden umkreist

5 B Die Erforschung von Gestalt und Größe der Erde und der Planetenbewegung Die Ägypter und Babylonier: Erde Okeanos Himmelsgewölbe Erde als Scheibe Darum: Okeanos Um alles: Himmelsgewölbe

6 B Die Erforschung von Gestalt und Größe der Erde und der Planetenbewegung Die Griechen: Mond Erde Erde als Kugel Sonne als Mittelpunkt Sterne sehr weit entfernt Sonne Heliozentrische Theorie

7 B Die Erforschung von Gestalt und Größe der Erde und der Planetenbewegung Die Ägypter: Erde als Kugel Erde im Mittelpunkt Sterne sehr weit entfernt Geozentrische Theorie

8 B Die Erforschung von Gestalt und Größe der Erde und der Planetenbewegung Galileo und Newton: Erde als Kugel Sonne als Mittelpunkt Heliozentrische Theorie

9 C Newtons Gravitationsgesetz Mondrechnung: Isaac Newton bemerkte, dass das Verhältnis der Fallbeschleunigung des Mondes auf die Erde und der Fallbeschleunigung eines Apfels auf die Erde etwa 1:3600 beträgt, also 1:60². Das Verhältnis der Entfernung des Mondes vom Erdmittelpunkt und dem Erdradius beträgt 1:60. Daraus schlussfolgerte Newton, dass die Fallbeschleunigung zweier Körper mit dem Quadrat der Entfernung abnimmt. Daraus leitete er ab, dass für die Anziehungskraft gilt: F ~ 1/r 2. Aus dieser Erkenntnis und dem Wissen, dass F ~ m 1 ; F ~ m 2 gilt entstand die Gleichung F = γ m 1 m 2 r 2 γ wird als Gravitationskonstante bezeichnet.

10 C Newtons Gravitationsgesetz Bestimmung der Gravitationskonstanten: Mit einer solchen Gravitationsdrehwaage gelang es Henry Cavendish 1798, die extrem geringe Anziehungskraft G zwischen zwei Körpern (mit bekannter Masse) zu ermitteln. Durch Newtons Gravitationsgesetz errechnete er γ durch γ = Er erhielt für F r² m 1 m 2 γ einen Wert von: 11 γ = 6, m³ kg s²

11 D Anwendungen des Gravitationsgesetzes Anhand der Gravitationsgesetze ist es möglich, die Masse eines Körpers im Raum bestimmen, wenn Bahnradius r und Umlaufdauer T bekannt sind anhand folgender Gleichung: M= 4 π²r³ mit als Gravitationskonstante γt² γ.

12 2.2 Das Gravitationsfeld A Feldbegriff und Feldstärke Gravitations und Schwerefeld Gravitationsfeldstärke B Potentielle Energie im Gravitationsfeld Im homogenen Schwerefeld Im inhomogenen Schwerefeld C Schwere und träge Masse

13 Körper der Masse m die Kraft G=G*. m ausübt. A Feldbegriff und Feldstärke Gravitations und Schwerefeld: Jeder Körper erzeugt in seiner Umgebung allein aufgrund seiner Masse ein Schwerefeld. 1) Die Masse M erzeugt durch den von ihrer Masse gekrümmten Raum ein Gravitationsfeld, welches auf einen

14 A Feldbegriff und Feldstärke Gravitationsfeldstärke: Für ein Gravitationsfeld existiert eine charakteristische Konstante G* die sich aus der Entfernung r zwischen den beiden Körpern und der Masse M des schwereren Körpers ermitteln lässt: G*= γ. M r² mit γ als Gravitationskonstante.

15 B Potentielle Energie im Gravitationsfeld Berechnung im homogenen Schwerefeld: auf der Erde: ΔE=m g Δh ΔE=m g (h 2 h 1 ) Allgemein: ΔE= γ m M(r1 1 1 r 2 ) dies entspricht der potentiellen Energie E pot = γ m M(r1 1 1 r 2 )

16 B Potentielle Energie im Gravitationsfeld Berechnung im inhomogenen Schwerefeld: Die potentielle Energie ermittelt man, indem man das skalare Produkt F Δs im Bereich von r 1 bis r 2 integriert: r 2 E pot = F Δs r 1

17 C Schwere und träge Masse Die Träge Masse F=m a m=f/a und die schwere Masse m=f r²/(m γ) sind laut allgemeiner Relativitätstheorie gleich.

18 2.3 Bewegung im Gravitationsfeld A Zentralkraft; Kepplersche Gesetze Zentralkraft Kepplersche Gesetze B Bahnform und Energie der Satelliten Energie Bahnform C Rakete und Raketengleichung

19 A Zentralkraft; Kepplersche Gesetze Def: Eine Zentralkraft ist eine Kraft, die auf den Zentralkörper gerichtet ist: also hier die Gravitationskraft. 2) G= γ m M/r² Newton gelang es, mithilfe seiner Axiome und des Gravitationsgesetzes, die Kepplerschen Gesetze herzuleiten.

20 A Zentralkraft; Kepplersche Gesetze Herleitung der Kepplerschen Gesetze: Flächensatz: Dieses Gesetz wurde von Newton aus der Existenz einer Zentralkraft hergeleitet. Die von einem Körper auf einer Bahn um einen anderen Körper umstrichene Fläche ist in gleicher Zeit gleich groß. 3. Kepplersches Gesetz: Leitet sich aus der Annahme ab, die Bahn hätte Kreisform.

21 B Bahnform und Energie der Satelliten Die Energie eines Satelliten ist: E=E pot +E kin E pot = γ m M/r E kin =0,5m v² E= 0,5m v² γ m M/r

22 B Bahnform und Energie der Satelliten Die Bahnform des Satelliten: je nach Verhältnis von potentieller und kinetischer Energie ergeben sich verschiedene Bahnformen: Hyperbel: v 0 ² > 2γM/r0 Parabel: v 0 ² = 2γM/r0 Ellipse: v 0 ² < 2γM/r0 Kreis: v 0 ² = γm/r0

23 C Rakete und Raketengleichung Eine Rakete funktioniert nach Rückstoßprinzip: Sie bewegt sich vorwärts und das abgesonderte Gas in die Gegenrichtung. Dabei nimmt ihre Geschwindigkeit zu und ihre Masse ab. Ihre Endgeschwindigkeit ist: v e =v 0 +v r ln (m 0 /m e ) mit m 0 als Anfangsmasse, m e als Endmasse und v 0 als Anfangsgeschwindigkeit und v r als als Ausströmgeschwindigkeit.

24 Zitate 1) Metzler Physik S.89 2) Metzler Physik S.94

25 Quellen J. Grehn et al: Metzler Physik(3. Auflage) WISSENdigital: Enzyklopädie 2004

Abiturtraining Physik

Abiturtraining Physik Abiturtraining Physik Aus: Schriftliche Abiturprüfung Physik Sachsen Anhalt 04 Thema G : Auf dem Weg zum Mars Gravitation Die russische Raumsonde Phobos Grunt startete im November 0 zu einem Flug zum Marsmond

Mehr

6 Gravitation (gravitación, la)

6 Gravitation (gravitación, la) 6 Gravitation Hofer 1 6 Gravitation (gravitación, la) A1: Informiere dich über unser Sonnensystem und trage dein Wissen in Form eines Kurzreferates vor. 6.1 Weltbilder 6.1.2 Das geozentrische Weltbild(concepto

Mehr

Satellitennavigation-SS 2011

Satellitennavigation-SS 2011 Satellitennavigation-SS 011 LVA.-Nr. 183.060 Gerhard H. Schildt Buch zur Vorlesung: ISBN 978-3-950518-0-7 erschienen 008 LYK Informationstechnik GmbH www.lyk.at office@lyk.at Satellitennavigation GPS,

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation 22. Oktober 2015 Physik Gravitation Newton s Gravitationsgesetz Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen.

Mehr

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie Versuch: Kreisel mit äußerer Kraft L T zur Dieser Vorgang heißt Präzession, Bewegung in der horizontalen Ebene (Kreisel weicht senkrecht zur Kraft aus).

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 6. Nov. Gravitation + Planetenbewegung Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Kraft = Impulsstrom F = d p dt = dm dt v = dn

Mehr

2.7 Gravitation, Keplersche Gesetze

2.7 Gravitation, Keplersche Gesetze 2.7 Gravitation, Keplersche Gesetze Insgesamt gibt es nur vier fundamentale Wechselwirkungen: 1. Gravitation: Massenanziehung 2. elektromagnetische Wechselwirkung: Kräfte zwischen Ladungen 3. starke Wechselwirkung:

Mehr

In Bezug zum Beitrag Mit AIDA zum Kleinplaneten Didymos in der Zeitschrift Sterne und Weltraum 5/2013 (Blick in die Forschung, S.

In Bezug zum Beitrag Mit AIDA zum Kleinplaneten Didymos in der Zeitschrift Sterne und Weltraum 5/2013 (Blick in die Forschung, S. Little Armageddon In Bezug zum Beitrag Mit AIDA zum Kleinplaneten Didymos in der Zeitschrift Sterne und Weltraum 5/2013 (Blick in die Forschung, S. 16) Natalie Fischer Ist es möglich, die Bahn eines Asteroiden

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Keplersche Gesetze Gravitationsgesetz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 15. Nov. 2016 Der Drehimpuls m v v r v ω ω v r

Mehr

Gravitation Urkraft des Universums

Gravitation Urkraft des Universums Gravitation Urkraft des Universums Alles ist Geometrie Max Camenzind Akademie HD September 2016 Motivation zu diesem Zyklus: 100 Jahre Einstein-Gravitation Die Doku zu den Vorträgen: Ca. 230 S. A4 sw

Mehr

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg Das Sonnensystem Teil 1 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 6. Dezember 2016 1 / 42 Übersicht Allgemeiner Überblick Bahnen der Planeten historisch:

Mehr

Geschichte der Astronomie

Geschichte der Astronomie Geschichte der Astronomie Klassische Astronomie - Himmelsmechanik Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 Die Wägung der Weltsysteme Quelle: G.B. Riccioli, Almagestum Novum (Bologna

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden

Mehr

Aufträge zum WebQuest

Aufträge zum WebQuest Aufträge zum WebQuest Leben auf dem Kleinplaneten von Hermann Knoll 1. Verschaffe Dir einen schnellen Überblick über die vorselektionierten Links, kehre dann zu dieser Seite zurück. 2. Erstelle eine leere

Mehr

Gravitationstheorie: nach Newton und nach Einstein

Gravitationstheorie: nach Newton und nach Einstein Gravitationstheorie: nach Newton und nach Einstein Franz Embacher Fakultät für Physik der Universität Wien Vortrag im Astronomischen Seminar Kuffner Sternwarte, Wien, 13. April 2015 Inhalt Kepler: die

Mehr

Übungsblatt 8 Physik für Ingenieure 1

Übungsblatt 8 Physik für Ingenieure 1 Übungsblatt 8 Physik für Ingenieure 1 Othmar Marti, (othmar.marti@physik.uni-ulm.de) 4. 12. 2001 1 Aufgaben für die Übungsstunden Statische Gleichgewichte 1, Gravitation 2, PDF-Datei 3 1. Bei einem Kollergang

Mehr

M1 - Gravitationsdrehwaage

M1 - Gravitationsdrehwaage Aufgabenstellung: Bestimmen Sie die Gravitationskonstante mit der Gravitationsdrehwaage nach Cavendish. Stichworte zur Vorbereitung: Gravitation, Gravitationsgesetz, Gravitationsgesetze, NEWTONsche Axiome,

Mehr

Die Bewegungen der Planeten Grundlagen

Die Bewegungen der Planeten Grundlagen Die Bewegungen der Planeten Grundlagen Die Epizykeltheorie des Ptolemäus der Planet (gelb) kreist nicht nur auf seiner Sphäre um die Erde, sondern auch noch um seinen Aufhängepunkt In der Antike hatten

Mehr

Formelsammlung Mechanik

Formelsammlung Mechanik Joachim Stiller Formelsammlung Mechanik Alle Rechte vorbehalten Formelsammlung Mechanik Ich möchte in den nächsten Wochen einmal eine Formelsammlung zur Mechanik erstellen, die ich aus dem Telekolleg Mechanik

Mehr

Gravitation in der Sek. II: Überlegungen

Gravitation in der Sek. II: Überlegungen Fortbildung Physik Zentralabitur 2017 Fach Physik Prüfungsthema Gravitation Elemente und Aspekte des Unterrichts in der Sek.II Detlef Kaack, LiF13 Gravitation in der Sek. II: Überlegungen Das Thema Astronomie

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Die allgemeine Relativitätstheorie - einfach erklärt

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Die allgemeine Relativitätstheorie - einfach erklärt Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Die allgemeine Relativitätstheorie - einfach erklärt Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT

Mehr

Einführung in die Astronomie

Einführung in die Astronomie Einführung in die Astronomie Teil 2 Peter H. Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg part2.tex Einführung in die Astronomie Peter H. Hauschildt 30/10/2014

Mehr

Gravitation und Planetenbewegung

Gravitation und Planetenbewegung Gravitation und Planetenbewegung Die Erforschung des Sternenhimmels sowie der Bewegungen von Sonne und Mond standen schon immer im Zentrum des Interesses der Menschheit. Fast alle Völker glaubten, das

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4Bi 4. Beispiele il für Kräfte Käft Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft,

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft, Coulombkraft,

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 215/16 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Nitin Saxena, Daniel Moseguí

Mehr

Falls die Masse nicht konstant ist, gilt die allgemeine Formulierung: p ist der Impuls des Körpers.

Falls die Masse nicht konstant ist, gilt die allgemeine Formulierung: p ist der Impuls des Körpers. Mechanik Physik Mechanik Newton sche Gesetze 1. Newton sches Gesetz - Trägheitssatz Wirkt auf einen Körper keine Kraft oder befindet er sich im Kräftegleichgewicht, so bleibt er in Ruhe oder er bewegt

Mehr

Satellit. Projekt Mathematische Modellierung. Lukas Schweighofer, Mustafa Krupic, Elisabeth Schmidhofer Sommersemester 2013

Satellit. Projekt Mathematische Modellierung. Lukas Schweighofer, Mustafa Krupic, Elisabeth Schmidhofer Sommersemester 2013 Projekt Mathematische Modellierung Lukas Schweighofer, Mustafa Krupic, Elisabeth Schmidhofer Sommersemester 2013 1. Einführung und Beschreibung der Vorgangs In unserem Projekt schicken wir einen en von

Mehr

Kepler sche Gesetze. = GMm ; mit v = 2rπ. folgt 3. Keplersches Gesetz

Kepler sche Gesetze. = GMm ; mit v = 2rπ. folgt 3. Keplersches Gesetz Kepler sche Gesetze 1. 3. Keplersche Gesetz (a) Wie kann man das 3. Keplersche Gesetz aus physikalischen Gesetzen ableiten? Welche vereinfachenden Annahmen werden dazu gemacht? (b) Welche Verfeinerung

Mehr

Formelsammlung Astronomie

Formelsammlung Astronomie Joachim Stiller Formelsammlung Astronomie Alle Rechte vorbehalten Formelsammlung Astronomie In diesem Thread möchte ich einmal eine Formelsammlung zur Astronomie für die Galerie vorinstallieren... Zunächst

Mehr

Übungen für die dritte Klausur

Übungen für die dritte Klausur Übungen für die dritte Klausur 205-03-2 formeln Übungen für die dritte Klausur Formeln Diese Formeln sollten sie kennen. Kennen bedeutet dabei, dass Sie wissen, was die einzelnen Formel- Buchstaben bedeuten

Mehr

6. Kreisbewegungen Zentripetalkraft

6. Kreisbewegungen Zentripetalkraft Kreisbewegungen 1 6. Kreisbewegungen 6.1. Zentripetalkraft Newtons 1. Gesetz lautet: Jeder materielle Körper verharrt in Ruhe oder gleichförmig geradliniger Bewegung, solange er nicht durch eine einwirkende

Mehr

Physikalische Grundlagen

Physikalische Grundlagen Physikalische Grundlagen Inhalt: - Bahn und Bahngeschwindigkeit eines Satelliten - Die Energie eines Satelliten - Kosmische Geschwindigkeiten Es wird empfohlen diese Abschnitte der Reihe nach zu bearbeiten.

Mehr

Die Gravitationswaage

Die Gravitationswaage Physikalisches Praktikum für das Hauptfach Physik Versuch 02 Die Gravitationswaage Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Silverberg-Gymnasium 2004/2005. Fach: Physik Kursleiter: Herr Dr. Hütte. Planetenbahnen. von Andreas Kaiser. Abgabetermin: Mi. 09.02.

Silverberg-Gymnasium 2004/2005. Fach: Physik Kursleiter: Herr Dr. Hütte. Planetenbahnen. von Andreas Kaiser. Abgabetermin: Mi. 09.02. Silverberg-Gymnasium 004/005 1 Fach: hysik Kursleiter: Herr Dr. Hütte lanetenbahnen von Andreas Kaiser Abgabetermin: Mi. 09.0.005 Inhaltsverzeichnis: 1. inleitung... S.3. Hauptteil Geschichte.. S.3 Die

Mehr

Besprechung am

Besprechung am PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2014/15 Lösung Übungsblatt 8 Lösung Übungsblatt 8 Besprechung am 02.11.2014 Aufgabe 1 Impulserhaltung : Zwei Personen der Massen m 1 und

Mehr

Die Keplerschen Gesetze ==================================================================

Die Keplerschen Gesetze ================================================================== Die Keplerschen Gesetze ================================================================== Astronomische Daten, die bei den folgenden Berechnungen verwendet werden dürfen: Große Halbachse Sonne-Erde: 1

Mehr

Computersimulationen in der Astronomie

Computersimulationen in der Astronomie Computersimulationen in der Astronomie Fabian Heimann Universität Göttingen, Fabian.Heimann@stud.uni-goettingen.de Astronomisches Sommerlager 2013 Inhaltsverzeichnis 1 Differentialgleichungen 3 1.1 Beispiele.....................................

Mehr

Keplergesetzte S = 4,2 km. GM r a = a 2GM rv 2 = 5,5 102 AE (c) Perihel (1 e)a = 82AE Aphel (1+e)a = 1, AE.

Keplergesetzte S = 4,2 km. GM r a = a 2GM rv 2 = 5,5 102 AE (c) Perihel (1 e)a = 82AE Aphel (1+e)a = 1, AE. Keplergesetzte 1. Am 14.November 003 wurde der Planetoid Sedna entdeckt. Noch nie zuvor wurde ein natürliches Objekt aus unserem Sonnensystem in einer so großen Entfernung von der Erde entdeckt. Im folgenden

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.5 Magnetische Kraft 4.1 Gravitation 4. Beispiele für Kräfte 4.1 Gravitation

Mehr

Hanser Fachbuchverlag, 1999, ISBN

Hanser Fachbuchverlag, 1999, ISBN *XQGODJHQGH3K\VLN Vorlesung im Fachbereich VI der niversität Trier Fach: Geowissenschaften Sommersemester 21 'R]HQW '.DOROWH 'LSORP3K\VLNH )DFKKRFKVFKXOH7LH 7HO )D[ (DLOPROWH#IKWLHGH,QIRV]X9ROHVXQJXQWHKWWSZZZIKWLHGHaPROWHJGS

Mehr

Rotationskurve einer Spiralgalaxie

Rotationskurve einer Spiralgalaxie Theorie Rotationskurve einer Spiralgalaxie Modell einer Spiralgalaxie Eine Spiralgalaxie ist grundsätzlich aus drei Komponenten aufgebaut: Scheibe, Bulge und Halo. Die Galaxien-Scheibe besteht vorwiegend

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 9. Nov. Keplergleichungen, Gravitation u. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Planetenbahnen http://www.astro.uni-bonn.de/~deboer/pdm/planet/sonnenap2/

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Vereinfachte ZEITLEISTE DER ASTRONOMISCHEN ENTDECKUNGEN (rechte Spalte: Meilensteine der Technik, des Wissens oder der Politik)

Vereinfachte ZEITLEISTE DER ASTRONOMISCHEN ENTDECKUNGEN (rechte Spalte: Meilensteine der Technik, des Wissens oder der Politik) Vereinfachte ZEITLEISTE DER ASTRONOMISCHEN ENTDECKUNGEN (rechte Spalte: Meilensteine der Technik, des Wissens oder der Politik) Die Geschichte der Astronomie begann Jahrtausende vor unserer Zeitrechnung.

Mehr

2.5 Dynamik der Drehbewegung

2.5 Dynamik der Drehbewegung - 58-2.5 Dynamik der Drehbewegung 2.5.1 Drehimpuls Genau so wie ein Körper sich ohne die Einwirkung äußerer Kräfte geradlinig mit konstanter Geschwindigkeit bewegt, so behält er seine Orientierung gegenüber

Mehr

Besprechung am

Besprechung am PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2015/16 Übungsblatt 8 Übungsblatt 8 Besprechung am 08.12.2015 Aufgabe 1 Trouble with Rockets: Eine Rakete mit einer anfänglichen Masse M

Mehr

Wie berechnet man eine Planetenbahn?

Wie berechnet man eine Planetenbahn? Wie berechnet man eine Planetenbahn? Das Programm Doppelstern.exe macht das iterativ, das heißt, die einzelnen Bahnpunkte werden Schritt für Schritt in einer Endlosschleife berechnet. Dazu denkt man sich

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

3.8 Das Coulombsche Gesetz

3.8 Das Coulombsche Gesetz 3.8 Das Coulombsche Gesetz Aus der Mechanik ist bekannt, dass Körper sich auf Kreisbahnen bewegen, wenn auf sie eine Zentripetalkraft in Richtung Mittelpunkt der Kreisbahn wirkt. So bewegt sich beispielsweise

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 223 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 25. Janua6 Übungsblatt Lösungsvorschlag 3 Aufgaben,

Mehr

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b)

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b) 38 Newton sche Mechanik I.6.3 Kepler-Problem Die Newton sche Gravitationskraft zwischen zwei Massenpunkten mit Massen m 1, m 2 ist eine konservative Zentralkraft, gegeben durch mit dem Potential F ( x

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.1 Gravitation 4.1 Gravitation 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft,

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben

Mehr

Die Entwicklung des Weltbilds. Manuel Erdin Gym Liestal, 2004

Die Entwicklung des Weltbilds. Manuel Erdin Gym Liestal, 2004 Die Entwicklung des Weltbilds Manuel Erdin Gym Liestal, 2004 Frühe Kulturen Der Mensch als Teil des Kosmos Frühe Kulturen Beobachtungen von Sonnen- und Mondpositionen Himmelscheibe von Nebra (Deutschland)

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 5 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Themen Einstieg: Was ist Astrophysik? Koordinatensysteme Astronomische Zeitrechnung Sonnensystem

Mehr

Vorlesung 1: 1.Ausblick 2.Literatur 3.Bahnbrecher der Kosmologie

Vorlesung 1: 1.Ausblick 2.Literatur 3.Bahnbrecher der Kosmologie Vorlesung 1: Roter Faden: 1.Ausblick 2.Literatur 3.Bahnbrecher der Kosmologie 26. Oktober 2007 Kosmologie, WS 07/08, Prof. W. de Boer 1 26. Oktober 2007 Kosmologie, WS 07/08, Prof. W. de Boer 2 Wahlpflichtfach

Mehr

Physik LK 11, 2. Klausur Gravitation, Rotation Lösung

Physik LK 11, 2. Klausur Gravitation, Rotation Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht eplizit anders verlangt. Besondere Näherungen

Mehr

Vorlesung 3: Roter Faden:

Vorlesung 3: Roter Faden: Vorlesung 3: Roter Faden: Bisher: lineare Bewegungen Energie- und Impulserhaltung Heute: Beispiele Energie- und Impulserhaltung Stöße Gravitationspotential Exp.: Billiard Ausgewählte Kapitel der Physik,

Mehr

Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3).

Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3). Achterbahn Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3). a) Warum bewegt sich das Fahrzeug? sidee b) Welche

Mehr

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:

Mehr

Abitur 2005 (Beispiel) Physik (Grundkurs) Einlesezeit: 30 Minuten Bearbeitungszeit: 210 Minuten

Abitur 2005 (Beispiel) Physik (Grundkurs) Einlesezeit: 30 Minuten Bearbeitungszeit: 210 Minuten Abitur 2005 (Beispiel) Physik (Grundkurs) Einlesezeit: 30 Minuten Bearbeitungszeit: 210 Minuten Der Prüfling wählt aus jedem Aufgabenblock eine Aufgabe aus. Die zwei zur Bewertung vorgesehenen Aufgaben

Mehr

Protokoll. Physik. Stundenprotokoll. Explosionsstoß. Aufgabe: Skizze:

Protokoll. Physik. Stundenprotokoll. Explosionsstoß. Aufgabe: Skizze: Protokoll Physik Stundenprotokoll Schule: Charlotte-Wolff-Kolleg Fach: Physik Leistungskurs Jahrgang: A40/ Q1 Datum: 06.09.2011; 3.Block 12:00-13:30 Uhr Lehrer: Herr Lothar Winkowski Protokollant: Andreas

Mehr

Kepler-Problem im Kontext

Kepler-Problem im Kontext Kepler-Problem im Kontext Max Camenzind - Akademie HD - Mai 2016 Zusammenfassung aus Herleitung 2-Körper-Problem Ellipsengleichung mit Mittelpunkt in (0,0): Eine Ellipse ist durch 2 Parameter bestimmt!

Mehr

5 Gravitation. 5.1 Die Gravitationskraft Das Sonnensystem

5 Gravitation. 5.1 Die Gravitationskraft Das Sonnensystem 5 Gravitation Als Gravitation wird die gegenseitige Anziehung von Körpern allein aufgrund ihrer Masse bezeichnet. Die Gewichtskraft auf die Körper und die Fallgesetze finden durch sie ihre Erklärung. Für

Mehr

Einführung Einleitung Grundlagen Bewegung und Energie. 1.1 Grundbegriffe... 16

Einführung Einleitung Grundlagen Bewegung und Energie. 1.1 Grundbegriffe... 16 3 Inhaltsverzeichnis Einführung..................................................... 12 Einleitung..................................................... 12 Grundlagen.....................................................

Mehr

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Von Eckhardt Schön Erfurt Mit 1 Abbildung Die Bewegung der Planeten und Kleinkörper des Sonnensystems verläuft scheinbar zweidimensional

Mehr

2.2 Dynamik von Massenpunkten

2.2 Dynamik von Massenpunkten - 36-2.2 Dynamik von Massenpunkten Die Dynamik befasst sich mit der Bewegung, welche von Kräften erzeugt und geändert wird. 2.2.1 Definitionen Die wichtigsten Grundbegriffe der Dynamik sind die Masse,

Mehr

Die Gravitationskraft sowie Eigenschaften und Messung von Kräften (S )

Die Gravitationskraft sowie Eigenschaften und Messung von Kräften (S ) Die Gravitationskraft sowie Eigenschaften und Messung von Kräften (S. 94 103) Übersicht Die Gravitation ist einer der zentralen Begriffe zum Verständnis der Himmelsmechanik. Sie wird in dieser Klassenstufe

Mehr

Seminar Astrobiologie WS 13/14 Verena Mündler

Seminar Astrobiologie WS 13/14 Verena Mündler Seminar Astrobiologie WS 13/14 Verena Mündler 1 Definition wikipedia -> Bewegung astronomischer Objekte aufgrund physikalischer Theorien bzw. mathematischer Modellierung Astronomische Objekte: Himmelskörper:

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation?

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Was ist RAUMZEIT? z t 3 dimensionaler Raum y + Zeitachse x = 4 dimensionale RAUMZEIT Was ist RAUMZEIT? Zeitachse = t c http://www.ws5.com/spacetime

Mehr

.HJHOVFKQLWWHLPWlJOLFKHQ/HEHQ

.HJHOVFKQLWWHLPWlJOLFKHQ/HEHQ Verschiedene Zugänge Kegelschnitte im täglichen Leben 46.HJHOVFKQLWWHLPWlJOLFKHQ/HEHQ Kegelschnitte treten im täglichen Leben immer wieder auf; man braucht nur etwa an den Umriss eines Lichtkegels an einer

Mehr

Grundlagen der Astronomie und Astrophysik. Andre Knecht. [HIMMELSMECHANIK] 3 Erhaltungssätze und die Herleitung der drei Kepler-Gesetze

Grundlagen der Astronomie und Astrophysik. Andre Knecht. [HIMMELSMECHANIK] 3 Erhaltungssätze und die Herleitung der drei Kepler-Gesetze 2009 Grundlagen der Astronomie und Astrophysik Andre Knecht [HIMMELSMECHANIK] 3 Erhaltungssätze und die Herleitung der drei Kepler-Gesetze 2-Körperproblem-Gravitationsgesetz 3 Newton schen Axiome Trägheitsgesetz:

Mehr

Eigenschaften der Schwerkraft

Eigenschaften der Schwerkraft Gravitation Teil 1 Eigenschaften der Schwerkraft Bewirkt die gegenseitige Anziehung von Massen Ist prinzipiell nicht abschirmbar Ist im Vergleich zu den anderen Naturkräften extrem schwach: F E F G 10

Mehr

Grundideen der allgemeinen Relativitätstheorie

Grundideen der allgemeinen Relativitätstheorie Grundideen der allgemeinen Relativitätstheorie David Moch La Villa 2006 Inhalt Newtons Physik und ihr Versagen Einsteins Lösung von Raum und Zeit: Die spezielle Relativitätstheorie Minkowskis Vereinigung

Mehr

Das Galaktische Zentrum

Das Galaktische Zentrum Das Galaktische Zentrum Max Camenzind Akademie Heidelberg Januar 2016 Avery Broderick Korrektur zu NGC 1277 Die Masse war falsch! Diese Masse ist falsch! Korrektur zu NGC 1277: Die Masse beträgt nur 1

Mehr

Fragen zu Kapitel III Seite 1 III

Fragen zu Kapitel III Seite 1 III Fragen zu Kapitel III Seite 1 III Grundbegriffe der klassischen Mechanik Fragen 3.1 bis 3.8 Zur Beantwortung der Fragen benötigen Sie folgende Daten Masse der Erde 5,974 10 4 kg Erdradius 6371 km Erdbeschleunigung

Mehr

F A C H A R B E I T. Leistungskurs Physik 12 (2005/06) BESTIMMUNG DER GRAVITATIONSKONSTANTEN. Kevin Kaatz. Städt. Gymnasium Moltkestraße Gummersbach

F A C H A R B E I T. Leistungskurs Physik 12 (2005/06) BESTIMMUNG DER GRAVITATIONSKONSTANTEN. Kevin Kaatz. Städt. Gymnasium Moltkestraße Gummersbach F A C H A R B E I T Leistungskurs Physik 1 (005/06) BESTIMMUNG DER GRAVITATIONSKONSTANTEN Kevin Kaatz Facharbeit Physik LK 1 Bestimmung der Gravitationskonstanten Kevin Kaatz Vorwort (Anmerkung zur Facharbeit)

Mehr

Die Keplerschen Gesetze

Die Keplerschen Gesetze Die Keplerschen Gesetze Kepler I: Die Planeten bewegen sich auf Ellipsenbahnen. In einem Brennpunkt steht die Sonne. r(t + dt) r(t) da d r = vdt Kepler II: Der Verbindungsstrahl Sonne-Planet überstreicht

Mehr

Newton, Sir Isaac (1643-1727)

Newton, Sir Isaac (1643-1727) Zu Beginn des Jahres 1665 begann ich zu enken, dass sich die Schwerkraft der Erde uch auf den Mond erstrecke... Ich leitete amals aus Keplers Gesetzen ab, dass die räfte, welche die Planeten in ihren Bahnen

Mehr

V12 Beschleunigte Bewegungen

V12 Beschleunigte Bewegungen Aufgabenstellung: 1. Ermitteln Sie die Fallbeschleunigung g aus Rollexperimenten auf der Rollbahn. 2. Zeigen Sie, dass für die Bewegung eines Wagens auf der geneigten Ebene der Energieerhaltungssatz gilt.

Mehr

RAUMFLUGMECHANIK... eine Reise zum Mars. FH Astros VO Serie SS April 2014 Wolfgang Steiner

RAUMFLUGMECHANIK... eine Reise zum Mars. FH Astros VO Serie SS April 2014 Wolfgang Steiner RAUMFLUGMECHANIK... eine Reise zum Mars FH Astros VO Serie SS2014 7. April 2014 Wolfgang Steiner Die Planeten des Sonnensystems Uranus Neptun Saturn Merkur Jupiter Pluto Mars Erde Venus Größenvergleich

Mehr

Planetenschleifen mit Geogebra 1

Planetenschleifen mit Geogebra 1 Planetenschleifen Planetenschleifen mit Geogebra Entstehung der Planetenschleifen Nach dem dritten Kepler schen Gesetz stehen die Quadrate der Umlaufzeiten zweier Planeten im gleichen Verhältnis wie die

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.5 Beispiele 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer

Mehr

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben ETH-Aufnahmeprüfung Herbst 2015 Physik Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben U 1 V a) Betrachten Sie den angegebenen Stromkreis: berechnen Sie die Werte, die von den Messgeräten (Ampere-

Mehr

Zentralpotential. Zweikörperproblem. Symmetrie Erhaltungsgröße Vereinfachung. Transformation zu Schwerpunkts- und Relativkoordinaten

Zentralpotential. Zweikörperproblem. Symmetrie Erhaltungsgröße Vereinfachung. Transformation zu Schwerpunkts- und Relativkoordinaten Zentralpotential Zweikörperproblem Symmetrie Erhaltungsgröße Vereinfachung 1. Translation Schwerpunktsimpuls Einteilchenproblem 2. Zeittransl. Energie Dgl. 1. Ordnung 3. Rotation Drehimpuls Radialgl. Transformation

Mehr

Theoretische Physik I bei Prof. A. Rosch

Theoretische Physik I bei Prof. A. Rosch Vorlesungsmitschrift Theoretische Physik I bei Prof. A. Rosch von M. & O. Filla 8. November 206 Zur Erinnerung: Das Zweikörperproblem wurde auf zwei Differenzialgleichungen heruntergebrochen. Diese können

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung.

Tutorium Physik 1. Arbeit, Energie, Leistung. 1 Tutorium Physik 1. Arbeit, Energie, Leistung. WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Entsprechend ergibt sich unter Vernachlässigung der Geschwindigkeitsänderung in dem Zeitintervall der neue Ort in dem Zeitintervall der neue Ort

Entsprechend ergibt sich unter Vernachlässigung der Geschwindigkeitsänderung in dem Zeitintervall der neue Ort in dem Zeitintervall der neue Ort Entsprechend ergibt sich unter Vernachlässigung der Geschwindigkeitsänderung in dem Zeitintervall der neue Ort in dem Zeitintervall der neue Ort x 1 = x o + υ 0 t Aus diesen Werten υ 1 und x 1 ergibt sich

Mehr

IV.1. Erklärung des Ptolemäus (ca. 140 n. Chr.): Heliozentrische vs. Geozentrische Weltbilder

IV.1. Erklärung des Ptolemäus (ca. 140 n. Chr.): Heliozentrische vs. Geozentrische Weltbilder Heliozentrische vs. Geozentrische Weltbilder Mars: 26. August 1988 bis 30. Oktober 1988, rückläufige Bahn Folie 1 Erklärung des Ptolemäus (ca. 140 n. Chr.): Almagest, 7 Himmelskörper (mit Sonne und Mond)

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003 Abschlussprüfung an Fachoberschulen im Schuljahr 00/00 Haupttermin: Nach- bzw. Wiederholtermin: 0.09.00 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 10 Minuten Hilfsmittel: Formelsammlung/Tafelwerk

Mehr

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 54 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 51 5.1 Arbeit Wird Masse

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 201/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr