TR - Transformator Blockpraktikum - Herbst 2005
|
|
|
- Charlotte Wetzel
- vor 9 Jahren
- Abrufe
Transkript
1 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort In diesem Versuch untersuchten wir das Verhalten eines Transformators in belastetem und unbelastetem Zustand. Theoretische Grundlagen. Leistung von Wechselströmen Für die Leistung P gilt allgemein P (t) = U(t)I(t) Wir interessieren uns als Vebraucher vor allem für die über eine Periode T abgegebene mittlere Leistung P, es ist P = T T U(t)I(t)dt Für den Fall sinusförmiger Wechselspannung erhält man P = U I wobei I und U die Amplituden der Stromstärke bzw. Spannung sind. Es lassen sich die effektive Spannung U eff und die effektive Stromstärke I eff defninieren mit I eff = I, U eff = U. Idealer unbelasteter Transformator Das Modell des idealen Transformators besteht aus zwei Spulen, die keinen ohmschen Innenwiderstand besitzen, und die um einen gemeinsamen Eisenkern gewickelt sind, wobei an der zweiten Spule kein Verbraucher angeschlossen ist. Legt man an den Transformator bzw. an die Primärspule mit n Windungen eine Wechselspannung mit Amplitude U an, so kompensiert die Spule diese durch Induktion einer entsprechenden Gegenspannung. Dadurch ändert sich der Fluss P hi im Eisenkern Φ = U n Diese Flussänderung erzeugt wiederum in der Sekundärspule der Induktivität L mit n Windungen eine Spannung U wobei also gilt U = n Φ U U = n n () Für die Stromstärke I (t), die durch die Primärspule fliesst, gilt mit der dort induzierten Gegenspannung U ind und mit dem Ansatz I (t) = I e i(ωt+ϕ) erhält man U ind (t) = L di (t) dt U e iωt = ωli e i(ωt+ϕ π ) und damit also Da Stromstärke und Spannung um π I (t) = U ωl ei(ωt+ π ) phasenverschoben sind fällt auch an der Primärspule keine Wirkleistung ab. Tobias Müller, Alexander Seizinger
2 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5.3 Belasteter Transformator Sei im folgenden die Sekundärspule mit einem ohmschen Widerstand R belastet; dann fliesst auf der Sekundärseite ein Strom (t) mit (t) = U (t) R Die dabei anfallende Leistung P = U,eff,eff muss von der Primärseite geliefert werden, also und damit mit Gleichung.4 Leistungsanpassung P = U,eff I,eff cos ϕ = P = U,eff,eff I,eff,eff cos ϕ = n n () Bisher haben wir nur idealisierte Fälle ohne Innenwiderstände von Spannungsquellen und Bauteilen betrachtet. In der Praxis hat jedoch jeder Generator einen Innenwiderstand R i. In Verbindung mit einem ohmschen Verbraucher R v ergibt sich der Gesamtwiderstand R als Reihenschaltung zu R = R i + R v Somit fliesst bei einer Spannung U ein im Vergleich zum idealisierten Fall reduzierter Strom I mit Die am Vebraucher abgegebene Leistung P beträgt damit I = U R = U R i + R v ( ) P = U I = R v U = R v R i + R v Um nun zu zeigen, dass die abgegebene Leistung für R v = R i maximal wird bestimmen wir dp (R v) = U dr (R i R v) v (R i + R v) 3 (3) und finden mit der Bedingung dp (R v) dr v = ein Maximum für R v = R i. Setzen wir diesen Wert in Gleichung 3 ein, so ergibt sich für die Maximalleistung P max 3 Auswertung 3. Übersetzungsverhältnis und Phasenwinkel Für das Übersetungsverhältnis ü := n n = U U P max = U 4R v erhalten wir mit unseren Messungen (Mittelwert und Standardabweichung): ü =. ±. Um den Phasenwinkel zu erhalten, muss dieser aus der gemessenen Zeitdifferenz errechnet werden. Da wir eine Frequenz von f = 5Hz hatten, gilt: Mit unseren Messwerte erhalten wir damit einen Phasenwinkel: ϕ = t 5Hz 36 ϕ = (63.9 ±.9) Tobias Müller, Alexander Seizinger
3 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 3. belasteter Transformator U U (int.) I I (int.) φ Spannung U [V] Strom [A/] Phasenverschiebung φ [Grad] Sekundaerstrom [A] Da der Transformator auch einen Innenwiderstand R i,s hat, fällt die Spannung U bei zunehmender Belastung. Für den Innenwiderstand R i,s gilt: R i,s = U (I = A) = 3.99V =.46Ω (4) I max.6a Im Leerlauf gilt für den Strom I = I ( = ) = 6.5mA. Damit gilt für Blindstrom I B und den Wirkstrom I W : I B = I sin ϕ = 5.84mA I W = I cos ϕ =.86mA 3.3 Zusammenhang zwischen Primär- und Sekundärstrom Die Ströme I und verhalten sich im Gegenteil zu den Spannung U und U antiproportional zum Übersetzungsverhältnis ü. Es gilt also: = ü = n n unbelastet ohmscher Verbraucher I I Der Fluss Φ ist mit dem Primärstrom I über die Induktivität L gekoppelt. Es gilt also: Φ = LI Wir haben eine Spannung U Φ gemssen, welche proportional zum Fluss Φ ist. Daher müsste also I Φ U Φ sein. Tobias Müller, Alexander Seizinger 3
4 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5.3 Messwerte Ausgleichsgerade.. U Φ [V] Primaerstrom I [A] Diese theoretische Aussage läßt sich an den Messwerten (trotz keinem idealen Transformator) gut beobachten. 3.4 Wirk- und Blindstrom im Primärkreis Zeigerdiagramm bei = 6mA Zeigerdiagramm bei =.4mA I B I I B I Strom [A/I ] I W Strom [A/I ] I W Strom [A/I ] Strom [A/I ] Tobias Müller, Alexander Seizinger 4
5 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober Wirkungsgrad Wirkungsgrad Sekundaerleistung P [W] Der Transformator scheint also bei einer Sekundärleistung von P max.94w seinen maximalen Wirkungsgrad η max.68 zu erreichen. 3.6 Leistungsanpassung.4 Messwerte Ausgleichskurve. Sekundaerleistung P [W] Widerstand R [Ω] Mit einer Extrapolation der Messwerte erhalten wir analog zu 4 den Innenwiderstand: R i = 5.34V.7A = 4.99Ω Die Ausgleichskurve hat ihr Maximum bei R a = 5.3Ω. Die Leistungsanpassung (R a = R i ) sieht man also sehr schön bestätigt. Da die Quelle auf der Primärseite einen Innenwiderstand R iq = 5Ω hatte, müsste Vergleich man dies mit 4 stimmt der Wert sehr gut überein. R i = R iq ü =, 5Ω Tobias Müller, Alexander Seizinger 5
TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007
TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste
TR - Transformator Praktikum Wintersemester 2005/06
TR - Transformator Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr Torsten Hehl Tübingen, den 5. November 5 Theorie Leistung in Stromkreisen Für die erbrachte Leistung P eines
Praktikum II TR: Transformator
Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein [email protected] Florian Jessen [email protected] 30. März 2004 Made with L A TEX and Gnuplot Praktikum
Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:
Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator
Grundbegriffe Spule im Wechselstromkreis magnetische Induktion Induktionsfluss Induktionsgesetz Zeigerdiagramm Blindstrom Wirkstrom
Physikalische Grundlagen Grundbegriffe Spule im Wechselstromkreis magnetische Induktion Induktionsfluss Induktionsgesetz Zeigerdiagramm Blindstrom Wirkstrom 1. Aufbau des s Der dient zur verlustarmen Änderung
V11 - Messungen am Transformator
V11 - Messungen am Transformator Michael Baron, Frank Scholz 21.12.2005 Inhaltsverzeichnis 1 Aufgabenstellung 1 2 Physikalischer Hintergrund 1 3 Versuchsaufbau 3 4 Versuchsdurchführung 3 4.1 Leerlauf-Spannungs-Übersetzung................
IV. Elektrizität und Magnetismus
IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem
Physikalisches Grundpraktikum E6 - T ransformator. E6 - Transformator
E6 - Transformator Aufgabenstellung: Ermitteln Sie das Strom- und Spannungsübertragungsverhältnis eines Transformators für zwei verschiedene Sekundärwindungszahlen mittels Leerlauf- und Kurzschlussschaltung.
Versuch 16 Der Transformator
Physikalisches A-Praktikum Versuch 16 Der Transformator Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 10.09.2012 Unterschrift: E-Mail: [email protected]
i 2 (t) = 400 V 100 V = 4 f = 50 Hz A Fe 1. Wie groß müssen unter der Voraussetzung sinusförmiger Spannungen die ober- und unterspannungsseitigen
Aufgabe Ü1 Aus einem vorhandenen Blechkern mit dem wirksamen Eisenquerschnitt A Fe 80 cm soll ein Wechselstromtransformator mit einer Nennleistung von S N 5 kva und dem Übersetzungsverhältnis ü U 1 /U
3.5. Prüfungsaufgaben zur Wechselstromtechnik
3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung
Physikalisches Grundpraktikum für Chemiker/innen. Magnetismus und Transformator
Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Chemiker/innen Magnetismus und Transformator WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/
Wechselstromwiderstände
Elektrizitätslehre und Schaltungen Versuch 29 ELS-29-1 Wechselstromwiderstände 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre 1.2 Wechselspannung, Wechselstrom, Frequenz,
Induktion. Bewegte Leiter
Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor
Protokoll: Grundpraktikum II E3 - Transformator
Protokoll: Grundpraktikum II E3 - Transformator Sebastian Pfitzner 17. Januar 2014 Durchführung: Anna Andrle (550727), Sebastian Pfitzner (553983) Arbeitsplatz: Platz 2 Betreuer: Stefan Weidemann Versuchsdatum:
Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds
Der Transformator Aufbau Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Wirkungsweise Zwei Spulen teilen sich den magnetischen Fluss Primärspule : Es liegt eine
Übungen zu Experimentalphysik 2
Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld
1 1. Hausaufgabe Hausaufgabe. 1.1 Buch Seite 45, Aufgabe Buch Seite 49, Aufgabe HAUSAUFGABE 1
1 1. HAUSAUFGABE 1 1 1. Hausaufgabe 1.1 Buch Seite 45, Aufgabe 1 Zwei Widerstände von 10Ω und 30Ω werden in eihe geschaltet und die Spannung 10V angelegt. a) Wie verhalten sich die Teilspannungen an den
Physikalisches Grundpraktikum für Physiker/innen Teil I. Magnetismus
Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil I Magnetismus WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/
Physikalisches Grundpraktikum. Versuch 16. Der Transformator. Ralph Schäfer
Physikalisches Grundpraktikum Versuch 16 Der Transformator Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: [email protected] [email protected] Tutor: Gruppe:
Grundpraktikum E3 Transformatoren
Grundpraktikum E3 Transformatoren Julien Kluge 3. Dezember 2015 Student: Julien Kluge (564513) Partner: Fredrica Särdquist (568558) Betreuer: M.Sc. E. Panofski Raum: 216 Messplatz: 4 INHALTSVERZEICHNIS
Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R.
Wechselspannung Eine zeitlich sich periodisch bzw. sinusförmig verändernde Spannung heißt Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem
Bewegter Leiter im Magnetfeld
Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1
IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2
IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2
Grundpraktikum der Physik. Versuch Nr. 25 TRANSFORMATOR. Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators
Grundpraktikum der Physik Versuch Nr. 25 TRANSFORMATOR Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators 1 1. Einführung Für den Transport elektrischer Energie über weite Entfernungen
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 23. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 23. 06.
(2 π f C ) I eff Z = 25 V
Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung
FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Wechselstromtechnik
4 4. Wechselgrößen Nimmt eine Wechselgröße in bestimmten aufeinander folgenden Zeitabständen wieder denselben Augenblickswert an, nennt man sie periodische Wechselgröße. Allgemeine Darstellung periodischer
Wechselspannungsgrößen. Ueff ωt. Die Stärken harmonisch verlaufender Spannungen können auf mehrere Arten angegeben werden
Wechselstromnetze Wechselspannungsgrößen Ueff -π/2 π/2 π ωt Die Stärken harmonisch verlaufender Spannungen können auf mehrere Arten angegeben werden Zeigerdiagramm: Reihenschwingkreis Im ( U ) ϕi = 0 R
Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis
Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis Marc Ganzhorn Tobias Großmann Bemerkung Alle in diesem Versuch aufgenommenen Hysteresis-Kurven haben wir gesondert im Anhang an diese Auswertung
m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat?
Aufgabe 1: Widerstand einer Leitung In einem Flugzeug soll eine Leitung aus Kupfer gegen eine gleich lange Leitung aus Aluminium ausgetauscht werden. Die Länge der Kupferleitung beträgt 40 m, der Durchmesser
Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld
37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld
Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min
Abitur 009 hysik Klausur Hannover, 0403008 arei K Semester Bearbeitungszeit: 90 min Thema: Spule, Kondensator und Ohmscher Widerstand im Wechselstromkreis Aufgabe eite begründet her: Für den Gesamtwiderstand
Physikalisches Grundpraktikum für Physiker/innen Teil I Magnetismus
Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil I Magnetismus Grundpraktikum Physik: 0Hhttp://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen
Vorbereitung zum Versuch
Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe
Cusanus-Gymnasium Wittlich. Physik Die Induktion. Die Kraft auf einen stromdurchflossenen Leiter
Die Kraft auf einen stromdurchflossenen Leiter I F B - + I B F Grundversuch 1 zur Induktion lat: inductio -Einführung Bewegt man einen Magneten (ein Magnetfeld) relativ zu einer Spule (zu einem Leiter),
Elektrotechnische Anwendungen: Wechselstromgenerator
Elektrotechnische Anwendungen: Wechselstromgenerator Das Faradaysche Induktionsgesetz bildet die Grundlage für die technische Realisierung von elektrischen Motoren und Generatoren. Das einfachste Modell
Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.
7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen
Wechselstromwiderstände
Wechselstromwiderstände Wirkwiderstand, ideale Spule und idealer Kondensator im Wechselstromkreis Wirkwiderstand R In einem Wirkwiderstand R wird elektrische Energie in Wärmeenergie umgesetzt. Er verursacht
Elektrische Messverfahren
Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand
Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016
Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen
Praktikum EE2 Grundlagen der Elektrotechnik Teil 2
Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Name: Studienrichtung: Versuch 6 Messen der magnetischen Flussdichte Versuch 7 Transformator Versuch 8 Helmholtzspulen Versuch 9 Leistungsmessung Testat
Transformator und Gleichrichtung
Studiengang Elektrotechnik/Informationstechnik Labor Elektrotechnik Labor 3 13. November 001 Revision 1 Transformator und Gleichrichtung Martin Strasser, 88 741 Patrick Kulle, 88 545 Inhalt 1 Vorbereitung,
Hochspannungsleitung. Vorbereitungszeit. 10 Minuten
Schwierigkeitsgrad Vorbereitungszeit Durchführungszeit mittel 10 Minuten 20 Minuten Prinzip Mithilfe zweier Hochspannungstransformatoren können die Fernleitungsverluste zwischen Kraftwerk und Verbraucher
2. Parallel- und Reihenschaltung. Resonanz
Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U
Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als
E8 Magnetische Induktion Die Induktionsspannung wird in Abhängigkeit von Magnetfeldgrößen und Induktionsspulenarten untersucht und die Messergebnisse mit den theoretischen Voraussagen verglichen.. heoretische
Wechselstromkreis. lässt sich mit der Eulerschen Beziehung. darstellen als Realteil einer komplexen Größe:
E04 Wechselstromkreis Es soll die Frequenzabhängigkeit von kapazitiven und induktiven Widerständen untersucht werden. Als Anwendung werden Übertragungsverhältnisse und Phasenverschiebungen an Hoch-, Tief-
Versuchsprotokoll. Kondensator und Spule im Wechselstromkreis. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 9
Montag, 17.11.1997 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 9 Kondensator und Spule im Wechselstromkreis 1 Inhaltsverzeichnis 1 Problemstellung
Wechselstromkreis E 31
E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde
17. Wechselströme. me, 18.Elektromagnetische Wellen. Wechselstromtransformation. = = (gilt bei Ohm schen Lasten
Wechselstromtransformation Idee: Anwendung der Induktion und der Feldführung in einem Eisenkern zur verlustarmen Transformation der Amplitude von Wechselspannungen Anwendung (n >>n 1 ): Hochspannungserzeugung
WECHSELSTROM. 1. Messung von Wechselspannungen, Blindwiderstand. a) Maximalspannung. Geräte: Netzgerät Ossi Spannungsmessgerät (~)
WECHSELSTROM 1. Messung von Wechselspannungen, Blindwiderstand a) Maximalspannung Spannungsmessgerät (~) Miss 3 unterschiedliche Spannungen der Wechselspannungsquelle (
EO - Oszilloskop Blockpraktikum Frühjahr 2005
EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem
Magnetischer Kreis eines Rechteckkernes
Magnetischer Kreis eines Rechteckkernes Seite 1 von 21 Führer, Heidemann, Nerreter, Grundgebiete der Elektrotechnik, Band 1 R 1 und R 2 sind die ohmschen Widerstände der Wicklungen, Kupfer- oder Aluminium-Leiter
Universität Ulm Fachbereich Physik Grundpraktikum Physik
Universität Ulm Fachbereich Physik Grundpraktikum Physik Versuchsanleitung Transformator Nummer: 25 Kompiliert am: 19. Dezember 2018 Letzte Änderung: 19.12.2018 Beschreibung: Webseite: Bestimmung der physikalischen
Uebungsserie 4.2 Der Transformator
15 September 017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 4 Der Transformator Aufgabe 1 Netzwerktransformation Ein idealer Übertrager mit dem Spannungsübersetzungsverhältnis = U 1 U ist sekundärseitig
Vorbereitung: elektrische Messverfahren
Vorbereitung: elektrische Messverfahren Marcel Köpke 29.10.2011 Inhaltsverzeichnis 1 Ohmscher Widerstand 3 1.1 Innenwiderstand des µa Multizets...................... 3 1.2 Innenwiderstand des AVΩ Multizets.....................
Lösungen. Lösungen LEVEL LEVEL. Arbeitsform. Übungsaufgabe 1 Thema: Transformator (Lösungen s. Rückseite)
Übungsaufgabe 1 Wahr oder falsch? Kreuze an. N 1 N 2 I 1 I 2 wahr falsch 250 1000 1,2 A 4,8 A 1000 250 1,2 A 4,8 A 250 500 0,9 A 450 ma 750 15000 20 ma 0,4 A 300 900 600 ma 3,6 A Wahr oder falsch? Kreuze
RE - Elektrische Resonanz Praktikum Wintersemester 2005/06
RE - Elektrische Resonanz Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 8. November 5 Einführung Ziel dieses Versuches ist es, elektrische Resonanz
Magnetisch gekoppelte Kreise Teil 1
Magnetisch gekoppelte Kreise Teil 1 Mitteilungen aus dem Institut für Umwelttechnik Nonnweiler - Saar Dr. Schau DL3LH Transformatoren bei Hochfrequenz Teil 1 Vorwort Wicklungs-Transformatoren bei Hochfrequenz
Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom
Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen
GRUNDLAGEN DER ELEKTROTECHNIK
GRUNDLAGEN DER ELEKTROTECHNIK Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand X C eines Kondensators
/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.
Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die
Versuch 14 Wechselstromwiderstände
Physikalisches A-Praktikum Versuch 14 Wechselstromwiderstände Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 18.09.2012 Unterschrift: E-Mail: [email protected]
GRUNDLAGEN DER WECHSELSTROMTECHNIK
ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6
Diplomvorprüfung SS 2009 Grundlagen der Elektrotechnik Dauer: 90 Minuten
Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 7 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2009 Grundlagen
Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte
30 38 Transformator Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte Die elektrotechnischen Grundlagen des Transformators (Selbstinduktion, Gegeninduktion) sind in Kapitel 8 dargestellt. Die Wirkungsweise
Übungsblatt 11. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik
Übungsblatt Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 3.7.8 Aufgaben. Ein magnetischer Dipol Stabmagnet mit Länge l =, m, magnetischer Fluss Φ = 4 V s
Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik
Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen
AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV
AUSWERTUNG: ELEKTRISCHE MESSMETHODEN TOBIAS FREY, FREYA GNAM, GRUPPE 6, DONNERSTAG 1. MESSUNGEN BEI GLEICHSTROM Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 7, 15V. 1.1. Innenwiderstand
Versuch 18 Der Transformator
Physikalisches Praktikum Versuch 18 Der Transformator Praktikanten: Johannes Dörr Gruppe: 14 [email protected] physik.johannesdoerr.de Datum: 09.02.2007 Katharina Rabe Assistent: Tobias Liese [email protected]
Prüfungen 1999/2000. Vom Lehrer wird Ihnen ein Experiment mit einem Modell für eine Wippe vorgeführt.
Prüfungen 1999/2000 Teil I - Pflichtaufgaben Aufgabe 1 Mechanik Vom Lehrer wird Ihnen ein Experiment mit einem Modell für eine Wippe vorgeführt. 1.1 Beobachten Sie das Verhalten der Wippe. Beschreiben
Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan
TECHNOLOGISCHE GRUNDLAGEN INDUKTION, EINPHASEN-WECHSELSTROM REPETITIONEN INDUKTION DER RUHE 1 RE 2. 21 Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 30 Windungen. Ihr magnetischer
Ferromagnetische Hysteresis
Auswertung Ferromagnetische Hysteresis Stefan Schierle Carsten Röttele 6. Dezember 2011 Inhaltsverzeichnis 1 Induktion und Verlustwiderstand einer Luftspule 2 1.1 Messung.....................................
Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten
Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen
Übungen zu Experimentalphysik 2
Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 3 - Übungsblatt 7 Wechselstrom In der Zeichnung ist ein Stromkreis mit reellen (Ohmschen) sowie
6.4.4 Elihu-Thomson ****** 1 Motivation
V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring
Übungen zur Physik II PHY 121, FS 2017
Übungen zur Physik II PHY, FS 07 Serie Abgabe: Dienstag, 3. Mai 00 Impedanz = impedance Phasenlage = phasing Wirkleistung = active power Blindleistung = reactive power Scheinleistung = apparent power Schaltung
Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis
Praktikum Klassische Physik I Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis Jingfan Ye Gruppe Mo-11 Karlsruhe, 23. November 2009 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer
Diplomvorprüfung WS 2009/10 Grundlagen der Elektrotechnik Dauer: 90 Minuten
Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2009/10
Ersatzschaltbild und Zeigerdiagramm
8. Betriebsverhalten des Einphasentransformators Seite Ersatzschaltbild und Zeigerdiagramm Jeder Transformator besteht grundsätzlich aus zwei magnetisch gekoppelten Stromkreisen. Bild 8.-: Aufbau und Flusslinien
Temperaturkoeffizient des elektrischen Widerstands
emperaturkoeffizient des elektrischen Widerstands heorie Ohmscher Widerstand Reelle Widerstände haben eine emperaturabhängigkeit.. Die Änderung wird durch den emperaturkoeffizienten des Widerstandes beschrieben.
Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den
E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L
Versuch 18. Der Transformator. Wintersemester 2005 / 2006. Daniel Scholz. [email protected]
Physikalisches Praktikum für das Hauptfach Physik Versuch 18 Der Transformator Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer [email protected] B9 Assistent:
Anwendungen zu komplexen Zahlen
HM an der HWS. Hj 08/9 Dr. Timo Essig, Dr. Marinela Wong [email protected], [email protected] Aufgabenblatt 7 Anwendungen zu komplexen Zahlen Achtung: Auf diesem Blatt schreiben wir die komplexe Einheit
Praktikum II RE: Elektrische Resonanz
Praktikum II E: Elektrische esonanz Betreuer: Dr. Torsten Hehl Hanno ein [email protected] Florian Jessen [email protected] 29. März 2004 Made with L A TEX and Gnuplot Praktikum
Versuch 16 Der Transformator
Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 16 Der Transformator Praktikant: Joscha Knolle Ole Schumann E-Mail: [email protected] Durchgeführt am: 17.09.2012 Abgabe:
Aufgabe 1 Transiente Vorgänge
Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe
Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur
Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:
Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS 2003
Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik SS 2003 Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:
Übungsaufgaben Elektrotechnik
Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den Gesamtwiderstand
Elektrische Messverfahren
Vorbereitung Elektrische Messverfahren Stefan Schierle Versuchsdatum: 20. 12. 2011 Inhaltsverzeichnis 1 Widerstandsmessung 2 1.1 Messung des Innenwiderstands Ri I des µa-multizets............ 2 1.2 Berechnung
Diplomvorprüfung WS 2010/11 Fach: Grundlagen der Elektrotechnik, Dauer: 90 Minuten
Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A eigene Aufzeichnungen Matr.-Nr.: Hörsaal: Diplomvorprüfung WS 2010/11 Fach: Grundlagen
P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87
a) Strom nach Betrag und Phase: Der Betrag des Stroms wird aus der Wirkleistung bestimmt: P = U cos ϕ = P U cos ϕ = 3,52 kw 220 V 0,8 = 20 A Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos
Elektrische Messverfahren
Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-81 Elektrische Messverfahren - Vorbereitung - Vorbemerkung In diesem Versuch geht es um das Kennenlernen
Grundlagen der Elektrotechnik 2 Seminaraufgaben
ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2005.10 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler
