Besprechung am
|
|
|
- Ingrid Holzmann
- vor 8 Jahren
- Abrufe
Transkript
1 PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2014/15 Lösung Übungsblatt 8 Lösung Übungsblatt 8 Besprechung am Aufgabe 1 Impulserhaltung : Zwei Personen der Massen m 1 und m 2 und den Geschwindigkeiten v1 = v2 = 15km/h rennen in der Universität auf dem Flur frontal ineinander. Beim Aufprallen halten sich die Personen aneinander fest und bewegen sich gemeinsam weiter. Wie groß ist die Geschwindigkeit der beiden Personen nach dem Stoß bei einem Massenverhältnis von: a) 1 : 1 (Student gegen Student) b) 2 : 1 (Technischer Assisstent gegen Student) c) 10 : 1 (Sehr dicker Professor gegen Student) d) in welche Richtung bewegen sich die Personen in den jeweiligen F allen e) Was passiert im Fall c), wenn sich die Personen nicht aneinander festhalten (der Bauch des Professors ist perfekt elastisch). Welche Geschwindigkeit hat der Student nach dem Zusammenstoß? Lösung: Inelastischer Stoß: Alle Massen bewegen sich als Eine einzige, mit der Geschwindigkeit v, weiter. m 1 v 1 + m 2 v 2 = (m 1 + m 2 ) v (1) v = m 1 v 1 + m 2 v 2 (m 1 + m 2 ) (2) Elastischer Stoß: Alle Massen bewegen sich nach dem Stoß mit verschiedenen Geschwindigkeiten weiter. Zur Lösung benötigen wir Energie- und Impulserhaltung: 1
2 m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2 (3) m 1 2 v m 2 2 v 2 2 = m 1 2 v m 2 2 v 2 2 (4) a) Personen halten sich fest: Stoß ist Unelastisch aus (2) folgt: v = 0 v 1 = m 1 v 1 + m 2 (2v 2 v 1 ) m 1 + m 2 (5) v 2 = m 2 v 2 + m 1 (2v 1 v 2 ) m 1 + m 2 (6) b) aus (2) folgt: v = v 3 = 5 km h c) aus (2) folgt: v = 9 v 11 = 12, 27 km h d) jeweils in die Richtung der größeren Masse e) aus (5) folgt: v Prof = 7 v 11 = 9, 54 km h aus (6) folgt: v Student = 29 v 11 = 39, 54 km h Aufgabe 2 Gyrobus: Ein Bus (m B = 1000kg) soll eine 1km lange Passstraße hochfahren. a) Wenn wir Reibungsverluste vernachlässigen, wie viel Energie ist dafür nötig? b) Wenn wir einfach durch schnelles Fahren SSchwungnehmen, wie viel (kinetische) Energie können wir speichern, wenn der Bus mit v B = 100 km auf den Berg zu fährt? h Reicht das aus, um den Berg hoch zu fahren? Wie hoch kommen wir damit? c) Jetzt benutzten wir eine zylindrische Schwungscheibe (m s = 300kg) aus Stahl, mit einem Radius von r = 0, 5m. Das Trägheitsmoment ist durch J S = 1mr 2 gegeben. 2 Die Scheibe wird auf 7000rpm beschleunigt. Reicht die gespeicherte Energie aus, den Pass hoch zu fahren? 2
3 Lösung: a) E = m g h = m g h = 9, J (7) b) E kin = 1 2 m v 2 = 3, J (8) E kin = E pot (9) 1 2 m v 2 = m g h (10) h = v 2 = 39, 33m 2 g (11) c) E rot = 1 2 J ω2 = m r 2 (2 π f ) 2 (12) E rot = m r 2 (2 π s )2 (13) E rot = 10, J (14) Aufgabe 3 Der Brunnen: Ein Wassereimer (m = 5kg) hängt an einem Seil (l = 8m), das um die Welle (r = 7cm) eines Handrades gewickelt ist. Das Rad und die Welle haben zusammen einen Trägheitsmoment von J Rad = 1, 3kg m 2. Gerade als der volle Eimer oben angekommen ist wird die Kurbel plötzlich losgelassen und der Eimer fällt in den Brunnen. Welche Geschwindigkeit hat der Eimer erreicht als sich das Seil komplett abgewickelt hat? Lösung: Der Eimer übt eine Kraft auf die Rolle aus, welche sich durch einen Drehmoment F g r äussert. Diese Kraft wirkt gegen das Trägheitsmoment des Rads und erzeugt eine Beschleunigung des Rads. Mit: J = Trägheitsmoment α = a r = Winkelbeschleunigung F g r = m g r = Durch Gewicht des Eimers erzeugtes Drehmoment 3
4 Abbildung 1: Das Förderrad des Brunnens J α = F g r (15) J a r = m g r (16) a = m g r 2 J (17) (18) Eingesetzt in v = 2 l a ergibt: 2 8 m 5 kg 9, 81m s 2 (0, 07 m) v = 2 1, 3 kg m 2 = 1, 72 m s 1 Alternativ ist es möglich diese Aufgabe mittels Energieerhaltung zu lösen. Die Potentielle Energie am Anfang entspricht der kinetischen Energie des Eimers und der Rotationsenergie des Förderrads am Ende. Dies führt natürlich zur gleichen Lösung E pot = E kin + E rot m g h = 1 2 m v J ω2 mit ω = v r m g h = 1 2 m v J (v r )2 m g h = 1 2 v 2 (m + J 1 r ) 2 2 m g h v = m + J 1 r 2 4
5 Aufgabe 4 Trouble with Rockets: In der Vorlesung haben Sie die sogenannte Raketengleichung (1) kennengelernt. v end = v Treibstoff ln ( mgesamt ) (19) a) Stellen Sie das Verhältnis von Endgeschwindigkeit und Ausstoßgeschwindigkeit des Treibstoffes als Funktion des Verhältnisses von Gesamt- zu Leermasse dar. Also in der Form: v = v end v Treibstoff =... m Treibstoff (20) Hinweis: m gesamt = + m Treibstoff b) Tragen Sie Geschwindigkeit v gegen die Masse m = m Treibstoff Sie? auf. Was bemerken c) Um vollständig aus dem Gravitationsfeld der Erde zu gelangen ist eine Endgeschwindigkeit von ca. 10km s 1 notwendig. Kann eine einzelne Rakete diese Geschwindigkeit erreichen wenn nur ein Verhältnis m Treibstoff von 15 : 1 technisch umsetzbar ist und die Ausstoßgeschwindigkeit des Treibstoffes 2500ms 1 beträgt? Wie groß müsste das Verhältnis sein um diese Geschwindigkeit zu erreichen? Wie wird dieses Problem in der Raumfahrt gelöst? Lösung: a) v end ( mges ) = ln v Treib m ( leer ) v end mtreib + = ln v Treib m ( leer v end = ln 1 + m ) Treib v Treib (21) (22) (23) b) Hohe Endgeschwindigkeiten sind auch bei großen Verhältnissen von Treibstoff- zu Leermasse nur schwer zu erreichen. 5
6 Abbildung 2: Verhältnis von Geschwindigkeit zu Masse c) v end = v Treib 2500ms 1 ln ( ) 1 (24) v end = 2500 ln(16) = 6931, 5ms 1 (25) Ein Verhältnis von 15 : 1 reicht nicht aus. v end = v Treib 2500ms 1 ln(1 + x) (26) ms 1 = 2500ms 1 ln(1 + x) (27) 1 + x = exp(10000/2500) = exp(4) (28) x = exp(4) 1 = 53, 6 (29) Das Problem kann durch eine mehrstufige Rakete gelöst werden. Der erste Rakete wird nach dem ausbrennen abgesprengt, erst danach zünden die übrigen Raketen. (30) 6
Besprechung am
PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2015/16 Übungsblatt 8 Übungsblatt 8 Besprechung am 08.12.2015 Aufgabe 1 Trouble with Rockets: Eine Rakete mit einer anfänglichen Masse M
Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)
sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden [email protected]. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen
Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen
Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit
EXPERIMENTALPHYSIK I - 4. Übungsblatt
Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle
Physik 1. Stoßprozesse Impulserhaltung.
Physik Mechanik Impulserhaltung 3 Physik 1. Stoßprozesse Impulserhaltung. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik Impulserhaltung 5 Themen Stoßprozesse qualitativ quantitativ Impulserhaltungssatz
Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.
Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a
Allgemeine Bewegungsgleichung
Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit
Tutorium Physik 2. Rotation
1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a
m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:
Wenn zwei Körper vollkommen elastisch, d.h. ohne Energieverluste, zusammenstoßen, reicht der Energieerhaltungssatz nicht aus, um die Situation nach dem Stoß zu beschreiben. Wenn wir als Beispiel zwei Wagen
Klausur Physik 1 (GPH1) am
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 18.9.09 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/
Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS013/14 18.1.013 Diese Aufgaben entsprechen der Abschlußklausur, für die 1 ¾ Stunden
Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls
Physik Impuls Impuls Träge Masse in Bewegung Nach dem 1. Newton schen Gesetz fliegt ein kräftefreier Körper immer weiter gradeaus. Je größer die träge Masse desto größer setzt sie einer Beschleunigung
Experimentalphysik für ET. Aufgabensammlung
Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe
Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Alle Lösungen immer erst allgemein bestimmen, dann einsetzen!
ÜBUNGEN ZUR KLASSISCHEN / EINFÜHRUNG IN DIE PHYSIK I WS 2010/11 PROBEKLAUSUR 22.01.2011 Kennwort... Kennzahl Übungsgruppe (Tag/Uhrzeit) nur für die Korrektoren: Studienfach (bitte ankreuzen): Aufgabe Punkte
Impulserhaltung. einmal mit Luft als Treibstoff, einmal mit Wasser bei Wasser ist der Rückstoss viel grösser
Impulserhaltung Raketenersuch (Vorlesung) einmal mit Luft als Treibstoff, einmal mit Wasser bei Wasser ist der Rückstoss iel grösser Elastischer Stoss zweier Massen m 1 und m 2 Versuche: Hammerschlag,
Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )
Aufgabenblatt 8 Aufgabe 1 (M 4. Feder ) Ein Körper der Masse m wird in der Höhe z 1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall
Prüfungsklausur - Lösung
Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems
Versuch 2 - Elastischer und inelastischer Stoß
UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 2 - Elastischer und inelastischer Stoß 26. überarbeitete Auflage vom 10. Mai 2016 Dr. Stephan
Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )
Physik ET, WS 0 Aufgaben mit Lösung 6. Übung KW 49) 6. Übung KW 49) Aufgabe M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
2 Gravitation. Himmelsmechanik. Eine Präsentation von Tobias Denkinger LK Physik /2007
2 Gravitation Himmelsmechanik Eine Präsentation von Tobias Denkinger LK Physik 11 2006/2007 Gliederung 2.1 Das Gravitationsgesetz 2.2 Das Gravitationsfeld 2.3 Bewegung im Gravitationsfeld Ende Quellen
Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31
Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31 Bitte Rückseite beachten! D-93053 Regensburg Physik Postfach: D-93040 Regensburg Prof. Dr. A. Penzkofer Telefon (0941) 943-2107
Übung zu Mechanik 3 Seite 36
Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt
Tutorium Physik 1. Arbeit, Energie, Leistung
1 Tutorium Physik 1. Arbeit, Energie, Leistung WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 3. ARBEIT, ENERGIE, LEISTUNG 3.1 Energie: Aufgabe (*) 4 a. Was ist Energie? b. Worin liegt der Unterschied zwischen
2. Klausur zur Theoretischen Physik I (Mechanik)
2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie
2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.
- 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung
Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 16.5.08 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Protokoll. Physik. Stundenprotokoll. Explosionsstoß. Aufgabe: Skizze:
Protokoll Physik Stundenprotokoll Schule: Charlotte-Wolff-Kolleg Fach: Physik Leistungskurs Jahrgang: A40/ Q1 Datum: 06.09.2011; 3.Block 12:00-13:30 Uhr Lehrer: Herr Lothar Winkowski Protokollant: Andreas
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E13 WS 011/1 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Tutorium Physik 1. Kinematik, Dynamik
1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 56 KINEMATIK, DYNAMIK (II) 2.16 Bungee-Sprung von der Brücke: Aufgabe (***) 57 Beim Sprung von der Europabrücke wird nach
IM3. Modul Mechanik. Maxwell sches Rad
IM3 Modul Mechanik Maxwell sches Rad In dem vorliegenden Versuch soll die Energieerhaltung anhand des Maxwell schen Rades untersucht werden. Das Maxwell sche Rad ist ein Metallrad mit grossem Trägheitsmoment,
Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung
Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen
Übungen zur Physik I PHY 111, HS 2016
Übungen zur Physik I PHY, HS 6 Serie 6 Abgabe: Dienstag, 8. November Translationsenergie translational energy Trägheitsmoment moment of inertia Massenmittelpunkt center of gravity (COG) Rotationsenergie
Probeklausur 1 - Einführung in die Physik - WS 2014/ C. Strassert
Probeklausur - Einführung in die Physik - WS 04/05 - C. Strassert Erdbeschleunigung g= 9.8 m/s ; sin0 = cos 60 = 0.5; sin 60 = cos 0 = 0.866;. 4 ) Ein Turmspringer lässt sich von einem 5 m hohen Sprungturm
Physik LK 11, 2. Klausur Gravitation, Rotation Lösung
Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht eplizit anders verlangt. Besondere Näherungen
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem
Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik
Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in
Vorlesung 5: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion
Vorlesung 5: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion Newton (1642-1727) in Philosophiae Naturalis Principia Mathematica, publiziert in 1687. Immer
Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2009/10 Klausur ( )
Nur vom Korrektor auszufüllen 1 2 3 4 5 6 7 8 9 10 Note Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2009/10 Klausur (12.2.2010) Name: Studiengang: In die Wertung der
Vordiplomsklausur Physik
Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich
Physik I Übung 10 - Lösungshinweise
Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der
Was gibt es in Vorlesung 4 zu lernen?
Was gibt es in Vorlesung 4 zu lernen? inelastischer Stoß - keine Energieerhaltung (fast alle Energie kann in Wärme umgewandelt werden) - Geschwindigkeit Gewehrkugel - Rakete Rotationsbewegung - Umlaufgeschwindigkeit
Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2
Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................
Tutorium Physik 2. Rotation
1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Aufgabe (*)
Name, Vorname:... Klasse:...
Berufsmaturitätsschule BMS Physik Berufsmatur 2012 Name, Vorname:... Klasse:... Zeit: 120 Minuten Hilfsmittel: Hinweise: Taschenrechner, Formelsammlung nach eigener Wahl. Die Formelsammlung darf mit persönlichen
Klausur Physik 1 (GPH1) am
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 7.3.08 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann,
Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, 09.09. 2004 Bearbeitungszeit: 90 min Umfang: 7 Aufgaben Gesamtpunktzahl: 45 Erklärung: Ich erkläre mich damit einverstanden,
Prüfungshinweise Physik. 1. Prüfungstermine: 2. Bearbeitungszeit: 3. Anzahl und Art der Aufgaben: 4. Zugelassene Hilfsmittel:
Prüfungshinweise Physik 1. Prüfungstermine: Hauptprüfung: 27.03.03 / Nachprüfung: 07.04.03 2. Bearbeitungszeit: 120 Minuten 3. Anzahl und Art der Aufgaben: sechs Aufgaben 4. Zugelassene Hilfsmittel: Zeichengerät,
Energie und Energieerhaltung
Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen
Übungsblatt 13 Physik für Ingenieure 1
Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen
PN 1 Klausur Physik für Chemiker
PN 1 Klausur Physik für Chemiker Prof. T. Liedl Ihr Name in leserlichen Druckbuchstaben München 2011 Martrikelnr.: Semester: Klausur zur Vorlesung PN I Einführung in die Physik für Chemiker Prof. Dr. T.
Teil 8 Teilchensysteme Impuls
Tipler-Mosca 8. Teilchensysteme und die Erhaltung des linearen Impulses (Systems of particles and conservation of linear momentum) 8.1 Der Massenmittelpunkt (The center of mass) 8. Bestimmung des Massenmittelpunkts
Übung zu Mechanik 3 Seite 48
Übung zu Mechanik 3 Seite 48 Aufgabe 81 Vor einer um das Maß f zusammengedrückten und verriegelten Feder mit der Federkonstanten c liegt ein Massenpunkt der Masse m. a) Welchen Wert muß f mindestens haben,
Aufgabe 11.1 (Fragen zu Kreisbewegungen und Drehungen)
Physik VNT Aufgabenblätter und 2 7. Übung 4. KW) Aufgabe. Fragen zu Kreisbewegungen und Drehungen) a) Beurteilen Sie, welche der folgenden Aussagen jeweils wahr oder falsch ist: Wenn sich ein Körper gleichförmig
Inhalt Stöße Fallunterscheidung Stöße
Inhalt.. Stöße Fallunterscheidung Stöße Physik, WS 05/06 Literatur M. Alonso, E. J. Finn: Physik; dritte Auflage, Oldenbourg Verlag, 000. Paul A. Tipler: Physik für Wissenschaftler und Ingenieure; sechste
Spezialfall m 1 = m 2 und v 2 = 0
Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +
2. Klausur zur Vorlesung Theoretische Physik A Universität Karlsruhe WS 2004/05
. Klausur zur Vorlesung Theoretische Physik A Universität Karlsruhe WS 004/05 Prof. Dr. Gerd Schön Dr. Matthias Eschrig Dauer: Stunden Gesamtpunktzahl: 30 Punkte + 5 Zusatzpunkte Hinweise: Beginnen Sie
Grundwissen Physik 8. Klasse Schuljahr 2011/12
1. Was du aus der 7. Klasse Natur und Technik unbedingt noch wissen solltest a) Vorsilben (Präfixe) und Zehnerpotenzen Bezeichnung Buchstabe Wert Beispiel Kilo k 1.000=10 3 1 kg=1000 g=10 3 g Mega M 1.000.000=10
Impulserhaltung in zwei Dimensionen (M5)
Impulserhaltung in zwei Dimensionen (M5) Ziel des Versuches Der elastische Stoß zweier Scheiben mit sowohl gleicher als auch unterschiedlicher Masse, die sich auf einem Luftkissentisch nahezu reibungsfrei
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
Klausur Technische Mechanik C
Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner
Vorkurs Mathematik-Physik, Teil 9 c 2016 A. Kersch
Vorkurs Mathematik-Physik, Teil 9 c 2016 A. Kersch 1 Erhaltungsgrößen und Erhaltungssätze 1.1 Überblick Als Erhaltungssatz bezeichnet man in der Physik die Formulierung der beobachteten Tatsache, dass
Vektorrechnung in der Physik und Drehbewegungen
Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen
Prof. Liedl Übungsblatt 4 zu PN1. Übungen zur Vorlesung PN1 Lösungsblatt 4 Besprochen am
Aufgabe 1: Verschlafen Übungen zur Vorlesung PN1 Lösungsblatt 4 Besprochen am 13.11.2012 Um pünktlich in die Uni zu kommen fahren sie mit dem Auto. a Sie fahren aus der Tiefgarage und beschleunigen danach
Wirkung einer Kraft auf einen Körper durch Angabe der F noch nicht eindeutig bestimmt: hängt noch von der Körpereigenschaft m ab: a.
.0 Impuls /lap5.../mewae_act_scr0_7.0(impuls)_s.tex_6_nov_03 Wirkung einer Kraft auf einen Körper durch Angabe der F noch nicht eindeutig bestimmt: hängt noch von der Körpereigenschaft m ab: a dv F dt
Gefühl*** vorher / nachher. Situation* Essen (was und wie viel?) Ess- Motiv** Tag Datum Frühstück Zeit: Allgemeines Befinden
Name: Größe: cm Gewicht: kg Alter: Jahre Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation*
Physik Klausur
Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und
Welche der Darstellungen hat das oberflächlichste Niveau? ( ) A) ( ) B) ( ) C) ( ) D)
Welche der Größen ist extensiv? ( ) Lautstärke eines Kopfhörers ( ) Rasenfläche eines Fußballplatzes ( ) Farbe der Wand in Ihrer Küche ( ) Geschmack eines Kuchens Welche der Darstellungen hat das oberflächlichste
+m 2. r 2. v 2. = p 1
Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit
Tutorium Physik 1. Kinematik, Dynamik
1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 2. KINEMATIK, DYNAMIK (I) 2.1 Gleichförmige Bewegung: Aufgabe (*) 4 a. Zeichnen Sie ein s-t-diagramm der gleichförmigen
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf
Experimentalphysik EP, WS 2013/14
FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. J. Schreiber, PD. W. Assmann Experimentalphysik EP, WS 2013/14 Probeklausur (ohne Optik)-Nummer: 7. Januar 2014 Hinweise zur Bearbeitung
Ferienkurs Experimentalphysik Übung 2
Ferienkurs Experimentalphysik 1 2012 Übung 2 1. Masse am Zylinder Ein Zylinder mit dem Radius R, der Masse M und dem Trägheitsmoment I = 1 2 MR2 ist raumfest so gelagert, dass er um seine horizontal liegende
Versuch M7 für Nebenfächler Rotations- und Translationsbewegung
Versuch M7 für Nebenfächler Rotations- und Translationsbewegung I. Physikalisches Institut, Raum HS126 Stand: 21. Oktober 2015 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner
1. Probe - Klausur zur Vorlesung E1: Mechanik
Fakultät für Physik der LMU 27.12.2011 1. Probe - Klausur zur Vorlesung E1: Mechanik Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel und Dr. Frank Jäckel Name:... Vorname:... Matrikelnummer:...
8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels
8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
Kurzzusammenfassung Physik I (Vorlesung und Ergänzung) Wintersemester 2005/06, Teil I. Übersicht
Kurzzusammenfassung Physik I (Vorlesung und Ergänzung) Wintersemester 2005/06, Teil I Übersicht Messungen, Einheiten (1) Mathematische Grundlagen (3, E1, E2, E4, E5) Kinematik von Punktteilchen (2+4, E2,
Bewertung: Jede Aufgabe wird mit 4 Punkten bewertet.
gibb / BMS Physik Berufsmatur 2007 Seite 1 Name, Vorname: Klasse: Zeit: 120 Minuten Hilfsmittel: Taschenrechner und Formelsammlung nach eigener Wahl. Die Formelsammlung darf mit persönlichen Notizen ergänzt
Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung
Labor zur Vorlesung Physik Versuch : Energie- und Impulserhaltung Abb : Luftkissen-Fahrbahn. Zur Vorbereitung Die folgenden Begriffe müssen Sie kennen und erklären können: Impuls, Energie, kinetische und
Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h.
Kinematik von Punktmassen Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. a. Wie lange braucht der Ball bis ins Tor? Lsg.: a) 0,333s Aufgabe 2. Ein Basketball-Spieler
Experimentalphysik I: Mechanik
Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Probeklausur - Lösung Technische Universität München 1 Fakultät für Physik 1. Wilhelm Tell (13 Punkte) Wilhelm Tell will mit einem Pfeil (m
Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com
GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.
Ferienkurs Experimentalphysik 1
1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Probeklausur WS 2014/2015 27.03.2015 Bearbeitungszeit: 90 Minuten Aufgabe 1: Romeo und Julia (ca. 15 min) Julia befindet
Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag
Ferienkurs Experimentalphysik 1 2011 Übung 2 - Lösungsvorschlag 1. Elastischer Stoß a) Ein Teilchen der Masse m 1 stößt zentral und elastisch mit einem im Laborsystem ruhenden Teilchen der Masse m 2. Wie
1. Klausur in K2 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit
Physikalische Grundlagen der Technischen Informatik
Aufgaben für die schriftliche Teilprüfung Physikalische Grundlagen der Technischen Informatik der Diplom-Vorprüfung Techische Informatik Lehrstuhl für Optoelektronik 1 Prof. Dr. K.-H. Brenner 6. April
Klausur 3 Klasse 11c Physik Lösungsblatt
16.05.00 Klausur 3 Klasse 11c Physik Lösungsblatt Bei den Aufgaben dürfen Sie ausschließlich die Programme Cassy-Lab, erive 5 und Excel benutzen. Alle schriftlichen Überlegungen und Ergebnisse müssen auf
ZUGELASSENE HILFSMITTEL:
ZUGELASSENE HILFSMITTEL: Täuschungsversuche führen zum Ausschluss und werden als Fehlversuch gewertet. Mobiltelefone und andere elektronische Geräte sind nicht zugelassen, bitte vom Tisch räumen. Mit Annahme
Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie
Aufgaben 2 Translations-Mechanik Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie Lernziele - den Zusammenhang zwischen Impuls, Masse und Geschwindigkeit eines Körpers anwenden können. - das
Klausur Physik für Ingenieure 1, Diplom Elektrotechnik, Diplom Informationstechnologie
Klausur Physik für Ingenieure 1, Diplom Elektrotechnik, Diplom Informationstechnologie Othmar Marti, ([email protected]) 8. März 2002 Prüfungstermin 7. 3. 2002, 9:00 bis 11:00 Name Vorname
Konstruktion - Methoden und Getriebe -
Seite 1 WS 92/93 8 Punkte Die skizzierte Arbeitsmaschine wird von einem Elektromotor A angetrieben, der mit der konstanten Drehzahl n A =750U/min läuft. Die Arbeitsmaschine B wird jeweils aus dem Ruhezustand
Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker
Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker
E1 Mechanik Lösungen zu Übungsblatt 3
Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig
5 Schwingungen und Wellen
5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung
Physik 2 (GPh2) am
Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur
Übungen zur Vorlesung PN1 Lösung zu Blatt 5
Aufgabe 1: Geostationärer Satellit Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Ein geostationärer Satellit zeichnet sich dadurch aus, dass er eine Umlaufdauer von einem Tag besitzt und sich folglich seine
Es ergibt sich eine Kraft F von 343N. Diese ist aber zu gering um die Schale zu zerbrechen.
1) Eine Möwe findet eine Muschel, die sie allerdings mit dem Schnabel nicht öffnen kann. Deshalb fliegt sie auf und lässt die Muschel auf felsigen Boden fallen, sodass die Schale zerbricht. a) Welche Kraft
