10.5. Räumliche Krümmung und Torsion

Größe: px
Ab Seite anzeigen:

Download "10.5. Räumliche Krümmung und Torsion"

Transkript

1 10.5. Räumliche Krümmung und Torsion Gegeben sei eine zweimal differenzierbare Parameterdarstellung w einer Raumkure. Wir lassen im Folgenden meist den Parameter t weg, um etwas bequemere Formeln zu bekommen. Der Krümmungsektor ist die infinitesimale Veränderung des Tangenten-Einheitsektors im Vergleich zur Veränderung der Bogenlänge, also der Quotient k: e /s e / wobei e der Tangenten-Einheistektor, s die Bogenlänge und die Geschwindigkeit ist. Die Krümmung der Kure ist die Länge des Krümmungsektors, also κ: k e' /. Sie kennzeichnet die Stärke der Richtungsänderung. (Die Geschwindigkeit 0 wird hier und im Folgenden ausgeschlossen). Da der Krümmungsektor ebenso wie die Ableitung des Tangenten-Einheitsektors in Richtung des Hauptnormalenektors h zeigt, haben wir k κ h. Der Krümmungskreis liegt in der Schmiegebene, hat den Krümmungsradius ρ 1 κ und den Krümmungsmittelpunkt m w + ρ h. Offenbar hat ρ nur dann einen endlichen Wert, wenn e nicht erschwindet. Beispiel 1: Schraubenlinie mit Radius r und Windungshöhe 2 π H.

2 Noch einmal die Parameterdarstellung und die Ableitungen: w( t) r cos( t ) r sin( t) r cos( t ) r sin( t ), w ( t ) r cos( t ), w ( t) r sin( t ), H t H 0 Die skalare Geschwindigkeit ( t ) ist konstant: H 2 + r 2 Schmiegnormalenektor und Parallelogrammfläche: p( t) H r sin( t) H r cos( t ), β( t ) r r 2 w ( t) Tangenten-Einheitsektor, Hauptnormalenektor und Binormalenektor: e( t) r sin( t ) cos( t) r cos( t ), h( t ) sin( t ), 0 H Krümmungsektor und Krümmungsmittelpunkt: k( t) r cos( t ) 2, r sin( t ) 2 0 m( t ) b( t) H sin( t) H cos( t) r cos( t ) H 2 r sin( t ) H 2 r H t Krümmung und Krümmungsradius sind hier ebenfalls konstant: r sin( t ) r cos( t) 0 κ r, ρ 2 2 r Die Krümmung einer zweimal differenzierbaren Kure hängt eng mit deren zweiter Ableitung zusammen. Diese hatten wir als Linearkombination des Tangenten-Einheitsektors e und des Hauptnormalenektors h dargestellt, indem wir die Gleichung (1) w e mit Hilfe der Produktregel differenziert hatten: (2) w e + e. Nach Einsetzen on e k wird daraus () w e + 2 k e + 2 κ h.

3 Dies ist wieder die Zerlegung der ektoriellen Beschleunigung in Tangential- und Normalkomponente. Letztere wird also nicht nur on der Krümmung, sondern auch on der Geschwindigkeit beeinflußt. Bei konstanter Geschwindigkeit ist 0, also zeigt w dann in die gleiche Richtung wie der Normalenektor h. Für den Krümmungsektor k ist das immer der Fall (auch bei ariablem ). Jetzt berechnen wir umgekehrt die Krümmung mit Hilfe der ersten und zweiten Ableitung: Unter Ausnutzung der Gleichung e x e 0 und des Distributigesetzes für das Vektorprodukt folgt aus den Gleichungen (1) und (2): (4) w x w 2 e x e. Als Einheitsektor steht e senkrecht auf seiner Ableitung e. Somit: (5) β w x w 2 e κ. Diision durch ergibt die Krümmung einer Raumkure β (6) κ. Das ist die gleiche Formel wie in der Ebene. Allerdings muß man im ebenen Fall auf das Vorzeichen on β achten. Der Torsionsektor einer Raumkure ist die infinitesimale Veränderung des Binormalenektors b 1 β (w x w ) im Vergleich zur Veränderung der Bogenlänge, also der Quotient b /s b /. Der Torsionsektor steht senkrecht auf b (da dies ein Einheitsektor ist), aber auch auf dem Tangenten-Einheitsektor e. Denn Differenzieren der Gleichung e b 0 führt auf e b + e b 0, und da e κ h ebenfalls senkrecht auf b steht, folgt e b 0 und e b 0. Somit muß b in oder gegen die Richtung des Hauptnormalenektors zeigen. Es gibt also eine skalare Funktion τ mit (7) b τ h. Der Faktor τ ist ein Maß dafür, wie stark sich die Kure aus der Schmiegebene "herauswindet". Wenn wir die letzte Gleichung mit - h/ multiplizieren und h h 1 ausnutzen, bekommen wir die Torsion einer Raumkure (8) τ - 1 b h 1 b h. Die zweite Gleichung folgt aus b h 0, was nach Differentiation b h + b h 0 liefert.

4 Spatprodukt der drei Ableitungsektoren Bei einer dreimal differenzierbaren Parameterdarstellung w können wir die Gleichung () w e + α h mit α 2 κ nochmals differenzieren. Die Produktregel liefert w e + e + α h + α h. Nun berechnen wir das Spatprodukt: und bekommen die w w w (w x w ) w det(w,w,w ) β b ( e + e + α h + α h ) β α b h (wegen b e b e b h 0) β α τ β κ τ β 2 τ Torsion als Funktion der drei Ableitungen τ 1 w w w mit β w x w. 2 β Beispiel 2: Torsion einer Schraubenfeder Für eine Schraubenlinie mit der Parameterdarstellung r cos( t) w( t ) r sin( t) H t berechnen wir erst das Kreuzprodukt p w x w (wie in Beispiel 1) dann das Skalarprodukt mit dem Vektor p( t ) H r sin( t) H r cos( t) r 2 Das Ergebnis ist w ( t) r sin( t) r cos( t ) 0 H r 2 Das Skalarprodukt on w x w mit sich selbst ergibt den Faktor β 2 : β 2 r 2 2 Der Quotient dieser beiden Ausdrücke ist die Torsion:

5 H τ Für eine Schraubenfeder ist also bei einer festen Auslenkung sowohl die Krümmung als auch die Torsion konstant: Ein kleiner Ausschnitt des Kurenbildes sieht an jeder Stelle gleich aus. Allerdings erändern sich Krümmung und Torsion natürlich, wenn man die Feder dehnt (also H erändert). Torsionskomponente und Biegekomponente Eine Belastung f F e in Richtung der Schraubachse bewirkt in einem beliebigen Punkt der Feder das Moment M w x f r F w (M e) e + (M h) h + (M b) b r2 F e + r H F b. Dies ist die Zerlegung des Moments in die Torsionskomponente und die Biegekomponente. 2

6 Geraden- und Ebenentest Allgemein gilt für jede Raumkure: Die Krümmung erschwindet genau dann, wenn der Beschleunigungsektor in die gleiche Richtung wie der Tangentenektor zeigt, die Richtung der Geschwindigkeit also nicht erändert wird. Ist dies an allen Stellen der Fall, so handelt es sich um eine Gerade. Die Torsion erschwindet genau dann, wenn die Kure in einer Ebene (der Schmiegebene) erläuft. Dies prüft man am einfachsten, indem man die Gültigkeit der Gleichung a x + b y + c z d für geeignete Konstanten a, b, c, d und x x( t ), y y( t ), z z( t ) testet. Beispiel : Eine Ellipse im Raum mit den Halbachsen a und b 1.5 wird beschrieben durch die Parameterdarstellung w( t) cos( t ) + sin( t ) 2 cos( t ) sin( t) 1 2 cos( t ) + sin( t ) 2 Hier ist die Torsion (ohne jede weitere Rechnung!) gleich 0, da die Kure in der Ebene durch 0 mit dem Normalenektor (2,1,-2) liegt: Zur Berechnung der Krümmung 1 κ w x w bestimmen wir w und w : 2 x( t ) + y( t ) 2 z( t ) 0

7 w ( t) sin( t ) + cos( t ) cos( t ) sin( t ) 2 sin( t ) cos( t) 2 cos( t ) + sin( t), w ( t) sin( t) + cos( t ) 2 cos( t ) sin( t ) 2 2 Das Vektorprodukt dieser beiden Vektoren erweist sich nach einer Zwischenrechnung als konstant, womit sich die Lage in einer Ebene bestätigt: p( t ) Die skalare Geschwindigkeit ( t ) w ( t ) ist β( t) und damit ist die Krümmung ( t) κ( t ) cos( t) cos( t) 2 In der Ebene durch die Ellipse erhält man eine erzerrte Astroide als Eolute:

8 Anhang 1: Die Differentiation des begleitenden Dreibeins Sie geschieht mit Hilfe der 1847 on dem französischen Mathematiker F. Frenet aufgestellten Frenetschen Formeln e κ h Geschwindigkeit h κ e + τ b κ Krümmung b τ h τ Torsion Sie sind bei aller Einfachheit und Eleganz grundlegend für die gesamte Differentialgeometrie und erdienen deshalb frenetischen Applaus. Die erste Formel folgt aus den Gleichungen k e / und k κ h, die dritte ist die definierende Gleichung (7). Wir müssen also nur noch die zweite Formel begründen. Unter Beachtung der Produktregel für das Vektorprodukt führt Differentiation on h b x e auf h b x e + b x e κ (b x h) τ (h x e) κ e + τ b. Aus den Frenetschen Formeln folgt (mit einigen Zusatzüberlegungen) der fundamentale Satz, daß die Kure durch die Krümmung und die Torsion bis auf Verschiebung und Drehung ollständig bestimmt ist. (Parametrisiert man nach der Bogenlänge, so ist 1). Im Gegensatz zu Geschwindigkeit und Beschleunigung hängen Krümmung und Torsion einer Kure nur on ihrem Bild, nicht aber on der gewählten Parameterdarstellung ab! Anhang 2: Schneckenkuren Wie wir wissen, ist das dreidimensionale Analogon zu einer logarithmischen Spirale eine Schneckenkure. Sie entsteht, indem während der Drehung auch auch noch eine exponentiell anwachsende Verschiebung entlang der Drehachse stattfindet. Wir wollen begleitendes Dreibein, Krümmung und Torsion einer solchen Schneckenkure bestimmen. w( t ) cos( ω t ) e t sin( ω t) H Die in der Natur auftretenden Spiralkuren auf Schneckengehäusen haben eine leicht abweichende Darstellung, werden aber durch die obigen Funktionen sehr gut angenähert. Die entstehenden Kuren winden sich auf einem Kegelmantel x 2 + y 2 H 2 z 2 0

9 H, ω 6 H 1, ω 10 H 2, ω 0 In Beispiel 2 on Abschnitt 10.4 hatten wir bereits folgende Größen berechnet: die erste und zweite Ableitung der Funktion w: cos( ω t ) sin( ω t ) ω w ( t ) e t sin( ω t ) + cos( ω t ) ω, H die skalare Geschwindigkeit w : den Schmiegnormalenektor p w x w : w ( t) cos( ω t ) 2 sin( ω t ) ω cos( ω t) ω 2 e t sin( ω t ) + 2 cos( ω t) ω sin( ω t) ω 2 H ( t ) e t H ω 2

10 und dessen Länge β : p( t) e ( 2 t ) ω H ( cos( ω t ) + sin( ω t) ω) H ( sin( ω t ) + cos( ω t) ω) 1 + ω 2 Zur Abkürzung setzen wir β( t) e ( 2 t ) ω H ω ω 2 und erhalten δ : ω 2 + 1, ε : H ω 2 ( t) ε e t 2 t. β( t) δ ε ω e ( ) Daraus berechnen wir die Krümmung κ β und den Krümmungsradius ρ 1 κ : κ( t) Für die Torsion brauchen wir die dritte Ableitung δ ω, ρ( t) e t ε 2 e t ε 2 δ ω cos( ω t) sin( ω t ) ω cos( ω t ) ω 2 + sin( ω t) ω w ( t ) e t sin( ω t) + cos( ω t ) ω sin( ω t ) ω 2 cos( ω t) ω H und das Spatprodukt σ (w x w ) w σ( t) e ( t ) H ω ( 1 + ω 2 ) Damit erhalten wir für die Torsion τ σ die Formel 2 β Ergebnis τ( t) Jede der folgenden Größen ist proportional zu e t : Wachstumsgeschwindigkeit Bogenlänge s Krümmungsradius ρ 1 reziproke Torsion τ e t ε e t ε e ( t ) H ω H ω 2 e t ε 2 ω δ e t ε 2 ω H

11 Weitere Rechnungen ergeben den Tangenten-Einheitsektor e w /, den Binormalenektor b 1 p und den Hauptnormalenektor h b x e : β e( t) cos( ω t ) + sin( ω t) ω H cos( ω t ) + H sin( ω t ) ω ε δ ε sin( ω t ) + cos( ω t ) ω b( t) H sin( ω t ) H cos( ω t ) ω,, ε δ ε H δ ε ε h( t ) sin( ω t ) + cos( ω t ) ω δ cos( ω t ) sin( ω t ) ω δ 0 Das Dreibein rutscht die Windungskure entlang:

12 Anhang : Krümmungskugeln Sie berühren die Kure im jeweiligen Punkt und haben ihre Mittelpunkte auf der sogenannten Krümmungsachse. Das ist die senkrecht zur Schmiegebene (also parallel zum Binormalenektor) erlaufende Gerade durch den jeweiligen Krümmungsmittelpunkt. Der Schnitt jeder Krümmungskugel mit der Schmiegebene in einem festen Punkt ergibt den (gleichen!) Krümmungskreis. Zu jedem Kurenpunkt gibt es unter allen Krümmungskugeln eine im Sinne der Taylorapproximation optimale. Sie heißt Schmiegkugel und hat den Mittelpunkt ms w + ρ h + 1 τ ρ b in der on h und b aufgespannten (also zur Schmiegebene senkrechten) Ebene durch w. Für Kuren auf einer Kugeloberfläche ist diese natürlich die Schmiegkugel in jedem Punkt. Betrachten wir abschließend noch einmal die Schraubenlinie. Dort ist ρ konstant. Deshalb ist ρ 0, und der Krümmungsmittelpunkt ist auch Mittelpunkt der Schmiegkugel. Die Schmiegkugel rollt nach unten

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung).

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung). 10.4. Raumkurven Kinematik Wir betrachten eine zweimal differenzierbare Parameterdarstellung w( t) x( t ) y( t ) z( t ) einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Angewandte Geometrie

Angewandte Geometrie Technische Universität München SS 215 Zentrum Mathematik Blatt 4 Prof. Dr. J. Hartl Angewandte Geometrie 1. Ein Kind läuft einen geradlinigen Weg entlang und zieht an einer Schnur ein (seitlich des Weges

Mehr

5 5 5 Abbildung : Raumkurve Abbildung 5: Tangente t existiert nur dann, wenn _ ~x(t ) = ist. Ein Punkt mit f _x; _y; _zg = f; ; g heißt ein regulärer

5 5 5 Abbildung : Raumkurve Abbildung 5: Tangente t existiert nur dann, wenn _ ~x(t ) = ist. Ein Punkt mit f _x; _y; _zg = f; ; g heißt ein regulärer 3 Differentialgeometrische Eigenschaften von Kurven und Flächen Ziel dieses Abschnittes ist es, eine kurze Einführung in die Anfangsgründe der mathematischen Theorie der Raumkurven und Flächen zu geben.

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Technische Mechanik 3

Technische Mechanik 3 Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

f(x) = 1 5 ex c Roolfs

f(x) = 1 5 ex c Roolfs Krümmung Die lineare Näherung von Funktionen durch Geraden (Tangenten) bildet die Grundlage der Differentialrechnung. Quadratische Näherungen durch Parabeln werden bei Reihenentwicklungen betrachtet. Durch

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

11.3. Variablentrennung, Ähnlichkeit und Trajektorien

11.3. Variablentrennung, Ähnlichkeit und Trajektorien 3 Variablentrennung, Ähnlichkeit und Trajektorien Trennung der Veränderlichen (TdV) Es seien zwei stetige Funktionen a (der Variablen ) und b (der Variablen ) gegeben Die Dgl a( ) b( ) b( ) d d läßt sich

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Das Skalarprodukt zweier Vektoren

Das Skalarprodukt zweier Vektoren Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften

Mehr

Flächen und ihre Krümmungen

Flächen und ihre Krümmungen Flächen und ihre Krümmungen Teilnehmer: Levi Borodenko Anna Heinrich Jochen Jacobs Robert Jendersie Tanja Lappe Manuel Radatz Maximilian Rogge Käthe-Kollwitz-Oberschule, Berlin Käthe-Kollwitz-Oberschule,

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

KORREKTURANLEITUNGEN zum Testheft A1

KORREKTURANLEITUNGEN zum Testheft A1 Projekt Standardisierte schriftliche Reifeprüfung in Mathematik KORREKTURANLEITUNGEN zum Testheft A1 A1 Zahlen N Z Q R 0,03-6 π 3 10-3 1 Bemerkung: Die Aufgabe gilt nur dann als richtig gelöst, wenn alle

Mehr

Lokale Extrema von Funktionen mehrerer Variabler

Lokale Extrema von Funktionen mehrerer Variabler Kapitel 11 Lokale Extrema von Funktionen mehrerer Variabler Bemerkung 11.1 Motivation. Bei skalarwertigen Funktionen einer Variablen gibt es notwendige und hinreichende Bedingungen für das Vorliegen von

Mehr

3.3. Drehungen und Spiegelungen

3.3. Drehungen und Spiegelungen 3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

2 Kinematik eines Massenpunkts in 2D und 3D

2 Kinematik eines Massenpunkts in 2D und 3D 2 Kinematik eines Massenpunkts in 2D und 3D Wir wollen die räumliche Bewegung eines Massenpunkts (Fliege im Zimmer, geworfener Stein, Planet im Sonnensystem, Stern in einem dichten Sternhaufen, etc.) mathematisch

Mehr

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 017 Dr. K. Rothe Analysis II für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 1 Aufgabe 1: Aus einem kreisförmigen

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Kurven. Teilnehmer: Immanuel-Kant-Oberschule, Berlin. Gruppenleiter:

Kurven. Teilnehmer: Immanuel-Kant-Oberschule, Berlin. Gruppenleiter: Kurven Teilnehmer: Feli André Dennis Hensel Vasco Lange Sebastian Liscow Lea Nürnberger Sebastian Petzold Leander Rolef Gruppenleiter: Andreas Filler Herder-Oberschule, Berlin Andreas-Oberschule, Berlin

Mehr

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 )

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 ) Geraden und Ebenen Thérèse Tomiska 2. Oktober 2008 1 Geraden 1.1 Parameterdarstellung (R 2 und R 3 ) a... Richtungsvektor der Geraden g t... Parameter X = P + t P Q P Q... Richtungsvektor der Geraden g

Mehr

Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter)

Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Spezielle Kurven Steffen Hoheisel, Lara Knott Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 8/9, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Nachdem wir uns zuletzt im Proseminar mit

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & &

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & & Vektorprodukt Institut für Mathematik Humboldt-Universität zu Berlin 18.02.2004 & 17.02.2005 & 11.07.2005 zu den Vorlesungen Lineare Algebra und analytische Geometrie I (L) im WS 2003/2004, Mathematik

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve.

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve. .. Skalarprodukt Kraftvektoren treten bei vielen physikalisch-technischen Problemen auf; sie greifen an einem Punkt in verschiedenen Richtungen an. Die bekannte Formel Arbeit = Kraft mal Weg muß man dann

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

Übungen mit dem Applet Kurven in Polarkoordinaten

Übungen mit dem Applet Kurven in Polarkoordinaten Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt.

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 6 4. Darstellung der Ebene 4. Die Parametergleichung der Ebene einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 0 2 r uuur

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen. Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung

Mehr

Kurven. Zusammenhänge und Lösungsverfahren. Teilnehmer: Geschwister-Scholl-Gymnasium, Löbau

Kurven. Zusammenhänge und Lösungsverfahren. Teilnehmer: Geschwister-Scholl-Gymnasium, Löbau Kurven Zusammenhänge und Lösungsverfahren Teilnehmer: Lisa Fritsche Lukas Gehring Roland Pugliese Julian Risch Daniel Ritter Andrei Sterin Andreas-Oberschule, Berlin Geschwister-Scholl-Gymnasium, Löbau

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Geometrische Algebra

Geometrische Algebra Geometrische Algebra Florian Jung Institut für Physik, WA THEP Universität Mainz Klausurtagung des Graduiertenkollegs Bullay, 13. September 2006 Florian Jung: Geometrische Algebra 1 / 24 Gliederung Grundlagen

Mehr

Theoretische Physik I: Klassische Mechanik

Theoretische Physik I: Klassische Mechanik Theoretische Physik I: Klassische Mechanik Dirk H Rischke Wintersemester 2009/2010 Inhaltsverzeichnis 1 Mathematische Vorbereitungen 1 11 Vektoren 1 111 Einführung 1 112 Definition eines Vektors 2 113

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015 Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Skalarprodukte (Teschl/Teschl Kap. 13)

Skalarprodukte (Teschl/Teschl Kap. 13) Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Gruppenarbeit Federn, Kräfte und Vektoren

Gruppenarbeit Federn, Kräfte und Vektoren 1 Gruppenarbeit Federn, Kräfte und Vektoren Abzugeben bis Woche 10. Oktober Der geschätzte Zeitaufwand wird bei jeder Teilaufgabe mit Sternen angegeben. Je mehr Sterne eine Aufgabe besitzt, desto grösser

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch.

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch. Übungen zur Ingenieur-Mahemaik III WS 9/ Bla 3 7.. Aufgabe 59: Berechnen Sie die Bogenlänge der Schraubenlinie r γ() := r h mi π und inerpreieren Sie das Ergebnis geomerisch. Lösung: Der Tangenialvekor

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

Übungen zu Oberflächenintegralen Lösungen zu Übung 17

Übungen zu Oberflächenintegralen Lösungen zu Übung 17 Übungen zu Oberflächenintegralen Lösungen zu Übung 17 17.1 Sei die Oberfläche der Einheitskugel : {(x, y, z) IR 3 : x + y + z 1.} Berechnen Sie für f(x, y, z) : a, a IR, a const. das Oberflächenintegral

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Übungsaufgaben Vektoren

Übungsaufgaben Vektoren Kallenrode, www.sotere.uos.de Übungsaufgaben Vektoren 1. Gegeben sind die Einheitsvektoren in Zylinderkoordinaten e ϱ = cos ϕ sin ϕ, e ϕ = sin ϕ cos ϕ und e z = 0 0 0 0 1 und Kugelkoordinaten: sin ϑ cos

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Theoretische Physik I: Klassische Mechanik

Theoretische Physik I: Klassische Mechanik Theoretische Physik I: Klassische Mechanik Dirk H. Rischke Wintersemester 2009/2010 Inhaltsverzeichnis 1 Mathematische Vorbereitungen 1 1.1 Vektoren..................................... 1 1.1.1 Einführung...............................

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr