Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei

Größe: px
Ab Seite anzeigen:

Download "Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei"

Transkript

1 Inhalt 1 9 Dynamik der Drehbewegung 9.1 Rotation eines Massenpunktes um eine feste Achse 9. Arbeit und Leistung bei der Drehbewegung 9.3 Erhaltungssätze 9.4 Übergang vom Massenpunkt zum starren Körper Massenträgheitsmoment des starren Körpers 9.4. Trägheitsmoment regelmäßiger Körper bei Rotation um eine Schwerpunktachse Trägheitsmomente bei anderen Achsen 9.1 Rotation eines Massenkörpers Um Drehungen (Rotationen) um den Schwerpunkt (center of gravity) eines Körpers zu beschreiben, müssen wir die Näherung eines einzelnen Massenpunktes verlassen. Ein starrer Körper sei aus Massenpunkten zusammengesetzt, die sich relativ zueinander nicht bewegen. Wenn die Drehachse in einem Koordinatensystem feststeht, bildet man Analogien zu den Begriffen Geschwindigkeit, Kraft, Masse, Impuls und Energie, die wir für lineare Bewegungen bereits kennen gelernt haben. Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei v =ω r Die Kraft, die auf eine Drehachse wirkt, ist gleich dem Produkt aus der die Masse angreifenden Kraft und dem Abstand des Ansatzpunktes zur Drehachse. Diese Größe wird Drehmoment (torque) genannt und üblicherweise mit M bezeichnet. Die Richtung von M ist wie die von ω senkrecht zum Abstandsvektor r und zur angreifenden Kraft F. M = r F M = r F sin α, wobei α der Winkel zwischen r und F ist.

2 9.1 Rotation eines Massenkörpers 3 So wie die Masse nach dem. Newton'schen Axiom für die gegebene Kraft angibt, wie groß die resultierende Beschleunigung ist ( F = m g), beschreibt das Massenträgheitsmoment J (moment of inertia) (Bem.: J ist im Allgemeinen ein Tensor.) die Winkelbeschleunigung, die aufgrund eines bestimmten Drehmomentes auftritt. Das Trägheitsmoment gibt sozusagen an, wie viel Masse sich wie weit von der Drehachse befindet. dω M = J = J α Im konkreten Beispiel einer Punktmasse, die im Abstand r um eine Drehachse rotiert, lässt sich obige Gleichung im Fall eines rechten Winkels zwischen r und F schreiben als dv dω r m = J dω dω r m = J 9.1 Rotation eines Massenkörpers 4 Damit erhalten wir für das Trägheitsmoment für einen um eine Achse rotierenden Massepunkt JMP = m r Massenträgheitsmoment eines Massepunktes Die Einheit des Drehmoments ist kg m [ M] = N m = s Die Einheit des Trägheitsmomentes ist [ J ] = kg m J = r dm Die Berechnung des Trägheitsmomentes eines beliebig starren Körpers kommt später. Allgemein gilt jedoch Für viele starre Körper findet man das Trägheitsmoment tabelliert.

3 9.1 Rotation eines Massenkörpers 5 Ferner benötigen wir den Drehimpuls L (angular momentum), der proportional dem Impuls p und dem Abstandsvektor r ist und wieder auf beiden senkrecht steht. L = r p Stehen r und p senkrecht, kann man mit p = m v vereinfachen auf L = r p = m ( r v) = m ( r ω r) = m r ω L = m r ω Die Einheit des Drehimpulses ist kg m [ L] = s Das zweite Newton'sche Axiom bei Drehbewegungen können wir aus der Ableitung von L herleiten. 9.1 Rotation eines Massenkörpers 6 d d dr dp dr dp L = ( r p) = p+ r = m v + r = r F d d L = t M v v= 0 = : F Die zeitliche Änderung des Drehimpulses ist gleich der Summe der angreifenden Drehmomente.

4 9. Arbeit und Leistung bei der Drehbewegung 7 Die geleistete Arbeit ist analog zur linearen Arbeit ( W = F s bzw. W = Fd s) und definiert als Drehmoment mal gedrehter Winkel ϕ W = M ϕ bzw. W = Mdϕ wobei der Vektor ϕ wie bei Drehbewegungen üblich senkrecht auf der Ebene steht, in der um den Winkel ϕ gedreht wird. Die geleistete Arbeit ist wie bei der linearen Arbeit ein Skalar. Die kinetische Energie heißt bei Drehbewegungen Rotationsenergie Erot (rotational energy), und wir können den Ausdruck für die einfache Punktmasse im Abstand r zur Drehachse herleiten. Deren kinetische Energie ist Ekin = m v = m ω r = m r ω = J ω 1 1 Erot = J ω = J ω Damit wird allgemein für die Rotationsenergie unter Verwendung des Trägheitsmomentes J 9. Arbeit und Leistung bei der Drehbewegung 8 In Analogie kann die Leistung definiert werden: dw d dm dϕ dϕ P = = ( M ϕ ) = ϕ+ M = M = M ω P = M ω dm = 0 Die Leistung ist damit das Skalarprodukt von Drehmoment und Winkelgeschwindigkeit (Bem.: P = F v). Damit können wir jetzt zusammenfassend folgende Analogien zwischen Translation und Rotation angeben:

5 9.3 Erhaltungssätze 9 Neben den bisherigen Erhaltungsgrößen in einem geschlossenen System kommt jetzt eine dritte Größe nämlich der Gesamtdrehimpuls dazu, sodass für die Mechanik folgende wichtigen Größen erhalten werden: a) die Gesamtenergie b) der Gesamtimpuls c) der Gesamtdrehimpuls 9.4 Übergang vom Massenpkt. zum starren Körper Massenträgheitsmoment des starren Körpers Ein beliebiger starrer Körper rotiert um die Achse A. Wir betrachten den Körper aus vielen Massenpunkten zusammengesetzt, d. h. m1, m,.... Sie haben die Abstände r, r,... von der Achse. 1 i i J Das Massenträgheitsmoment eines Massenpunktes J = m r. Das Massenträgheitsmoment des gesamten Körpers ist dann die Summe der Massenträgheitsmomente der einzelnen Massenpunkte i, d. h. K N J = m r i = 1 i i Wir machen die Unterteilung feiner, d. h. N, Σ, m dm K JK = r dm Massenträgheitsmoment eines starren Körpers i

6 9.4 Übergang vom Massenpkt. zum starren Körper 11 Die Masse eines Körpers können wir durch seine Dichte ρ ausdrücken, da ρ= mv ρ= dmdv dm=ρ dv Damit wird K K J = ρ r dv und für einen homogenen starren Körper mit ρ =const. JK =ρ r dv K Massenträgheitsmoment eines homogenen starren Körpers Das Massenträgheitsmoment eines Körpers hängt ab: 1) von seiner Massenverteilung, d. h. von seiner Form. ) von der Lage der Drehachse. Meist geht diese durch den Schwerpunkt des Körpers (Schwerpunktachse). 3) von der Dichteänderung des Materials, falls es nicht homogen ist. 9.4 Übergang vom Massenpkt. zum starren Körper Trägheitsmoment regelmäßiger Körper bei Rotation um eine Schwerpunktachse Die Trägheitsmomente regelmäßiger Körper, z. B. Zylinder, Kugel, Kegel, Quader, usw. lassen sich berechnen. Beispiel: Vollzylinder Zyl R R 3 J = ρ r dv =ρ r dv =ρ r h π r dr = π ρ h r dr Zyl 0 0 R 4 4 R 1 r = π ρ h = π ρ h = π ρ h R R ρ VZyl = mzyl 1 JZyl = mzyl R Massenträgheitsmoment eines Vollzylinders mit dem Radius R

7 9.4 Übergang vom Massenpkt. zum starren Körper Übergang vom Massenpkt. zum starren Körper 14

8 9.4 Übergang vom Massenpkt. zum starren Körper Trägheitsmomente bei anderen Achsen Bei den bisher betrachteten Beispielen ging die Drehachse durch den Schwerpunkt S des Körpers und fiel mit einer Hauptsymmetrieachse zusammen. Allgemein gilt: Das Massenträgheitsmoment hängt von der Lage der Drehachse ab MTM bei parallel verschobenen Drehachsen Satz von Steiner Ein Körper habe bei Rotation um eine Achse S durch seinen Schwerpunkt das bekannte Massenträgheitsmoment (MTM) J S. Bei Rotation um eine zu S parallele Achse A, die von S den Abstand a hat, gilt: S A A S J = J + m a Satz von Steiner 9.4 Übergang vom Massenpkt. zum starren Körper 16 Beispiel: Vollzylinder rotiert um eine Achse am Mantel M (d. h. a = R). Mit J J S M 1 = m R 1 JM = m R + m R 3 = m R und dem Satz von Steiner wird R M

9 9.4 Übergang vom Massenpkt. zum starren Körper Trägheitsmomente um beliebige Achsen durch den Schwerpunkt Hauptträgheitsachsen am Beispiel eines Quaders: A1 = Achse mit dem größten Trägheitsmoment; J1 = Jmax A1 A3 A3 = Achse mit dem kleinsten Trägheitsmoment; J3 = Jmin A = weitere Achse zu A und A mit Trägheitsmoment J, wobei J J J A 1 A A Übergang vom Massenpkt. zum starren Körper 18 Definitionen: { } { J J J J J } A, A, A = Hauptträgheitsachsen mit A A A =,, = = Hauptträgheitsmomente max 3 min Erweiterung auf beliebig geformte Körper: Bem.: jeder Körper hat drei Hauptträgheitsachsen A = Hauptträgheitsachse mit größtem J : J = J A Hauptträgheitsachse mit kleinstem : A Hauptträgheitsachse mit mittlerem senkrecht zu A und A 1 1 max A1 A3 3 = J J1= Jmin = J 1 3 a) Die Hauptträgheitsachsen symmetrischer Körper fallen mit seinen Hauptsymmetrieachsen zusammen. b) Bei rotationssymmetrischen Körpern fallen die Trägheitsmomente zweier Hauptachsen zusammen. c) Für eine Kugel, einen Würfel und einen Zylinder mit l = 3 R gilt : J = J = J 1 3

10 9.4 Übergang vom Massenpkt. zum starren Körper 19 Beliebige Schwerpunktsachsen Ein Körper möge um eine beliebige Achse A durch seinen Schwerpunkt S rotieren. Wie groß ist das Trägheitsmoment um diese Achse? Die Achse A schließt mit den drei Hauptachsen A 1, A und A 3 die Winkel α 1, α und α 3 ein. Für das Trägheitsmoment um A gilt: A = 1 cos α 1+ cos α + 3 cos α3 J J J J Deviations- oder Zentrifugalmomente Bei Rotation um eine beliebige Achse A treten Zentrifugalmomente auf, die die Achse zu kippen versuchen. Bei festen Achsen werden sie von den Achslagern aufgenommen. Bei Rotation um eine Hauptachse treten keine Deviationsmomente auf. 9.5 Kreiselkräfte, Kreisel, Kreisel-Präzession 0 Drehmoment senkrecht zur Drehachse In diesem Abschnitt wollen wir uns dem komplizierten Problem zuwenden, welche Bewegungen ein starrer Körper sowohl ohne äußere Kräfte als auch unter dem Einfluss von Drehmomenten ausführt, wenn er nicht durch eine festgehaltene Achse in seinen Freiheitsgraden eingeschränkt wird. Man nennt einen solchen um freie Achsen rotierenden starren Körper Kreisel. Auf einen Kreisel mit dem Drehimpuls L wirkt die Kraft FG ein, die die Achse des Kreisels zu kippen versucht. Die Achse kippt jedoch nicht in Richtung der Kraft, sie weicht vielmehr in einer dazu senkrechten Richtung aus. Kreiselkäfte Die Kraft FG erzeugt einen Drehmomentstoß M d t, der nach hinten zeigt. Die zugehörige Drehimpulsänderung d L hat die gleiche Richtung. Der Drehimpulsvektor L weicht in Richtung d L aus.

11 9.5 Kreiselkräfte, Kreisel, Kreisel-Präzession 1 Drehimpulsänderung durch das Drehmoment. Kräfte und Drehmoment auf den Kreisel. 9.5 Kreiselkräfte, Kreisel, Kreisel-Präzession Beispiele für Kreiselkräfte: 1) Radfahren: Fahrer bringt Kippmoment auf (legt sich in die Kurve) Drehmoment weist nach hinten. ) Diskuswurf: Wegen des Dralls hat der Diskus vom Scheitelpunkt der Wurfparabel einen Ausstellwinkel α, d. h. der Diskus erfährt den Auftrieb einer Tragfläche. 3) Der kräftefreie Kreisel: Schnell rotierender rotationssymmetrischer Körper in kardanischer Aufhängung: Drei zueinander senkrecht stehende Achsen: A 0, A x, A y A 0 = Haupt-Rotationsachse, Figurenachse R i = innerer Rahmen R a = äußerer Rahmen R f = fester Rahmen Kräftefreier Kreisel: keine Drehmomente greifen an den Rahmen R i und R a an.

12 9.5 Kreiselkräfte, Kreisel, Kreisel-Präzession 3 R i Drehimpulserhaltung : (Drallsatz) L0 bleibt konstant, d. h. L0 behält seine Richtung bei, wenn der Kreisel insgesamt, d. h. der feste Rahmen R bewegt wird. f A x A 0 Anwendung: Kurskreisel zur Richtungssteuerung von Flugzeugen, Schiffen, Raketen, Torpedos, R a A y Rf Kräftefreier symmetrischer Kreisel in kardanischer Aufhängung. 9.5 Kreiselkräfte, Kreisel, Kreisel-Präzession 4 Kreiselkompass Er beruht darauf, dass ein über seinem Schwerpunkt drehbar aufgehängter Kreisel seine Drehachse parallel zur Drehachse der Erde zu stellen sucht. Zur Erklärung dieser Kreiselwirkung greifen wir auf die besonderen Eigenschaften eines Kreisels zurück. Der Einfachheit halber denken wir uns dabei einen Kreisel in west-östlicher Richtung auf dem Erdäquator aufgestellt (Stellung I). Mit der Erddrehung wird er nach einer bestimmten Zeit in die Stellung II gedreht worden sein. Da er die Tendenz hat, seine Achsenrichtung beizubehalten, wird bei der Art der Aufhängung sein Schwerpunkt angehoben. Daher übt die Schwerkraft ein Drehmoment auf ihn aus, das den Kreisel samt Lagerung zurückzudrehen versucht (kleine schwarze Pfeile). Infolgedessen ändert sich die Richtung der Drehachse (des Dralles) in Richtung des Momentes, d. h. im gezeichneten Falle senkrecht zur Zeichenebene. Dies bedeutet eine Ausrichtung des Kreisels in nord-südlicher Richtung. Schiffe sind weitgehend mit Kreiselkompassen, die einen verhältnismäßig leichten Anschluss von Tochterkompassen ermöglichen, ausgestattet.

13 9.5 Kreiselkräfte, Kreisel, Kreisel-Präzession 5 Kreiselkompass (Fortsetzung) 9.5 Kreiselkräfte, Kreisel, Kreisel-Präzession 6 4) Kreisel mit konstantem Drehmoment Ein konstantes Drehmoment M greift senkrecht zur Figurenachse A 0 am inneren Rahmen R i an und erzeugt dadurch das Zusatzgewicht G = m g ( M0 = Ri G). Wegen M = dl d t erzeugt M0 eine konstante Drehimpulsänderung dl d t, die dieselbe Richtung wie M hat. L weicht also dauernd in Richtung dl d t aus (Gegenuhrzeigersinn), 0 d. h. der äußere Rahmen dreht sich um die senkrechte Achse A y. Der Kreisel präzediert, d. h. er vollführt eine Präzessionsbewegung mit konstanter Winkelgeschwind igkeit ω P.

14 9.5 Kreiselkräfte, Kreisel, Kreisel-Präzession 7 Berechnung von ω P : dϕ L 0 dl dl M dϕ= = L0 L0 dϕ M ω P = = L 0 M M Ri m g ω P = = = L J ω J ω 0 1 ωp, ω d. h. je schneller der Kreisel rotiert desto langsamer präzediert er. 9.5 Kreiselkräfte, Kreisel, Kreisel-Präzession 8 R i M 0 A x R a Rf A 0 L 0 A y Kräftefreier symmetrischer Kreisel in kardanischer Aufhängung.

VI. Dynamik des starren Körpers

VI. Dynamik des starren Körpers VI. Dynamik des starren Körpers Wenn man von der Ausdehnung eines Körpers absehen kann, d.h. ihn als Massenpunkt betrachtet, wie wir das bisher getan haben, läßt sich seine Lage durch einen einzigen Ortsvektor

Mehr

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena.

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena. Einführung in die Biomechanik Zusammenfassung WS 00/00 Prof. R. Blickhan überarbeitet von A. Seyfarth www.uni-jena.de/~beb www.lauflabor.de Inhalt. Kinematik (Translation und Rotation). Dynamik (Translation

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

4 Dynamik der Rotation

4 Dynamik der Rotation 4 Dynamik der Rotation Fragen und Probleme: Was versteht man unter einem, wovon hängt es ab? Was bewirkt ein auf einen Körper einwirkendes? Welche Bedeutung hat das Massenträgheitsmoment eines Körpers?

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung.

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung. Energieerhaltung Energieerhaltung für rollende Kugel W ges = W pot + W kin + W rot h Trägheitsmoment: θ = r 2 dd θ Ist abhängig von Form des Körpers 75 Kräfte Gesamtkraft F : Vektorsumme der Einzelkräfte

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

Themen und Inhalte des Physikunterrichtes für die Jahrgangsstufe 11 an beruflichen Gymnasium von Erhard Werner

Themen und Inhalte des Physikunterrichtes für die Jahrgangsstufe 11 an beruflichen Gymnasium von Erhard Werner Themen und Inhalte des Physikunterrichtes für die Jahrgangsstufe 11 an beruflichen Gymnasium von Erhard Werner Jahrgangsstufe 11: Mechanik Grundlagen wissenschaftspropädeutischen Arbeitens und naturwissenschaftlicher

Mehr

Versuch M5 für Physiker Stoÿgesetze

Versuch M5 für Physiker Stoÿgesetze Versuch M5 für Physiker Stoÿgesetze I. Physikalisches Institut, Raum 101 Stand: 12. Oktober 2012 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner angeben bitte Versuchsbetreuer

Mehr

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Mechanik des Starren Körpers

Mechanik des Starren Körpers Kapitel 2 Mechanik des Starren Körpers In der Mechanik der Massenpunkte wurde bereits mehrfach von der Vorstellung Gebrauch gemacht, daß ein makroskopischer Körper aus vielen Massenpunkten aufgebaut ist.

Mehr

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung Julia Ziegler, Jan Krieger Modell zur Optimierung Doppelpendel-Modell Zur Optimierung einer Wurfbewegung wurde ein physikalisches

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Stoßgesetze 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Die Zykloide 4 2. Das Trägheitsmoment

Mehr

Die Keplerschen Gesetze

Die Keplerschen Gesetze Die Keplerschen Gesetze Franz Embacher Fakultät für Physik der Universität Wien Didaktik der Astronomie, Sommersemester 009 http://homepage.univie.ac.at/franz.embacher/lehre/didaktikastronomie/ss009/ 1

Mehr

Wie funktioniert Kernspintomographie?

Wie funktioniert Kernspintomographie? Wie funktioniert Kernspintomographie? Vom Radfahren zum Gedankenlesen Hans-Henning Klauss Til Dellmann, Walter Keller, Hannes Kühne, Hemke Maeter, Frank Radtke, Denise Reichel, Göran Tronicke, Institut

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

4.12 Elektromotor und Generator

4.12 Elektromotor und Generator 4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt

Mehr

Projektarbeit CATIA V5 3D Differenzial

Projektarbeit CATIA V5 3D Differenzial Projektarbeit CATIA V5 3D Differenzial Von Valery Volov Differenzialgetriebe Ein Differenzialgetriebe oder kurz Differenzial genannt ist ein spezielles Planetengetriebe mit einer Standübersetzung i 0 =

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

Elektrische Maschinen

Elektrische Maschinen 1/5 Elektrische Maschinen 1 unktionsprinzipien 1.1 Kraftwirkung efindet sich ein stromdurchflossener, gerader Leiter der Leiterlänge l in einem homogenen Magnetfeld, so bewirkt die Lorentz-Kraft auf die

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

Experimentalphysik I: Lösung Übungsklausur

Experimentalphysik I: Lösung Übungsklausur Experimentalphysik I: Lösung Übungsklausur 3. Januar 1 1 (5 Punkte) Eine Punktmasse, welche sich zum Zeitpunkt t = am Koordinatenursprung befindet, bewegt sich mit der Geschwindigkeit v = α cos t δ βt

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

Physikalisches Praktikum 5. Semester

Physikalisches Praktikum 5. Semester Torsten Leddig 22.Dezember 2005 Mathias Arbeiter Betreuer: Toralf Ziems Physikalisches Praktikum 5. Semester - Zeeman-Effekt - Inhaltsverzeichnis 1 Aufgabenstellung 3 2 Normaler Zeeman-Effekt 3 3 Messung

Mehr

Ein einfacher Versuch zur Bestimmung der Stärke des Erdmagnetfeldes

Ein einfacher Versuch zur Bestimmung der Stärke des Erdmagnetfeldes Ein einfacher Versuch zur Bestimmung der Stärke des Erdmagnetfeldes Roland Berger und Markus Schmitt FB 18/Physikdidaktik, Universität Gh Kassel, 34109 Kassel Lässt man ein Verlängerungskabel im Erdmagnetfeld

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik

O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik W eierstraß-institut für Angew andte Analysis und Stochastik Robotik-Seminar O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik Mohrenstr 39 10117 Berlin rott@wias-berlin.de

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Übungen zur Animation & Simulation. Übungsblatt 1

Übungen zur Animation & Simulation. Übungsblatt 1 Übungen zur Animation & Simulation SS 21 Prof. Dr. Stefan Müller et al. Übungsblatt 1 Aufgabe 1 (Die Newton schen Gesetze) Nennen und erklären Sie die Newton schen Gesetze. Aufgabe 2 (Kräfte und numerische

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012 SO(2) und SO(3) Martin Schlederer 06. Dezember 2012 Inhaltsverzeichnis 1 Motivation 2 2 Wiederholung 2 2.1 Spezielle Orthogonale Gruppe SO(n)..................... 2 2.2 Erzeuger.....................................

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten?

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten? In der euklidischen Geometrie der Mittelstufe ging es zumeist um geometrische Konstruktionen und um qualitative Aussagen über geometrische Objekte in Bezug zueinander. Möchte man, insbesondere im dreidimensionalen

Mehr

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Stichpunkte zur Vorbereitung auf das Praktikum Theresia Kraft Molekular und Zellphysiologie November 2012 Kraft.Theresia@mh hannover.de

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1 Computer-Animation Oliver Deussen Animation 1 Unterscheidung: Interpolation/Keyframing Starrkörper-Animation Dynamische Simulation Partikel-Animation Verhaltens-Animation Oliver Deussen Animation 2 Keyframing

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

Autonome Stabilisierung eines Quadrokopters. Diplomarbeit. zur Erlangung des Grades Diplom Informatiker im Studiengang Informatik.

Autonome Stabilisierung eines Quadrokopters. Diplomarbeit. zur Erlangung des Grades Diplom Informatiker im Studiengang Informatik. Fachbereich 4: Informatik Autonome Stabilisierung eines Quadrokopters Diplomarbeit zur Erlangung des Grades Diplom Informatiker im Studiengang Informatik vorgelegt von Simeon Maxein Erstgutachter: Zweitgutachter:

Mehr

Einführungsexperiment mit Hellraumprojektor. Spiegel zuklappen. Behälter mit Wasser gefüllt. zuklappen. Schwarzes Papier als Abdeckung.

Einführungsexperiment mit Hellraumprojektor. Spiegel zuklappen. Behälter mit Wasser gefüllt. zuklappen. Schwarzes Papier als Abdeckung. Einführungsexperiment mit Hellraumprojektor Spiegel zuklappen Behälter mit Wasser gefüllt zuklappen Schwarzes Papier als Abdeckung zuklappen schmaler Lichtstreifen ergibt bessere Ergebnisse Tipps: Je höher

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

mentor Abiturhilfe: Physik Oberstufe Weidl

mentor Abiturhilfe: Physik Oberstufe Weidl mentor Abiturhilfen mentor Abiturhilfe: Physik Oberstufe Mechanik von Erhard Weidl 1. Auflage mentor Abiturhilfe: Physik Oberstufe Weidl schnell und portofrei erhältlich bei beck-shop.de DIE ACHBUCHHANDLUNG

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Probestudium der Physik: Mathematische Grundlagen

Probestudium der Physik: Mathematische Grundlagen Probestudium der Physik: Mathematische Grundlagen Ludger Santen 1. Februar 2013 Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken 1 Einführung Die Mathematik ist die Sprache der

Mehr

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich.

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Kapitel 1 Animation (Belebung) Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Anwendungen findet die

Mehr

4.3 Systeme von starren Körpern. Aufgaben

4.3 Systeme von starren Körpern. Aufgaben Technische Mechanik 3 4.3-1 Prof. Dr. Wandiner ufabe 1: 4.3 Ssteme von starren Körpern ufaben h S L h D L L L D h H L H SH Ein PKW der Masse m mit Vorderradantrieb zieht einen Seelfluzeuanhäner der Masse

Mehr

Grundlagen der Biomechanik. Ewa Haldemann

Grundlagen der Biomechanik. Ewa Haldemann Grundlagen der Biomechanik Ewa Haldemann Was ist Biomechanik 1 Unter Biomechanik versteht man die Mechanik des menschlichen Körpers beim Sporttreiben. 2 Was ist Biomechanik 2 Bewegungen entstehen durch

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie - 43-2.3 Arbeit und Energie 2.3.1 Motivation und Definition Prinzipiell kann man mit den Newton'schen Axiomen die Bewegung von Massenpunkten wie auch Systemen von Massenpunkten beschreiben. In vielen Fällen

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Das Hebelgesetz zur Lösung technischer Aufgaben

Das Hebelgesetz zur Lösung technischer Aufgaben Es gibt einseitige Hebel, zweiseitige Hebel und Winkelhebel. Mit allen Hebeln kann man die Größe und Richtung von Kräften ändern. In der Regel verwendet man Hebel zur Vergrößerung von Kräften. Das Hebelgesetz

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 Kapitel 5: Elektrisches Strömungsfeld 5 Elektrisches Strömungsfeld 5.1 Definition des Feldbegriffs 5. Das elektrische Strömungsfeld 3 5..1 Strömungsfeld in einer zylindrischen

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand)

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand) l. Kinematik in der Mechatronik Ein tpisches mechatronisches Sstem nimmt Signale auf, verarbeitet sie und gibt Signale aus, die es in Kräfte und Bewegungen umsett. Mechanische Struktur Leistungsteil phsikalische

Mehr

Die Oberflächenspannung

Die Oberflächenspannung Die Oberflächenspannung Theoretische Grundlagen Kohäsionskraft Die Kohäsionskraft, ist diejenige Kraft, die zwischen den Molekülen der Flüssigkeit auftritt. Jedes Molekül übt auf die Umliegenden ein Kraft

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

Inhaltsverzeichnis. Inhalt. Vorbemerkung... 9. 1 Einleitung

Inhaltsverzeichnis. Inhalt. Vorbemerkung... 9. 1 Einleitung Inhalt Inhaltsverzeichnis Vorbemerkung... 9 1 Einleitung 1.1 Gegenstand der Physik... 11 1.2 Teilgebiete der Physik... 14 1.3 Maßsysteme, Einheiten und physikalische Größen... 15 1.3.1 Grober Überblick

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

Protokolle zum Physikalischen Grundpraktikum

Protokolle zum Physikalischen Grundpraktikum Protokolle zum Physikalischen Grundpraktikum Daniel Scholz und Hauke Rohmeyer im Frühjahr 2006 Überarbeitete Version vom 26. April 2006. Inhaltsverzeichnis V Vorwort 7 1 Der Pohlsche Resonator 9 1.1 Einleitung...............................

Mehr

POLARISATION. Von Carla, Pascal & Max

POLARISATION. Von Carla, Pascal & Max POLARISATION Von Carla, Pascal & Max Die Entdeckung durch MALUS 1808 durch ÉTIENNE LOUIS MALUS entdeckt Blick durch einen Kalkspat auf die an einem Fenster reflektierten Sonnenstrahlen, durch Drehen wurde

Mehr

Magnetostatik. Magnetfelder

Magnetostatik. Magnetfelder Magnetostatik 1. Permanentmagnete i. Phänomenologie ii. Kräfte im Magnetfeld iii. Magnetische Feldstärke iv.erdmagnetfeld 2. Magnetfeld stationärer Ströme 3. Kräfte auf bewegte Ladungen im Magnetfeld 4.

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Steen Maurus, Diana Beyerlein, Markus Perner 5.03.2012 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpuntes

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Lösungen zur Prüfung 2009: Pflichtbereich

Lösungen zur Prüfung 2009: Pflichtbereich 009 Pflichtbereich Lösungen zur Prüfung 009: Pflichtbereich ufgabe P1: erechnung des lächeninhalts G : ür den lächeninhalt des Dreiecks G gilt (siehe igur 1): G = Man muss also zuerst die Länge G und die

Mehr

Zwei Aufgaben, die auf windschiefe Regelflächen führen,

Zwei Aufgaben, die auf windschiefe Regelflächen führen, Zwei Aufgaben, die auf windschiefe Regelflächen führen, von À. KIEFER (Zürich). (Als Manuskript eingegangen am 25. Januar 1926.) I. Gesucht im Raum der Ort des Punktes, von dem aus die Zentralprojektionen

Mehr

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab!

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab! Klausur TM1 für WI SS 99 Prüfer: Prof. Dr. M. Lindner NAME: MATRIKEL-NR.: Aufgabe Punkte erreicht 1 20 2 26 3 28 4 26 Summe 100 Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie

Mehr

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung 1 Drehung der Polarisationsebene Durch einige Kristalle, z.b. Quarz wird

Mehr

Zusammenfassung der Vorlesung

Zusammenfassung der Vorlesung Zusammenfassung der Vorlesung Physik für Ingenieure (Maschinenbau) WS 2013/2014 (Ruhr-Universität Bochum) 05. Februar 2014 1 / 40 Klausurinformationen Hauptklausur Datum: 24.03.2014 Zeit: 14:00 s.t. -

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse Schulversuchspraktikum WS2000/2001 Redl Günther 9655337 Elektromagnet 7.Klasse Inhaltsverzeichnis: 1) Lernziele 2) Verwendete Quellen 3) Versuch nach Oersted 4) Magnetfeld eines stromdurchflossenen Leiter

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2011. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2011. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten Wenn du deine Arbeit abgibst,

Mehr

Klausur zu Physik1 für B_WIng(v201)

Klausur zu Physik1 für B_WIng(v201) M. Anders Wedel, den 13.08.07 Klausur zu Physik1 ür B_WIng(v201) Klausurdatum: 16.2.07, 14:00, Bearbeitungszeit: 90 Minuten Achtung! Es ird nur geertet, as Sie au diesen Blättern oder angeheteten Leerseiten

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Mathematische Modellierung des Gaußgewehrs (Coilgun)

Mathematische Modellierung des Gaußgewehrs (Coilgun) Mathematische Modellierung des Gaußgewehrs (Coilgun) Alexios Aivaliotis, Christopher Rieser 30. Juni 2013 1 1 Beschreibung des Projekts In dieser Arbeit beschreiben wir die physikalische und mathematische

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Zusammenfassung elektrische Maschinen Gleichstrommaschine

Zusammenfassung elektrische Maschinen Gleichstrommaschine Gleichstrommaschine i F F F F U = R I + Ui U F = RF IF Gleichstrommaschine Induzierte Spannung: Ursache: Änderung des magnetischen Flusses in der Leiterschleife Ui = c φf Erzeugung des magnetischen Flusses:

Mehr

Technik. Cockpit einer A319. Instrumentenkunde. Stefan Lang. Stefan Lang

Technik. Cockpit einer A319. Instrumentenkunde. Stefan Lang. Stefan Lang Technik Instrumentenkunde Cockpit einer A319 1 Borddrucksystem V/N Diagramm 2 G-Loads Wing loading 3 Fahrtmesser Grün: Normaler Betriebsbereich Gelb: nur bei ruhiger Luft, harte Steuerbewegungen und ruckartiges

Mehr

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0 *UXQGODJHQGHU3K\VLN Vorlesung im Fachbereich VI der Universität Trier Fach: Geowissenschaften Sommersemester 2001 'R]HQW 'U.DUO0ROWHU 'LSORP3K\VLNHU )DFKKRFKVFKXOH7ULHU 7HO )D[ (0DLOPROWHU#IKWULHUGH,QIRV]XU9RUOHVXQJXQWHUKWWSZZZIKWULHUGHaPROWHUJGS

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel Hochschule Physikalische Chemie Vers.Nr. 11 Emden / Leer Praktikum Sept. 2005 Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel In diesem Versuch soll die Oberflächenspannung einer

Mehr