Technische Mechanik 3

Größe: px
Ab Seite anzeigen:

Download "Technische Mechanik 3"

Transkript

1 Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten 2.5. Relativbewegung, Bewegtes Koordinatensystem

2 2.1. Grundbegriffe - Ortsvektor Beschreibung der Bewegung eines Punktes im Raum Kinematik Kinematik nur Geometrie der Bewegungen, keine Bewegungsursache Punkt P bewegt sich im Raum Ortsvektor des Punktes P: r r r t beschreibt die Bahn des Punktes P Dimension von r : [m], [km],... TM3, SS 2016 R. Kral / G. Kolarov 2

3 Geschwindigkeit zwei benachbarte Lagen P und P P - zur Zeit t ; P - zur Zeit t t Die Geschwindigkeit ist der Grenzwert der zeitlichen Änderung des Ortsvektors v= lim t 0 r t t r t t v= lim t 0 r t = d r d t = ṙ Die Geschwindigkeit ist ein Vektor Die Geschwindigkeit zeigt stets tangential zur Bahn und in Richtung der Bewegung TM3, SS 2016 R. Kral / G. Kolarov 3

4 Geschwindigkeit Für beliebige Größe b mit ḃ -Ableitung nach der Zeit d b d t = ḃ Dimension: [m/s], [km/s], [km/h],... Umrechnung: 1 km h =1000 m 3600 s = 1 3,6 Maß für zurückgelegten Weg (Strecke): s (skalare Größe) Betrag von r : r = s Betrag von v : v =v= lim t 0 TM3, SS 2016 R. Kral / G. Kolarov 4 m s s t = ds dt =ṡ oder 1 m s = 3,6 km h

5 Beschleunigung Geschwindigkeit ändert sich mit der Zeit Die Beschleunigung ist die Ableitung der Geschwindigkeit nach der Zeit: a= lim t 0 v t t v t t a= lim t 0 v t = d v d t = v= r Die Beschleunigung ist ein Vektor Dimension: [ m s 2] TM3, SS 2016 R. Kral / G. Kolarov 5

6 Geschwindigkeit und Beschleunigung in kartesische Koordinaten raumfestes Koordinatensystem mit Einheitsvektoren (Basisvektoren) e x, e y, e z hängen nicht von der Zeit t ab. => Inertialsystem Ortsvektor (Parameterdarstellung der Bahn): Geschwindigkeit r t =x t e x y t e y z t e z (durch Ableiten nach t) v t =ṙ t =ẋ t e x ẏ t e y ż t e z Beschleunigung (2. Ableitung nach t) a t = v t = r t =ẍ t e x ÿ t e y z t e z TM3, SS 2016 R. Kral / G. Kolarov 6

7 Geschwindigkeit und Beschleunigung in kartesische Koordinaten Komponenten der Geschwindigkeit: v x =ẋ, v y = ẏ, v z =ż Betrag der Geschwindigkeit: v =v= ẋ 2 ẏ 2 ż 2 Komponenten der Beschleunigung: a x =ẍ, a y = ÿ, a z = z Betrag der Beschleunigung: a =a= ẍ 2 ÿ 2 z 2 TM3, SS 2016 R. Kral / G. Kolarov 7

8 2.2 Geradlinige Bewegung einfachste Form der Bewegung große praktische Bedeutung nennen Sie Beispiele... x Achse entlang der Bewegungsgeraden r, v, a - nur x -Komponenten, kann skalar geschrieben werden. x t, v t = ẋ, a t = v = ẍ wenn v, a negativ in die negative x-richtung wenn a 0 => Verzögerung TM3, SS 2016 R. Kral / G. Kolarov 8

9 Kinematische Grundaufgaben Gegeben: Weg x t Gesucht: v t, a t => Lösen durch Differenzieren, relativ einfach Gegeben: Beschleunigung a t Gesucht: v t, x t => Lösen durch Integration, mathematisch schwieriger allgemein: a=a t,v, x Wir betrachten nur Fälle, bei denen a nur von einer Größe abhängt: a = a t : 4. a = a v 5. a = a x 1. a = 0, 2. a = a 0, 3. a = a t TM3, SS 2016 R. Kral / G. Kolarov 9

10 Kinematische Grundaufgaben 1. a = 0 a t = v = dv dt = 0 v = v 0 = const. gleichförmige Bewegung x t - durch Integration von v v = v 0 = dx dt Es ist eine Zusatzbedingung erforderlich, in der Regel Anfangsbedingung. Für t = t 0 ist x =x t 0 = x 0 Je nach Problem kann man bestimmt oder unbestimmt integrieren. TM3, SS 2016 R. Kral / G. Kolarov 10

11 Kinematische Grundaufgaben 1. a = 0 a) unbestimmte Integration Trennen der Variablen v = v 0 = dx dt dx=v 0 dt dx = v 0 dt x = v 0 t C 1 aus Anfangsbedingung x t=t 0 =v 0 t 0 C 1 =x 0 C 1 =x 0 v 0 t 0 x t = x 0 v 0 t t 0 b) bestimmte Integration x x 0 t d x = t 0 v 0 d t Unterscheidung zwischen der Variablen und der oberen Grenze x x 0 = v 0 t t 0 x t = x 0 v 0 t t 0 TM3, SS 2016 R. Kral / G. Kolarov 11

12 Kinematische Grundaufgaben 2. a = a 0 gleichmäßig beschleunigte Bewegung Anfangsbedingungen für t 0 = 0 (zweckmäßig): Geschwindigkeit v dv = a 0 dt v 0 Weg ẋ 0 = v 0 x 0 = x 0 x dx = v dt x 0 t d v = 0 a 0 d t v t = v 0 a 0 t t d x = v 0 a 0 t d t x t =x 0 v o t a 0 t 2 TM3, SS 2016 R. Kral / G. Kolarov 12

13 Kinematische Grundaufgaben 2. a = a 0 a t = a 0 v t = v 0 a 0 t x t = x 0 v 0 t a 0 2 t 2 a-t-diagramm v-t-diagramm x-t-diagramm TM3, SS 2016 R. Kral / G. Kolarov 13

14 2. a = a 0 - Beispielaufgabe Beispiele: freier Fall senkrechter Wurf (ohne Luftwiderstand) Beispielaufgabe: Freier Fall aus Höhe ohne Anfangsgeschwindigkeit Gegeben: H H = 12 m (4. Stock), g=9,81 m s 2 Gesucht: Aufprallgeschwindigkeit TM3, SS 2016 R. Kral / G. Kolarov 14

15 Kinematische Grundaufgaben 3. a = a(t) Anfangsbedingungen: Geschwindigkeit durch Integration Weg nochmalige Integration Beispiel v t 0 = v 0, x t 0 = x 0 t dv = a t dt v t = v 0 t 0 dx = v t dt t x t = x 0 t 0 a t d t v t d t TM3, SS 2016 R. Kral / G. Kolarov 15

16 Kinematische Grundaufgaben 4. a = a(v) Beschleunigung ist Funktion der Geschwindigkeit, z.b. Strömungswiderstand Anfangsbedingungen: v t 0 = v 0, x t 0 = x 0 Geschwindigkeit durch Trennen der Variablen a v = dv dt dt = dv a v bestimmte Integration t t 0 v d t = v 0 d v a v v t = t 0 v 0 d v a v = f v TM3, SS 2016 R. Kral / G. Kolarov 16

17 Kinematische Grundaufgaben 4. a = a(v) Wenn man nach v auflösen kann (F ist Umkehrfunktion zu f) folgt für den Weg: t x t = x 0 t 0 F t d t v = F t oder direkt x(v) mit der Kettenregel dx = v v a dv x v = x 0 v 0 a = dv dt = dv dx v a v d v dx dt = dv dx v TM3, SS 2016 R. Kral / G. Kolarov 17

18 4. a = a(v) - Beispiel Bewegung von Körpern in reibungsbehafteten Flüssigkeiten Gegeben: a = k v, k bekannte Konstante Anfangsbedingungen: v 0 = v 0, x 0 = x 0 Gesucht: v t, x t, x v sowie a t, v t, x t Diagramme TM3, SS 2016 R. Kral / G. Kolarov 18

19 Kinematische Grundaufgaben 5. a = a(x) Beschleunigung ist eine Funktion des Weges. Anfangsbedingungen: v t 0 = v 0, x t 0 = x 0 Geschwindigkeit mit der Kettenregel a = dv dt = dv dx dx dt = dv dx v Trennen der Variablen v dv = a x dx Integration 1 2 v 2 = 1 2 v 0 x 2 x 0 a x d x = f x v x = 2 f x TM3, SS 2016 R. Kral / G. Kolarov 19

20 Kinematische Grundaufgaben 5. a = a(x) Aus v = dx durch Trennen der Variablen und Integration dt dt = dx v = dx 2 f x x t x = t 0 x 0 d x 2 f x = g x Wenn man g x nach x auflösen kann ( G ist Umkehrfunktion zu g ): x = G t TM3, SS 2016 R. Kral / G. Kolarov 20

21 Harmonische Schwingung 5. a = a(x) - Beispiel Gegeben: a = 2 x, bekannte Konstante Anfangsbedingungen: v 0 = 0, x 0 = x 0 Gesucht: v x, t x, x t, v t,a t sowie x t, v x Diagramme TM3, SS 2016 R. Kral / G. Kolarov 21

22 2.3. Ebene Bewegung, Polarkoordinaten Koordinaten r, Basisvektoren e r e, e r = e = 1 e r zeigt immer auf den Punkt P Ortsvektor: r = r e r er e Die Richtungen von und sind zeitabhängig! e r t,e t werden mitdifferenziert. TM3, SS 2016 R. Kral / G. Kolarov 22

23 2.3. Ebene Bewegung, Polarkoordinaten Änderung von e r und e - nur Drehung d e r t = d d e t e r = d e r dt = d dt e = e d e t = d d e r t e = d e dt = d dt e r = e r TM3, SS 2016 R. Kral / G. Kolarov 23

24 Geschwindigkeit allg. ebene Bewegung Durch Differenzieren v = ṙ = ṙ e r r ė r v = ṙ = ṙ e r r e radiale Komponente: zirkulare Komponente: v r = ṙ v = r v r, i.a. nicht tangential zur Bahn Winkelgeschwindigkeit = [ ] = 1 s TM3, SS 2016 R. Kral / G. Kolarov 24

25 Beschleunigung allg. ebene Bewegung Durch Differenzieren von v = ṙ = ṙ e r r e a = v = r e r ṙ ė r ṙ e r e r ė a = r r 2 e r r 2 ṙ e radiale Komponente: zirkulare Komponente: a r = r r 2 a = r 2 ṙ a r, i.a. auch nicht tangential zur Bahn Winkelbeschleunigung = [ ] = 1 s 2 TM3, SS 2016 R. Kral / G. Kolarov 25

26 Beispiel - allg. ebene Bewegung Eine Stange der Länge l rotiert um A mit dem Zeitgesetz = k t 2 Auf der Stange rutscht ein Gleitkörper nach dem Gesetz r = l 1 k t 2 Gegeben: l = 2 m, k = 0,2 s 2 Gesucht: Geschwindigkeit und Beschleunigung für 1 = 45 TM3, SS 2016 R. Kral / G. Kolarov 26

27 Sonderfall - Kreisbewegung r = const ṙ = 0 r = r e r, v=r e, a= r 2 e r r e Geschwindigkeit nur zirkulare Komponente: Beschleunigung: v = v = r in tangentialer Richtung: in radialer Richtung: a = r a r = r 2 Spezialfall = const v = r, a = 0, aber a r = r 2 = v2 r a r bewirkt Änderung der Richtung der Geschwindigkeit. TM3, SS 2016 R. Kral / G. Kolarov 27

28 Beispiel - Kreisbewegung Beispiel: = const Beispiel: = = const TM3, SS 2016 R. Kral / G. Kolarov 28

29 Sonderfall - Zentralbewegung Beschleunigungsvektor ist stets auf einen Punkt, das Zentrum gerichtet Koordinatenursprung in Z dann Zikularkomponente a = 0 a = 0 = r 2 ṙ = 1 d r dt r 2 = 0 r 2 = const anschauliche Interpretation: r überstreicht in der Zeit dt die Fläche Flächengeschwindigkeit da dt = 1 2 da = 1 2 r r d r 2 d dt = 1 2 r 2 2 =const entspricht 2. Keplerschen Gesetz für Planetenbewegungen TM3, SS 2016 R. Kral / G. Kolarov 29

30 2.5. Räumliche Bewegung In kartesischen Koordinaten (raumfestes System): r t = x t e x y t e y z t e z v t = ṙ = ẋ t e x ẏ t e y ż t e z a t = v = r = ẍ t e x ÿ t e y z t e z In zylindrischen Koordinaten, e z unabhängig von der Zeit, r ist die Projektion von r in der x-y-ebene: r = r e r z e z v = ṙ = ṙ e r r e ż t e z a t = v = r = r r 2 e r r 2 ṙ e z e z TM3, SS 2016 R. Kral / G. Kolarov 30

31 Räumliche Bewegung natürliche Koordinaten Mitbewegtes Koordinatensystem: e t in Tangentialrichtung e n in Richtung der Hauptnormalen e b in Richtung der Binormalen (begleitendes Dreibein) Tangente und Hauptnormale liegen in der sogenannten Schmiegungsebene mit Radius ρ und Krümmungsmittelpunkt M Mit Bogenlänge s t : r=r s t d r = ds, d r tangential d r=ds e t TM3, SS 2016 R. Kral / G. Kolarov 31

32 Räumliche Bewegung natürliche Koordinaten Geschwindigkeit: v t = ṙ = d r dt = d r ds ds dt v = v = ds dt = ṡ v = v e t zeitliche Änderung der Einheitsvektoren (analog polare Koordinaten): d e t = d e n = ds e n, ė t = d e t dt = 1 Beschleunigung: a = v = v e t v ė t =a t e t a n e n ds dt e n = v e n a= v e t v2 e n TM3, SS 2016 R. Kral / G. Kolarov 32

33 Räumliche Bewegung natürliche Koordinaten Bahnbeschleunigung in Richtung der Tangente Normalbeschleunigung in Richtung der Hauptnormalen a t = v a n = v 2 vgl. Sonderfall Kreisbewegung v = ṡ = r a t = v = r = r a n = v 2 r = r 2 TM3, SS 2016 R. Kral / G. Kolarov 33

34 Räumliche Bewegung natürliche Koordinaten Analogie zwischen den kinematischen Größen gradlinige Bewegung x v = ẋ a = v = ẍ räumliche Bewegung in natürlichen Koordinaten s v = ṡ a = v = s Formeln für die Fälle a(t), a(v), a(x) können für a t angewendet werden. TM3, SS 2016 R. Kral / G. Kolarov 34

35 Beispiel natürliche Koordinaten P bewegt sich in der x-y-ebene auf der Bahnkurve y(x): y = 2 x2 Gegeben: Konstante Geschwindigkeit v 0 Allgemeiner Krümmungsradius in der Ebene: 1 = d 2 y dx 2 [ 1 dy dx 2 ]3 2 Gesucht: Beschleunigung TM3, SS 2016 R. Kral / G. Kolarov 35

36 Beispiel Kreisbahn in natürlichen Koordinaten Auf einer vertikalen Kreisbahn geführter Massenpunkt wird in A aus der Ruhelage losgelassen. Gegeben: g, R Gesucht: Geschwindigkeit und Beschleunigung f TM3, SS 2016 R. Kral / G. Kolarov 36

37 2.5. Relativbewegung Bewegtes kartesisches Koordinatensystem Für einige Bewegungen ist es zweckmäßig, den Ort, etc. auf ein bewegtes Koordinatensystem zu beziehen. Person im Flugzeug / auf Schiff, etc. Robotik xyz-system ist raumfest -System bewegt sich in Bezug auf das ruhende xyz-system nur translatorisch Ortsvektor: r = r 0 r 0P TM3, SS 2016 R. Kral / G. Kolarov 37

38 Translatorisch bewegtes Koordinatensystem r = r 0 r 0P Darstellung der Vektoren in den Koordinatensystemen r = x e x y e y z e y r 0P = e e e Nur Translation: e, e, e unabhängig von t Absolutgeschwindigkeit: Führungsgeschwindigkeit: Relativgeschwindigkeit: v a = ṙ = ṙ 0 ṙ 0P v f = ṙ 0 v r = ṙ 0P v a = v f v r TM3, SS 2016 R. Kral / G. Kolarov 38

39 Translatorisch bewegtes Koordinatensystem Beschleunigung (erneutes Ableiten) Absolutbeschleunigung: a a = v = r 0 r 0P Führungsbeschleunigung: a f = r 0 Relativbeschleunigung: a r = r 0P Damit Absolutbeschleunigung a a = a f a r Zur Erinnerung: Da sich die Einheitsvektoren nicht verändern, verschwindet ihre Ableitung. TM3, SS 2016 R. Kral / G. Kolarov 39

40 Beispiel Verschiebung Der Nullpunkt des bewegten Koordinatensystems bewege sich auf einer Kreisbahn, Radius R, in der Ebene z = 0. Gegeben: R = 5m, = t, =2 rad s r 0P = 1m ; 3m ; 0 m T, Gesucht: r t, v t, a t TM3, SS 2016 R. Kral / G. Kolarov 40

41 Koordinatentransformation bei Drehung des Koordinatensystems e, e, e hängen von t ab. ξηζ-system dreht sich mit der Winkelgeschwindigkeit ω Hier nur Drehung um die z-achse. Die Komponentendarstellung des (Orts-) Vektors hängt von der Basis bzw. dem Koordinatensystem ab Basis {e x, e y, e z }: r = x P y P z P xyz Basis {e, e, e }: r = P P P TM3, SS 2016 R. Kral / G. Kolarov 41

42 Koordinatentransformation bei Drehung des Koordinatensystems Wir suchen die Transformation r xyz = T r Zunächst Projetion der Koordinaten,, auf x, y, z : e = cos e x sin e y 0 e z e = sin e x cos e y 0 e z e =0 e x 0 e y e z In Matrixform erhält man somit: r = x P y P z P xyz cos sin 0 = sin cos P P P r xyz =T r TM3, SS 2016 R. Kral / G. Kolarov 42

43 Koordinatentransformation bei Drehung des Koordinatensystems Entsprechend gilt für die Drehung um x: r = x P y P z P xyz = P 0 cos sin P 0 sin cos P Drehung um die y-achse: r = x P y P z P xyz = cos 0 sin sin 0 cos P P P TM3, SS 2016 R. Kral / G. Kolarov 43

44 Eigenschaften der Transformationsmatrix Für die Drehmatrix um eine Achse gilt: Auf der Diagonalen stehen cos und 1 Auf den zu cos gehörenden Nebendiagonaleinträgen stehen sin und sin Die Transformationsmatrixen sind orthogonal. es gilt: T T = T 1 Achtung: Endliche Drehungen sind keine Vektoren. Die Reihenfolge der Drehungen hat einen Einfluss auf die Endlage. Infinitesimale Drehungen und Winkelgeschwindigkeiten sind Vektoren. TM3, SS 2016 R. Kral / G. Kolarov 44

45 Translation und Rotation des Koordinatensystems Ortsvektor: r = r 0 r 0P e, e, e hängen von t ab. ξηζ-system dreht sich mit der Winkelgeschwindigkeit ω Absolutgeschwindigkeit: v a = ṙ = ṙ 0 ṙ 0P mit r 0P = e e e folgt ṙ 0P = e e e ė ė ė (Produktregel) TM3, SS 2016 R. Kral / G. Kolarov 45

46 Translation und Rotation des Koordinatensystems zeitliche Änderung der Einheitsvektoren: ė = e, ė = e, ė = e damit ė ė ė = e e e = e e e = r 0P insgesamt erhält man: ṙ 0P = d r 0P = dt e e e r 0P erster Summand zeitliche Ableitung von in Bezug auf das bewegte -System: r 0P d * r 0P dt = e e e TM3, SS 2016 R. Kral / G. Kolarov 46

47 Translation und Rotation des Koordinatensystems Damit ist ṙ 0P = d * r 0P dt r 0P Diese Formel gilt entsprechend für beliebige Zeitableitungen von Vektoren. Absolutgeschwindigkeit: v a = v f v r v a = ṙ = v 0 r 0P d * r 0P dt mit v 0 = ṙ 0 Führungsgeschwindigkeit: v f = v 0 r 0P Relativgeschwindigkeit: v r = d * r 0P dt = e e e TM3, SS 2016 R. Kral / G. Kolarov 47

48 Translation und Rotation des Koordinatensystems Absolutbeschleunigung: zweiter Summand: d dt r 0P = r 0P ṙ 0P = r 0P d * r 0P dt dritter Summand: v r = d * v r dt a a = v a = v f v r = v 0 d dt r 0P v r r 0P = r 0P v r r 0P v r d * v r dt mit v 0 =a 0 wird die Absolutbeschleunigung: a a = a 0 r 0P r 0P d * v r dt = e e e 2 v r TM3, SS 2016 R. Kral / G. Kolarov 48

49 Translation und Rotation des Koordinatensystems Absolutbeschleunigung: Führungsbeschleunigung: a a = a f a r a c a f = a 0 r 0P r 0P Relativbeschleunigung: a r = d * v r dt = d 2* r 0P dt 2 Coriolisbeschleunigung: a c = 2 v r steht senkrecht auf und v r a c =0, wenn mindestens eine der folgenden Bedingungen erfüllt ist: =0 v r =0 v r (Winkelgeschwindigkeit und Relativgeschwindigkeit sind parallel.) TM3, SS 2016 R. Kral / G. Kolarov 49

50 Sonderfall: Ebene Bewegung Hier Drehung um z- oder ζ-achse = e = e z Interpretation als Polarkoordinaten möglich. Mit r 0P = r e r folgt : r 0P = r e r 0P = r e r 0P = r 2 e r Führungsgeschwindigkeit: Führungsbeschleunigung: v f = v 0 r e a f = a 0 r e r 2 e r TM3, SS 2016 R. Kral / G. Kolarov 50

51 Fahrgeschäft Krake Beispiel: Ebene Bewegung Kreisscheiben TM3, SS 2016 R. Kral / G. Kolarov 51

52 Zusammenfassung Die Kinematik beschreibt Bewegungen ohne auf die Ursachen (Kräfte) einzugehen. Aus dem Ort erhält man durch Ableiten nach der Zeit die Geschwindigkeit und Beschleunigung v = d r t a = v = d 2 r t dt dt 2 Mit den kinematischen Grundaufgaben können Bewegungen berechnet werden, bei denen z.b. a(v) bekannt ist. Bewegte Koordinatensysteme können die Beschreibung einer Bewegung erleichtern. Bei bewegten Koordinatensysteme treten neben der Relativgeschwindigkeit (-beschleunigung) mit der Führungsgeschwingdigkeit (-beschleunigung) weitere Terme auf. TM3, SS 2016 R. Kral / G. Kolarov 52

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

28.1 Definition der Beschleunigung, Hodograph. charakterisierte Bahnkurve C (Fig. 28.1). Die Geschwindigkeit zur Zeit t ist gemäß Band 1 als (28.

28.1 Definition der Beschleunigung, Hodograph. charakterisierte Bahnkurve C (Fig. 28.1). Die Geschwindigkeit zur Zeit t ist gemäß Band 1 als (28. 8 Beschleunigung Die Beschleunigung eines materiellen Punktes soll die Veränderung der Geschwindigkeit charakterisieren. Ähnlich wie bei der Definition der Geschwindigkeit in Kapitel, Band 1 hängt der

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung).

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung). 10.4. Raumkurven Kinematik Wir betrachten eine zweimal differenzierbare Parameterdarstellung w( t) x( t ) y( t ) z( t ) einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

I. Mechanik. Die Lehre von den Bewegungen und den Kräften. I.1 Kinematik Die Lehre von den Bewegungen. Physik für Mediziner 1

I. Mechanik. Die Lehre von den Bewegungen und den Kräften. I.1 Kinematik Die Lehre von den Bewegungen. Physik für Mediziner 1 I. Mechanik Die Lehre von den Bewegungen und den Kräften I.1 Kinematik Die Lehre von den Bewegungen Physik für Mediziner 1 Mechanik I: Bewegung in einer Dimension Idealisierung: Massenpunkt ( Punktmasse)

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Grundsätzliche Bewegungsarten 2.2 Modell Punktmasse 2.3 Mittlere Geschwindigkeit (1-dimensional) 2.4 Momentane Geschwindigkeit (1-dimensional) 2.5 Beschleunigung (1-dimensional)

Mehr

Physikalische Anwendungen Kinematik

Physikalische Anwendungen Kinematik Physikalische Anwendungen Kinematik Zum Mathematik-Lehrbuch Notwendig und zunächst hinreichend (Shaker Verlag, Aachen) gibt es mehrere PDF-Dokumente mit ergänzenden Beispielen und Aufgaben, die die Anwendung

Mehr

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik Lehre von den geo- Metrischen Bewegungsverhältnissen von Körpern. Dynamik Lehre von den Kräften Kinetik Lehre von den Bewegungen

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'.

Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'. Bewegte Bezugsysteme Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'. Im Allgemeinen weist K' zwei unterschiedliche

Mehr

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm TEIL I: KINEMATIK Unter Kinematik versteht man die pure Beschreibung der Bewegung eines Körpers (oder eines Systems aus mehreren Körpern), ohne nach den Ursachen dieser Bewegung zu fragen. Letzteres wird

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

1. Geradlinige Bewegung

1. Geradlinige Bewegung 1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches

Mehr

8. DIE ABLEITUNG EINER VEKTORFUNKTION

8. DIE ABLEITUNG EINER VEKTORFUNKTION 75 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Physik I Einführung in die Physik Mechanik

Physik I Einführung in die Physik Mechanik Physik I Einführung in die Physik Mechanik Winter 15/16, Prof. Thomas Müller, IEKP, KIT Aufgabenblatt ; Übung am 11.November (Mittwoch) 1. Sportwagen (a) Jeder Summand muss die Einheit m s haben, daher

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.-1 Prof. Dr. Wandinger Aufgabe 1 1. Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht mit

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Kapitel 3. Koordinatensysteme

Kapitel 3. Koordinatensysteme Kapitel 3 Koordinatensysteme Bisher haben wir uns bei der Beschreibung von Vektoren auf das kartesische Koordinatensystem konzentriert. Für viele physikalische Anwendungen sind aber kartesische Koordinaten

Mehr

6. Knappstein Kinematik und Kinetik

6. Knappstein Kinematik und Kinetik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. 6. Knappstein Kinematik und Kinetik Inhaltsverzeichnis 0 Einleitung

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.2-1 Prof. Dr. Wandinger Aufgabe 1 1.2 Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht

Mehr

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen Physik Vektoren Bewegung in drei Dimensionen y (px) ~x x (px) Spiele-Copyright: http://www.andreasilliger.com/index.php Richtung a b b ~x = a Einheiten in Richtung x, b Einheiten in Richtung y y (px) ~x

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

Kapitel 1. Bezugssysteme. 1.1 Koordinatensysteme

Kapitel 1. Bezugssysteme. 1.1 Koordinatensysteme Kapitel 1 Bezugssysteme Wenn wir die Bewegung eines Teilchens messen oder vorausberechnen, liefern wir eine Reihe von Ereignissen (r i, t i ), die jeweils aus einem Ortsvektor r i und der dazugehörenden

Mehr

Mechanik Kinematik der geradlinigen Bewegung

Mechanik Kinematik der geradlinigen Bewegung Mechanik Kinematik der geradlinigen Bewegung 18.1.17 Physik1_WS17/18 1 3. Kinematik Kinematik ist die Lehre on Bewegungen der Körper, in der die Ursachen der Bewegungen (die beteiligten Kräfte) sowie die

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

2 Kinematik eines Massenpunkts in 2D und 3D

2 Kinematik eines Massenpunkts in 2D und 3D 2 Kinematik eines Massenpunkts in 2D und 3D Wir wollen die räumliche Bewegung eines Massenpunkts (Fliege im Zimmer, geworfener Stein, Planet im Sonnensystem, Stern in einem dichten Sternhaufen, etc.) mathematisch

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Modell Punktmasse 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

ÜBUNGSAUFGABEN PHYSIK KAPITEL M MECHANIK ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl. IEUT 10/05 Kohl

ÜBUNGSAUFGABEN PHYSIK KAPITEL M MECHANIK ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl. IEUT 10/05 Kohl ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL M MECHANIK Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl I. Kinematik 10/2005 koh Bewegung auf gerader Bahn; Geschwindigkeit, Beschleunigung

Mehr

1. Prinzip von d'alembert

1. Prinzip von d'alembert 1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Aufgabe 1: Doppelpendel a) [2 Pkte.] Zwangsbedingungen: Massenpunkte auf Kreisen, also A 1 : x y 2 1 l 2 = 0,

Aufgabe 1: Doppelpendel a) [2 Pkte.] Zwangsbedingungen: Massenpunkte auf Kreisen, also A 1 : x y 2 1 l 2 = 0, Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 : PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Nachklausur vom 28. Oktober 2009 Aufgabe : Doppelpendel

Mehr

Teil 3 Bewegung in 2D und 3D

Teil 3 Bewegung in 2D und 3D Tipler-Mosca 3. Motion in two and three dimensions 3.1 Der Verschiebungsvektor (The displacement vector) 3.2 Allgemeine Eigenschaften von Vektoren (General properties of vectors) 3.3 Ort, Geschwindigkeit,

Mehr

MECHANIK I. Kinematik Dynamik

MECHANIK I. Kinematik Dynamik MECHANIK I Kinematik Dynamik Mechanik iki Versuche Luftkissenbahn Fallschnur Mechanik iki Kinematik Kinematik beschreibt Ablauf einer Bewegungeg Bewegung sei definiert relativ zu Bezugssystem Koordinatensystem

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Grundbegriffe zur Beschreibung von Kreisbewegungen

Grundbegriffe zur Beschreibung von Kreisbewegungen Arbeitsanleitung I Kreisbewegung Grundbegriffe zur Beschreibung von Kreisbewegungen Beschreibung der Kreisbewegung 1 1.1 Das Bogenmass 1.2 Begriffe zur Kreisbewegung 1.3 Die Bewegung auf dem Kreis Lösungen

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 1: Kinematik Dr. Daniel Bick 02. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 02. November 2016 1 / 24 Übersicht 1 Kinematik Daniel Bick

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

10.5. Räumliche Krümmung und Torsion

10.5. Räumliche Krümmung und Torsion 10.5. Räumliche Krümmung und Torsion Gegeben sei eine zweimal differenzierbare Parameterdarstellung w einer Raumkure. Wir lassen im Folgenden meist den Parameter t weg, um etwas bequemere Formeln zu bekommen.

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension Physik Bewegung in einer Dimension Überblick für heute 2. Semester Mathe wird das richtig gemacht! Differenzieren (Ableitung) Integration Strecke Geschwindigkeit Beschleunigung Integrieren und differenzieren

Mehr

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche R. Mahnke (Univ. Rostock), J. Kaupužs (Lettische Univ. Riga) 3. Mai 24 Zusammenfassung Ziel dieses Kommentars ist es, die Newtonschen

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Technische Universität Berlin. Wolfgang Raack MECHANIK. 13. verbesserte Auflage. ULB Darmstadt. nwuiui i utr IVIOWI IClI'lIK.

Technische Universität Berlin. Wolfgang Raack MECHANIK. 13. verbesserte Auflage. ULB Darmstadt. nwuiui i utr IVIOWI IClI'lIK. Technische Universität Berlin Wolfgang Raack MECHANIK 13. verbesserte Auflage ULB Darmstadt 16015482 nwuiui i utr IVIOWI IClI'lIK Berlin 2004 Inhaltsverzeichnis 1 Einführung 1 1.1 Definition der Mechanik

Mehr

6 Vektoranalysis Kurven

6 Vektoranalysis Kurven 6 Vektoranalysis Kurven Zoltán Zomotor Versionsstand: 31. Juli 2014, 13:51 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is based on the works of Jörn Loviscach

Mehr

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b)

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b) 38 Newton sche Mechanik I.6.3 Kepler-Problem Die Newton sche Gravitationskraft zwischen zwei Massenpunkten mit Massen m 1, m 2 ist eine konservative Zentralkraft, gegeben durch mit dem Potential F ( x

Mehr

2.6 Mechanik in bewegten Bezugsystemen

2.6 Mechanik in bewegten Bezugsystemen - 66-2.6 Mechanik in bewegten Bezugsystemen 2.6.1 Galilei'sche Relativität Die Beschreibung einer Bewegung hängt ab vom verwendeten Bezugssystem: Wenn jemand in einem Eisenbahnwagen einen Ball aufwirft

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2.1. Trägheits- bzw. Scheinkräfte Die Bewegung in einem beschleunigen Bezugssystem lässt sich mit Hilfe von sogenannten Scheinkräften

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

I.3 Inertialsysteme. Galilei-Transformationen

I.3 Inertialsysteme. Galilei-Transformationen I.3 Inertialsysteme. Galilei-Transformationen 17 I.3 Inertialsysteme. Galilei-Transformationen Das erste und das zweite Newton sche Gesetz beruhen auf der Existenz von besonderen Bezugssystemen, nämlich

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr