Physikalisches Pendel
|
|
|
- Ludo Solberg
- vor 8 Jahren
- Abrufe
Transkript
1 Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft. Theorie des physikalischen Pendels Die folgende Darstellung zeigt ein physikalisches Pendel mit allen wichtigen Punkten: Abbildung 1: Darstellung eines physikalischen Pendels Die resultierende Kraft lässt sich linear wie folgt berechnen: Betrachtet man die Rotation ergibt sich: F = ma = mẍ = m d2 x dt 2 M = Jα = J ϕ M = r F M = rf sin ϕ Setzt man die erhaltenen Ausdrücke gleich ergibt sich für die rücktreibende Kraft: M = sf g sin ϕ = J ϕ smg sin ϕ = J ϕ ϕ + smg J sin ϕ = 0 Für kleine ϕ ist dabei sin ϕ ϕ. Damit ergibt sich folgende Gleichung: ϕ + smg J ϕ = 0 Vergleicht man diese Formel mit der HDG ẍ + ω 0 2 x = 0 1
2 findet man: ω 0 2 = smg J = 4π2 T 2 und daraus: J smg Vergleicht man diese Periodendauer mit der des mathematischen Pendels findet man mit: J = r 2 dm = L 2 m = s 2 m durch einsetzen: ms 2 s smg = 2π g = 2π l g Vergleicht man das physikalische Pendel: mit dem mathematischen Pendel: findet man: J T P = 2π smg l T M = 2π g T P = T M, falls l = J sm = λ λ heisst reduzierte Pendellänge. Zu jedem Aufhängepunkt gibt es einen weiteren Aufhängepunkt auf der Gerade durch den Schwerpunkt, so dass das neue Pendel die gleiche Periodendauer hat. Dieses Pendel heisst Reversionspendel. Hat der ursprüngliche Punkt den Abstand s vom Schwerpunkt und der neue Aufhängepunkt den Abstand a so gilt: λ = s + a Es gilt: Aus folgt: J = J S + ms 2 λ = J ms = J S ms + ms2 ms = J S ms + s a = λ s = J S ms Schwingt man nun den Körper um A* so gilt: λ = J ma = J S ma + ma2 ma = J S m J S ms + (λ s) = s + λ s = λ Daraus lässt sich folgern, dass die beiden Periodendauern gleich sind. 2
3 Für die zu bestimmenden Grössen haben wir jetzt folgende Formeln: J = T 2 mgs 4π 2 J S = J ms 2 λ = J ms a = λ s Versuchsaufbau Für die praktische Messung einiger Periodendauern wurde eine Papierscheibe als Pendel verwendet. Ein Foto des Versuchsaufbau finden Sie auf Seite 6. Vorgehen Zunächst wurde der Mittelpunkt der Kreisscheibe mit Zirkel und Lineal bestimmt. Danach wurde ein Nagel durch das Zentrum gestossen und die Scheibe mit Hilfe von Schleifpapier ausgewuchtet, bis der Schwerpunkt im Zentrum lag. Nach dem Auswuchten wurde die Scheibe vermessen und die Resultate aufgezeichnet. Im Einzelnen waren das folgende Werte: Radius R Dicke d 8cm 0.88mm Masse m 11.8g Danach wurden für verschiedene Abstände vom Schwerpunkt jeweils zweimal 20 Periodendauern gemessen und daraus schlussendlich das Reversionspendel errechnet und ebenfalls vermessen. Folgende Werte wurden aufgezeichnet und berechnet: s (mm) 20T (s) 20T (s) T (s) J (kgm 2 ) J S (kgm 2 ) λ (mm) a (mm) 20T a (s) 20T a (s) T a (s) Wie man sieht stimmt die Periodendauer des Reversionspendel sehr gut mit der Periodendauer des originalen Pendels überein. Dies spricht für eine sehr genaue Messung. Nun wird noch das theoretische Massenträgheitsmoment hergeleitet und dann mit dem Mittelwert des aus den Daten gewonnenen Trägheitsmomentes verglichen. Das Massenträgheitsmoment eines Körpers lässt sich wie folgt berechnen: J = r 2 dm 3
4 Unsere Scheibe betrachten wir als einen sehr flachen Zylinder. Also folgt: dm = ρdv dv = hda da = 2πrdr Damit kann man das Differential über die Masse in eines über den Radius wie folgt umschreiben: J = R 0 r 2 ρh2πrdr = 2πhρ R Aus der Gesamtmasse M kann man die Dichte ρ wie folgt berechnen: Das Massenträgheitsmoment beträgt somit: J S = πh R4 2 0 ρ = M V = M πr 2 h M πr 2 h = 1 2 MR2 r 3 dr = 2πhρ R4 4 Theoretisch ergibt sich also: Praktisch gemessen wurde: J T = kgm 2 J P = kgm 2 Die Abweichung ist also sehr klein und sicher innerhalb der Fehlertoleranz. Diagramme Verschiedene Messwerte wurden in Abhängigkeit von s in einem Diagramm dargestellt. Hier finden Sie die Herleitung der Ausgleichskurven für diese Diagramme. Massenträgheitsmoment einer Kreisscheibe: J = 1 2 mr2 Periodendauer J smg J S + ms 2 smg J S smg + s g J der Kreisscheibe einsetzen: R 2 2sg + s g Das Diagramm ist zu finden auf Seite 7. 4
5 Verkürzte Pendellänge λ = J ms λ = J S ms + ms2 ms λ = J S ms + s J der Kreisscheibe einsetzen: λ = R2 2s + s Das Diagramm ist zu finden auf Seite 8. Reversionspendel a = λ s a = R2 2s Das Diagramm ist zu finden auf Seite 9. Quellen Die Formeln und theoretischen Grundlagen stammen aus folgenden Werken: orell füssli: Formeln und Tafeln, 9. Auflage (2001) 5
6 Abbildung 2: Der Versuchsaufbau 6
7 Abbildung 3: Die Periodendauer in Abhängigkeit von s 7
8 Abbildung 4: Die verkürzte Pendellänge in Abhängigkeit von s 8
9 Abbildung 5: Das Reversionspendel in Abhängigkeit von s 9
Versuch P1-20 Pendel Vorbereitung
Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung
Versuch dp : Drehpendel
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung
S1 Bestimmung von Trägheitsmomenten
Christian Müller Jan Philipp Dietrich S1 Bestimmung von Trägheitsmomenten Versuch 1: a) Versuchserläuterung b) Messwerte c) Berechnung der Messunsicherheit ud u Versuch 2: a) Erläuterungen zum Versuchsaufbau
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )
Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,
3. Versuch M2 - Trägheitsmomente. zum Physikalischen Praktikum
HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR PHYSIK 3. Versuch M2 - Trägheitsmomente zum Physikalischen Praktikum Bearbeitet von: Andreas Prang 504337 Jens Pöthig Abgabe in der Übung am 10.05.2005 Anlagen:
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
Mechanische Schwingungen Aufgaben 1
Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und
Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund
Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu
Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den
M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und
1.2 Schwingungen von gekoppelten Pendeln
0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken
Experimentalphysik für ET. Aufgabensammlung
Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe
Praktikum I PP Physikalisches Pendel
Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische
3.2 Das physikalische Pendel (Körperpendel)
18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild
Vektorrechnung in der Physik und Drehbewegungen
Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen
P1-12,22 AUSWERTUNG VERSUCH RESONANZ
P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,
Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung
Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,
2. Klausur zur Theoretischen Physik I (Mechanik)
2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie
Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3
Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene
Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007)
Rotationskörper Ronny Harbich 1. August 2003 geändert 24. Oktober 2007) Inhaltsverzeichnis 1 Einführung 3 2 Anschauliche Herleitung 4 2.1 Darstellungen................................. 4 2.2 Gleichungen
Versuch M1 für Nebenfächler mathematisches Pendel
Versuch M1 für Nebenfächler mathematisches Pendel I. Physikalisches Institut, Raum HS126 Stand: 19. April 2016 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner
Elastizität und Torsion
INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den
Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung
Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.
Physikalische Anwendungen II
Physikalische Anwendungen II Übungsaufgaben - usterlösung. Berechnen Sie den ittelwert der Funktion gx = x + 4x im Intervall [; 4]! ittelwert einer Funktion: f = b fxdx b a a ḡ = 4 x + 4x dx = [ ] 4 4
Physikalisches Anfaengerpraktikum. Trägheitsmoment
Physikalisches Anfaengerpraktikum Trägheitsmoment Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Montag, 1. März 005 email: [email protected] [email protected] 1 1. Einleitung
Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X
Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll
Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006
Physikprotokoll: Fehlerrechnung Martin Henning / 736150 Torben Zech / 7388450 Abdurrahman Namdar / 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitungen 3 3 Messungen und Auswertungen
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
Resonanz Versuchsvorbereitung
Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie
M4 Oberflächenspannung Protokoll
Christian Müller Jan Philipp Dietrich M4 Oberflächenspannung Protokoll Versuch 1: Abreißmethode b) Messergebnisse Versuch 2: Steighöhenmethode b) Messergebnisse Versuch 3: Stalagmometer b) Messergebnisse
3. Versuch: Fadenpendel
Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 3. Versuch: Fadenpendel In diesem Versuch werden Sie mit den mechanischen Grundlagen vertraut gemacht. Anhand eines Fadenpendels
Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik
Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in
Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.
Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu
Übungsblatt 3 - Lösungen
Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.
PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005
PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende
Trägheitsmoment, Steiner scher Satz. Torsionspendel zum Nachweis des Steiner schen Satzes Version vom 6. September 2012
Trägheitsmoment, Steiner scher Satz Torsionspendel zum Nachweis des Steiner schen Satzes Version vom 6. September 01 Inhaltsverzeichnis 1 Drehscheiben-Torsionspendel 1 1.1 Grundlagen...................................
1. Klausur in K2 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit
120 Gekoppelte Pendel
120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei
Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60
D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht
mit 0 < a < b um die z-achse entsteht.
Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit
Spezialfall m 1 = m 2 und v 2 = 0
Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +
Versuch M2 für Nebenfächler Gekoppelte Pendel
Versuch M2 für Nebenfächler Gekoppelte Pendel I. Physikalisches Institut, Raum HS102 Stand: 9. Oktober 2015 generelle Bemerkungen bitte Versuchsaufbau (links/mitte/rechts) angeben bitte Versuchspartner
Die Entwicklung des Erde-Mond-Systems
THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion
( ) ( ) ( ) ( ) 9. Differentiale, Fehlerrechnung
44 9. Differentiale, Fehlerrechnung Bei den Anwendungen der Differentialrechnung spielt der geometrische Aspekt (Tangentensteigung) eine untergeordnete Rolle. Ableitungen sind deshalb wichtig, weil sie
Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte
1 Aufgaben FB Maschinenbau Institut für Mechanik FG Maschinendynamik Prof. Dr.-Ing. H. Irretier Dipl.-Ing. A. Stein Klausur Schwingungstechnik 0. September 011 Name Vorname Matr. - Nr. Punkte =50 Aufgabe
Aus der Schwingungsdauer eines physikalischen Pendels.
2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es
Raum- und Flächenmessung bei Körpern
Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-
Versuch 4 - Trägheitsmoment und Drehimpuls
UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.
TR - Transformator Blockpraktikum - Herbst 2005
TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort
Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015
Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum
Versuch 14 Mathematisches Pendel
Versuch 14 Mathematisches Pendel II Literatur W. Walcher, Praktikum der Physik, B.G.Teubner Stuttgart. Standardwerke der Physik: Gerthsen, Bergmann-Schäfer, Tipler. Homepage des Praktikums: http://www.physi.uni-heidelberg.de/einrichtungen/ap/
Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen
Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit
Physikalisches Praktikum 3. Semester
Torsten Leddig 16.November 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Widerstandsmessung - 1 Aufgaben: 1. Brückenschaltungen 1.1 Bestimmen Sie mit der Wheatstone-Brücke
Übungsaufgaben zu Kapitel 7 und 8
Hochschule für Technik und Wirtschaft Dresden Sommersemester 016 Fakultät Informatik/Mathematik Prof. Dr.. Jung Übungsaufgaben zu Kapitel 7 und 8 Aufgabe 1: Für die rennweite einer einfachen, bikonvexen
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und
Protokoll Grundpraktikum I: M3 - Elastizität und Torsion
Protokoll Grundpraktikum I: M3 - Elastizität und Torsion Sebastian Pfitzner. Mai 13 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (5577) Arbeitsplatz: Platz 4 Betreuer: Jacob Michael Budau Versuchsdatum:
Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)
sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden [email protected]. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen
8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels
8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung
Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen.
Anwendungen der Integralrechnung 1 1 Trägheitsmomente 1. 1 Einleitung, Definition Körper fallen im Vakuum gleich schnell und sie gleiten auf einer reibungsfreien schiefen Ebene gleich schnell. Sie rollen
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind
IU1. Modul Universalkonstanten. Erdbeschleunigung
IU1 Modul Universalkonstanten Erdbeschleunigung Das Ziel des vorliegenden Versuches ist die Bestimmung der Erdbeschleunigung g aus der Fallzeit eines Körpers beim (fast) freien Fall durch die Luft. Î
Wirkungsquantum Ein Physikprotokoll
Wirkungsquantum Ein Physikprotokoll Physik I für KEB, TFH Berlin 30. Juni 2006 Issa Kenaan 739039 Torben Zech 738845 Martin Henning 736150 Abdurrahman Namdar 739068 Inhaltsverzeichnis 1 Versuchsaufbau
Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj
Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3
schiefer Zylinder Ellipsen
schiefer Zylinder Ellipsen 1. Einleitung...Seite 2 2. Zielsetzung...Seite 2 3. Lernziele...Seite 2 4. Definitionen - Formeln...Seite 3 5. Berechnungen...Seite 4 6. Ellipsenkonstruktion...Seite 5 7. Schnittflächen...Seite
Tutorium Physik 2. Rotation
1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a
Kapitel D : Flächen- und Volumenberechnungen
Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung
Physik I Übung 10 - Lösungshinweise
Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der
Übungsblatt 06 Grundkurs IIIb für Physiker
Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, ([email protected]) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation
Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9
Lösungen S. 167 Nr. 6 Schätzung: Es können ca. 5000 Haushaltstanks gefüllt werden. Man beachte die Dimensionen der Tanks: Der Haushaltstank passt in ein kleines Zimmer, der große Öltank besitzt jedoch
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem
Versuchsauswertung: P1-26,28: Aeromechanik
Praktikum Klassische Physik I Versuchsauswertung: P1-26,28: Aeromechanik Christian Buntin Jingfan Ye Gruppe Mo-11 Karlsruhe, 18. Januar 21 [email protected] [email protected] Inhaltsverzeichnis
Physik III - Anfängerpraktikum- Versuch 353
Physik III - Anfängerpraktikum- Versuch 353 Sebastian Rollke (103095) und Daniel Brenner (105292) 21. September 2005 Inhaltsverzeichnis 1 Einleitung und Zielsetzung 2 2 Theorie 2 2.1 Der Entladevorgang..................................
Übungsblatt 13 Physik für Ingenieure 1
Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen
Kinetik des starren Körpers
Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.
Versuch A9 - Strahlung. Abgabedatum: 28. Februar 2008
Versuch A9 - Strahlung Sven E Tobias F Abgabedatum: 28. Februar 2008 Inhaltsverzeichnis 1 Thema des Versuchs 3 2 Physikalischer Zusammenhang 3 2.1 Raumwinkel.............................. 3 2.2 Strahlungsgrößen...........................
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten
Lösung der Aufgabe ALT 1) aus 6C 18 = 36 folgt C = 9. Daher gilt: Nullstellen:
Lösung der Aufgabe ALT 1) a) y = f(x) = f (x)dx = (x 2 2x 3)dx = x3 3 x2 3x + C 3 ( x3 3 3 x2 3x + C) dx = [ x4 12 x3 3 3x2 x=3 2 + Cx] x= 3 aus 6C 18 = 36 folgt C = 9. Daher gilt: y = f(x) = x3 3 x2 3x
Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten
Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden
3. Die Divergenz und die Quellen des elektrischen Feldes
3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,
Brückenschaltung (BRÜ)
TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Brückenschaltung (BRÜ) Inhaltsverzeichnis 9. Januar 2007 1. Einleitung... 2 2. Messung ohmscher und komplexer Widerstände... 2 3. Versuchsauswertung...
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)
Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1
Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung
Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen
Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine
Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 4. Versuch: Atwoodsche Fallmaschine 1 Einführung Wir setzen die Untersuchung der beschleunigten Bewegung in diesem Versuch fort.
Versuch P1-83 Ferromagnetische Hysteresis Auswertung
Versuch P1-83 Ferromagnetische Hysteresis Auswertung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuchsdurchführung: Montag, 24.10.2011 1 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer
Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist
Abitur Mathematik Bayern 201 Abitur Mathematik: Bayern 201 Aufgabe a 1. SCHRITT: VORÜBERLEGUNG Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist der Ursprung). Dabei ist PC = PB + BC
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt
Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =
Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...
Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung
Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen
3ω Messung an dünnen Schichten Eine Unsicherheitsanalyse
Bayerisches Zentrum für Angewandte Energieforschung e.v. 3ω Messung an dünnen Schichten Eine Unsicherheitsanalyse S. Rausch AK Thermophysik, Graz 2012 3ω METHODE - PRINZIP Messverfahren zur Bestimmung
