1. Impuls- und Drallsatz
|
|
|
- Nelly Kneller
- vor 9 Jahren
- Abrufe
Transkript
1 1. Impuls- und Drallsatz Impulssatz Bewegung des Schwerpunkts des örpers aufgrund vorgegebener räfte Drallsatz Drehung des örpers aufgrund vorgegebener Momente Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
2 1.1 Bezeichnungen 1.2 Impulssatz 1.3 Drallsatz 1. Impuls- und Drallsatz Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
3 1.1 Bezeichnungen örper ω P r P r BP r SP r B B S O r S r BS Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
4 1.1 Bezeichnungen Punkt O ist der Ursprung des ortsfesten Bezugssystems. Punkt B ist ein körperfester Punkt, der als Ursprung eines körperfesten Bezugssystems dient. Punkt S ist der Schwerpunkt des örpers. Punkt P ist ein allgemeiner Punkt des örpers. Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
5 1.1 Bezeichnungen Vektor r BP ist der Ortsvektor des Punktes P im körperfesten Bezugssystem. Vektor r BS ist der Ortsvektor des Schwerpunktes S im körperfesten Bezugssystem. Vektor r SP ist der Vektor vom Schwerpunkt S zum Punkt P. Da der örper starr ist, ändern sich die Vektoren r BP, r BS und r SP für einen körperfesten Beobachter nicht. Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
6 1.1 Bezeichnungen Geschwindigkeit des Punktes P: Für einen körperfesten Beobachter ist Punkt P in Ruhe: B v P =0 Für einen Beobachter im ortsfesten Bezugssystem hat Punkt P die Geschwindigkeit v P =v B r BP Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
7 Schwerpunkt S : 1.1 Bezeichnungen Im ortsfesten Bezugssystem gilt laut Definition Daraus folgt für den Vektor r SP =r P r S : r SP dm= m r S = r P dm r P dm r S dm=m r S r S m=0 Aus r BS =r BP r SP folgt weiter: m r BS = r BP dm Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
8 1.2 Impulssatz P dm df räfte am freigeschnittenen Massenelement dm : äußere räfte df r P innere räfte df i O df i Die inneren räfte sind die räfte, die die benachbarten Massenelemente auf das betrachtete Massenelement ausüben. Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
9 1.2 Impulssatz Der Impulssatz für das Massenelement lautet: Integration über den örper ergibt r P dm=d F d F i r P dm= d F d F i Wegen Actio = Reactio verschwindet das Integral der inneren räfte: d F i =0 Das Integral über die äußeren räfte ergibt die resultierende raft: Aus der Definition des Schwerpunkts folgt: m r S = d F=F m r S = r P dm r P dm Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
10 1.2 Impulssatz Damit lautet der Impulssatz für den örper: m r S =F Der Schwerpunkt eines starren örpers bewegt sich so, als ob alle räfte an ihm angriffen und die gesamte Masse in ihm vereinigt wäre. Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
11 1.3 Drallsatz Aus dem Impulssatz für das Massenelement, r P dm=d F d F i folgt mit v P =ṙ P : r BP v P dm=r BP d F r BP d F i Integration über den örper ergibt: Die Beiträge der inneren räfte heben sich wegen Actio = Reactio auf: r BP v P dm= r BP d F r BP d F i =0 r BP d F i Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
12 1.3 Drallsatz Die Beiträge der äußeren räfte summieren sich zu dem resultierenden Moment der äußeren räfte um den Punkt B: Damit bleibt: r BP d F =M B r BP v P dm= M B Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
13 1.3 Drallsatz Das Integral lässt sich weiter umformen: Zunächst gilt: r BP v P = d dt r BP v P ṙ BP v P B Wegen =0 gilt außerdem: v P ṙ BP = r BP und v P =v B r BP Damit folgt: ṙ BP v P = r BP v B r BP = r BP v B Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
14 Für das Integral gilt also: r BP v P dm= 1.3 Drallsatz d dt r BP v P dm r BP dm v B = d dt r BP v P dm m r BS v B Definition: Die Größe L B = r BP v P dm wird als Drall oder Drehimpuls bezüglich des Punktes B bezeichnet. Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
15 1.3 Drallsatz Damit lautet der Drallsatz in allgemeiner Form: L B m r BS v B =M B Der Drallsatz wird auch als Drehimpulssatz oder Momentensatz bezeichnet. Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
16 1.3 Drallsatz Speziell: Schwerpunkt als Bezugspunkt Wird der Bezugspunkt B in den Schwerpunkt S gelegt, so gilt r BS = 0. Damit vereinfacht sich der Drallsatz zu L S =M S Die Änderung des Dralls bezüglich des Schwerpunkts ist gleich dem Moment der äußeren räfte. Speziell: Bezugspunkt B ist ortsfest Für einen ortsfesten Bezugspunkt B gilt v B = 0. Der Drallsatz vereinfacht sich ebenfalls zu L B =M B. Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
17 1.3 Drallsatz Beispiel: Drall der rollenden Scheibe S ω v S Die Scheibe rollt mit der konstanten Schwerpunktsgeschwindigkeit v S und der konstanten Winkelgeschwindigkeit ω. Gesucht ist der Drall bezüglich des Schwerpunkts. A Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
18 1.3 Drallsatz Geometrie: η S R ξ Radius R Dicke d Die Mittelebene der Scheibe liegt in der ξη-ebene des körperfesten oordinatensystems. Der Ursprung des körperfesten oordinatensystems ist der Schwerpunkt. d S ξ ζ Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
19 1.3 Drallsatz Vektoren: Allgemeiner Ortsvektor: η r SP = b b b Ortsvektor von Punkt A: ω r SA = R b Winkelgeschwindigkeit: P r SA S r SP ξ = b A Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
20 3.1 Drallsatz inematik: v P =v S r SP η Rollbedingung: v A =v S r SA =0 v S = r SA = R b b = R b ω r SA S A r SP v S P v P ξ Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
21 1.3 Drallsatz Drall bezüglich Schwerpunkt: Geschwindigkeit: Integrand: L = S r SP v P dm v P =v S r SP = R b b b b b = R b b b = [ R b b ] r SP v P = b b b [ R b b ] = [ 2 b R b R b b ] = [ b R b R b 2 2 b ] Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
22 1.3 Drallsatz Integration: dm= dv = d da dm= A = A d /2 d /2 [ =d /2 2 2 ] = d /2 R dm= A = A [ R dm=r d da= A d /2 d /2 d da da= [ d 2 A 8 d 2 ] 8 da=0 d /2 d / 2 d /2 R d /2 R d da d ] da=0 dm=r S m=0 Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
23 1.3 Drallsatz Das einzige Integral, das nicht verschwindet ist 2 2 dm= A [ = d A d /2 In Polarkoordinaten gilt: ] d /2 2 2 d da= [ A 2 2 da 2 d / 2 2 d /2 d ] da =r cos =r sin 2 2 =r 2 da=r d dr dφ rdφ r dr Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
24 1.3 Drallsatz Damit folgt: A da= 0 0 R 2 r dr 3 d = [ 4 r=r r 0 4 ]r=0 = 1 2 R4 = 1 2 R2 A 2 d = 0 R 4 4 d Ergebnis: L S = d 1 2 R2 A b = 1 2 R2 m b Prof. Dr. Wandinger 3. inetik des starren örpers Dynamik
2. Trägheitstensor. Prof. Dr. Wandinger 3. Kinetik des starren Körpers Dynamik
2. Trägheitstensor Der Drall hängt ab von der Verteilung der Masse und der Geschwindigkeit über den örper. Die Geschwindigkeitsverteilung ergibt sich aus der Überlagerung einer Translation und einer Rotation.
3. Trägheitstensor. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper
3. Trägheitstensor Im Beispiel der rollenden Scheibe hängt der Drall linear von der Winkelgeschwindigkeit ab. Bei der Berechnung des Dralls treten Integrale über die Geometrie des starren örpers auf. Es
3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1
3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe
1. Grundlagen der ebenen Kinematik
Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes
2. Translation und Rotation
2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche
3. Systeme von starren Körpern
Systeme von starren Körpern lassen sich folgendermaßen berechnen: Die einzelnen starren Körper werden freigeschnitten. Für jeden einzelnen Körper werden die Bewegungsgleichungen aufgestellt. Die kinematischen
Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1
Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten
5. Zustandsgleichung des starren Körpers
5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch
2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay
ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +
5. Kritische Drehzahl
Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit
1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:
Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf
Drehbewegungen (Rotation)
Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen
1. Bewegungsgleichung
1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik
Kinematik des starren Körpers
Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes
Starrer Körper: Drehimpuls und Drehmoment
Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und
2. Exzentrischer Stoß
2. Exzentrischer Stoß 2.1 Ebener Stoß zwischen freien Körpern 2.2 Ebener Stoß auf gelagerten Körper 3.2-1 2.1 Ebener Stoß zwischen freien Körpern Aufgabenstellung: Zwei glatte Körper stoßen aufeinander.
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem
Physik I Mechanik und Thermodynamik
Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation
Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener
Kinetik des starren Körpers
Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.
Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)
Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +
4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik
c 2 B 2 Schwerpunkt S P 2 S P 1 c 1 m, J O O B 1 Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.4-1 Aufgabenstellung: 4. Drehschwinger Der Drehschwinger besteht aus einem starren Körper, der im Punkt
Spezialfall m 1 = m 2 und v 2 = 0
Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +
Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]
Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
1. Prinzip von d'alembert
1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1
2. Physikalisches Pendel
2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung
Fallender Stein auf rotierender Erde
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen
5.2 Drehimpuls, Drehmoment und Trägheitstensor
186 KAPITEL 5. STARRE KÖRPER 5. Drehimpuls, Drehmoment und Trägheitstensor Wie wir im vorhergehenden Abschnitt gesehen haben, besitzt ein starrer Körper 3 Freiheitsgrade zur Beschreibung seiner Position
2. Kontinuierliche Massenänderung
Untersucht wird ein Körper, der kontinuierlich Masse ausstößt. Es sollen zunächst keine äußeren Kräfte auf den Körper wirken. Bezeichnungen: Masse des ausstoßenden Körpers: m(t) Pro Zeiteinheit ausgestoßene
1. Geradlinige Bewegung
1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei
4.9 Der starre Körper
4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu
Vektorrechnung in der Physik und Drehbewegungen
Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen
Spezialfall m 1 = m 2 und v 2 = 0
Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +
2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik
2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2.1. Trägheits- bzw. Scheinkräfte Die Bewegung in einem beschleunigen Bezugssystem lässt sich mit Hilfe von sogenannten Scheinkräften
9 Teilchensysteme. 9.1 Schwerpunkt
der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton
Technische Mechanik 3
Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten
Kinematik des Massenpunktes
Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
12 Integralrechnung, Schwerpunkt
Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden
4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.
4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem
() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2
Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.
Vorlesung Theoretische Mechanik
Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.
1. Bewegungsgleichung
1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunktes TM 3
Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte
Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,
Massenträgheitsmomente homogener Körper
http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern
Kinematik (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik Lehre von den geo- Metrischen Bewegungsverhältnissen von Körpern. Dynamik Lehre von den Kräften Kinetik Lehre von den Bewegungen
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der
Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:
echnische Mechanik III Übung WS 2002 / 2003 Klausur eil 1 Abteilung für obotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer el.: +43/732/2468-9786 Fax: +43/732/2468-9792 [email protected] Sekretariat:
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
Physikalische Anwendungen Kinematik
Physikalische Anwendungen Kinematik Zum Mathematik-Lehrbuch Notwendig und zunächst hinreichend (Shaker Verlag, Aachen) gibt es mehrere PDF-Dokumente mit ergänzenden Beispielen und Aufgaben, die die Anwendung
2. Klausur zur Theoretischen Physik I (Mechanik)
2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie
2. Räumliche Bewegung
2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.
Mathematischer Vorkurs für Physiker WS 2009/10
TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann
+m 2. r 2. v 2. = p 1
Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1
Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 213 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Relaxation Geben Sie die Lösung der Differentialgleichung für die Relaxation
Formelsammlung: Physik I für Naturwissenschaftler
Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]
Rotierende Bezugssysteme
Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.
Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen
Physik Department Technische Universität München Matthias Eibl Blatt 4 Ferienkurs Theoretische Mechanik 9 Starre Körper und Rotation - en Aufgaben für Donnerstag 1 Kinetische Energie eines rollenden Zylinders
Ferienkurs Theoretische Mechanik Sommer 2010 Newton/Koordinaten/Dgl s
Fakultät für Physik Friedrich Wulschner Technische Universität München Vorlesung Montag Ferienkurs Theoretische Mechanik Sommer 2010 Newton/Koordinaten/Dgl s Inhaltsverzeichnis 1 Newtons 3 Axiome 2 2 Lösungsverfahren
Experimentalphysik 1. Vorlesung 2
Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 orlesung 2 Ronja Berg ([email protected]) Katharina Scheidt ([email protected]) Inhaltsverzeichnis
3. Seilhaftung und Seilreibung
3. Seilhaftung und Seilreibung Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-1 3. Seilhaftung und Seilreibung 3.1 Haften 3.2 Gleiten Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-2 Bei einer
(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010
Probeklausur zur Theoretischen Physik I: Mechanik
Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst
8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels
8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem
1 Drehimpuls und Drehmoment
1 Drehimpuls und Drehmoment Die Rotationsbewegung spielt in der Natur von der Ebene der Elementarteilchen bis zu den Strukturen des Universums eine eine bedeutende Rolle. Einige Beispiele sind 1. Spin
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis
11. Vorlesung Wintersemester
11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y
2. Räumliche Bewegung
2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort
Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk.
TechMech Zusammenfassung Ebene & räumliche Bewegungen Drehmoment M [Nm] Andreas Biri, D-ITET 31.07.13 1. Grundlagen Eine starre ebene Bewegung ist entweder eine Translation: alle Punkte haben parallele
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische
Rollender Zylinder in Zylinder
Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.
1. Eindimensionale Bewegung
1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt
8 Kinetik der allgemeinen Starrkörperbewegung
57 Die allgemeine Starrkörperbewegung ist eine Überlagerung von Translation und Rotation mit je 3 Freiheitsgraden. Dem entsprechen 6 Gleichungen, die aus Impuls- und Drallsat resultieren. Der Impuls eines
Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )
b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt
1 Technische Mechanik 3 Dynamik
Russell C. Hibbeler 1 Technische Mechanik 3 Dynamik 10., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Georgia Mais Fachliche Betreuung und Erweiterungen: Jörg Wauer, Wolfgang
Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen.
Anwendungen der Integralrechnung 1 1 Trägheitsmomente 1. 1 Einleitung, Definition Körper fallen im Vakuum gleich schnell und sie gleiten auf einer reibungsfreien schiefen Ebene gleich schnell. Sie rollen
Inhaltsverzeichnis E in fü h r u n g... G rundlagen der V ek to rrech n u n g G rundlagen der K in e m a tik
Inhaltsverzeichnis 1 E inführung... 1 1.1 Mehrkörpersysteme... 1 1.2 Physikalische Grundlagen der Mehrkörperdynamik... 2 1.3 Entwicklung der M ehrkörperdynamik... 6 1.4 Mehrkörperformalismen... 8 1.5 Anwendungen
7.1 Kraftwirkung von Rotoren
49 Beim Massenpunkt haben der Impuls p mv und die Geschwindigkeit v aufgrund der skalaren Masse stets die gleiche Richtung. Äußere Kräfte führen daher auf Impuls- und gleichzeitig Geschwindigkeitsänderungen
Mehrdimensionale Integralrechnung 2
Mehrdimensionale Integralrechnung Quiz Wir wollen die Dynamik zweier Teilchen beschreiben, die über ein hoch elastisches Seil verbunden sind und sich wild im Raum bewegen! Ein Kollege schlägt dazu vor
3. Allgemeine Kraftsysteme
3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene
12 Stoßprobleme. Bezeichnung
8 Stoßprobleme Stöße sind kurzzeitige Körperkontakte mit großen Kontaktkräften, die zu sprungförmiger Änderung des Geschwindigkeitszustands führen. Theoretisch könnte man ein solches Stoßproblem mit den
Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die
Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung
Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik
1. Eindimensionale Bewegung
1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt
PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version
PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................
28. August Korrektur
Institut für Technische und um. Mechanik Technische Mechanik II/III Profs. P. Eberhard, M. Hanss SS 2014 P 2 28. August 2014 Bachelor-Prüfung in Technischer Mechanik II/III Aufgabe 1 (6 Punkte) Im skiierten
