Transformator und Gleichrichtung
|
|
|
- Ferdinand Brinkerhoff
- vor 8 Jahren
- Abrufe
Transkript
1 Studiengang Elektrotechnik/Informationstechnik Labor Elektrotechnik Labor November 001 Revision 1 Transformator und Gleichrichtung Martin Strasser, Patrick Kulle,
2 Inhalt 1 Vorbereitung, Theorie Transformator Gleichrichtung mit Dioden und Brückengleichrichter Wechselspannungsparameter... 3 Induktiver Widerstand, Induktivität Hysteresekurve Spannungstransformation Transformatoren Trenntransformator Spartransformator Harter und Weicher Transformator Stromtransformation Gleichrichtung Gleichrichtung mit einer Diode Erzeugung einer symmetrischen Ausgangsspannung Brückengleichrichter Messwerte, Protokolle Induktiver Widerstand, Induktivität Harter und Weicher Transformator Weicher Transformator Harter Transformator Gleichrichtung Einweggleichrichter Brückengleichrichter Quellen Martin Strasser, Patrick Kulle Seite 1/14
3 1 Vorbereitung, Theorie 1.1 Transformator Ein Transformator hat auf einem gemeinsamen Kern zwei getrennte Wicklungen. Der Kern besteht zumeist aus Eisen und wird von einem geschlossenen magnetischen Feld durchsetzt. Das Funktionsprinzip des Transformators beruht auf dem Induktionsgesetz, so dass er nur mit Wechselspannungen arbeitet. Abbildung 1 Unter dem Übersetzungsverhältnis versteht man die Beziehung zwischen Spannung und Strom auf der Primär- und Sekundärseite. Es ergibt sich hier folgendes: n u 1 1 ü = = = n u i i 1 Die Eingangsseite wird als Primär- die Ausgangsseite eines Transformators als Sekundärseite bezeichnet. Ein realer Transformator hat einen Wirkungsgrad von ca. 95%, dies ist insbesondere auf die zahlreichen Verluste zurückzuführen. Ein idealer Transformator lässt sich in der Praxis nicht realisieren. Transformatoren werden eingesetzt in der Starkstromtechnik zum ökonomischen Transport von Energie (Leistungstransformatoren), in der Nachrichtentechnik zur gleichmäßigen Übertragung größerer Frequenzbereiche bei optimaler Anpassung des Verbrauchers (Übertrager), und in der Messtechnik (Strom- und Spannungswandler). Martin Strasser, Patrick Kulle Seite /14
4 1. Gleichrichtung mit Dioden und Brückengleichrichter Die Halbleiterdiode ist ein stromrichtungsabhängiger Widerstand, ein Stromventil. Wirksamer Bestandteil aller Halbleiterdioden ist der als Sperrschicht ausgebildete Übergang zwischen n- und p- leitendem monokristallinem Halbleitermaterial. Für die Gleichrichtung niederfrequenter Ströme werden heute fast ausnahmslos Silizium Flächendioden eingesetzt. Für hochfrequente und digitale Anwendungen müssen die Diodenkapazität und die Sperrerholzeit klein sein. Diese Forderung kann durch kleine pn-übergangsflächen und spezielle Technologie (Spitzendioden, Schottkydioden) erreicht werden. Brückengleichrichter sind eine spezielle Anordnung von 4 Dioden, wobei im Gegensatz zur Gleichrichtung mit nur einer Diode nicht nur die positive Halbwelle des Wechselstroms durchgelassen wird, sondern auch die negativen, was zu einem wesentlich besseren Wirkungsgrad verhilft. 1.3 Wechselspannungsparameter Wechselspannung/-strom ist durch diverse Eigenschaften charakterisiert: 1 Frequenz f, bzw. Periodendauer T = f Kreis- bzw. Winkelfrequenz ω = πf Phasenwinkel α Scheitelwert û Martin Strasser, Patrick Kulle Seite 3/14
5 Induktiver Widerstand, Induktivität In dem ersten Teil der Versuchsreihe zum Thema Trafo wurde der induktive Widerstand X L und die Induktivität des Transformators in Abhängigkeit vom fließenden Strom untersucht. A U=0..0V f=50hz ~ V Abbildung Der induktive Widerstand lässt sich über die Formel u eff X L = errechnen, die Induktivität lässt sich i eff X L durch die Formel L = berechnen. Daraus sieht man, dass X L und L nur über den Konstanten ω Faktor ω (πf) voneinander abhängig sind. Die gemessenen Werte finden sich unter 9.1. Aus den Messwerten erhält man Diagramm 1, das X L in Abhängigkeit des durch die Spule fließenden Stroms darstellt. X L in Abhängigkeit von I 140,00 10,00 100,00 X L /Ω 80,00 60,00 40,00 0,00 0, I/mA Diagramm 1 Martin Strasser, Patrick Kulle Seite 4/14
6 3 Hysteresekurve Im zweiten Versuch soll die Hysteresekurve des zu untersuchenden Transformators ermittelt werden. 100kΩ U=15V f=50hz ~ 47Ω 47µF AX Y Abbildung 3 Beim Abschalten des magnetischen Feldes bleibt im Eisenkern eine magnetische Restflußdichte übrig. Diese wird Remanenzflußdichte genannt. Obwohl die magnetische Flußdichte den Wert Null annimmt, bleibt eine magnetische Restflußdichte erhalten. Eine entgegengesetzt gerichtete Feldstärke kann die Remanenz beseitigen. Dann erzeugt die Primärspule zwar eine Feldstärke, im Eisen ist aber keine Magnetische Flußdichte vorhanden. Die Hysteresekurve wurde einerseits durch ablesen der Messwerte vom Osziloskop und deren grafische Darstellung mit Excel dokumentiert (Diagramm ). Außerdem wurde mit einer Digitalkamera ein Bild der Hysteresekurve auf dem Osziloskop aufgenommen (Abbildung 4). Martin Strasser, Patrick Kulle Seite 5/14
7 Hysteresekurve Primär Sekundär Diagramm Abbildung 4 [1] Martin Strasser, Patrick Kulle Seite 6/14
8 4 Spannungstransformation U=5V f=50hz ~ V V Abbildung 5 In diesem Versuchsteil wurde bei verschiedenen Übersetzungsverhältnissen von Primär- zu Sekundärseite die jeweilige Eingangsspannung und Ausgangsspannung gemessen. Untersucht wurden die Verhältnisse 1:1, :1 und 1:. Dabei erhielten wir folgende Tabelle: theoretisches Verhältnis reales Verhältnis n1 n U1 U U1/U U1/U ,04 1:1 0, ,01 :1 1, ,06 1: 0,496 Die Abweichung der realen von den theoretischen Verhältnissen beruhen u.a. auf Messfehlern, dem Hystereseeffekt sowie Wirbelströmen. Für den idealen Transformator gilt, dass sich die Spannungen proportional zu den Windungen verhalten also: n 1 = n u u 1 5 Transformatoren 5.1 Trenntransformator Der Trenntransformator entspricht dem Transformator mit dem Übersetzungsverhältnis 1:1 aus 4 (Abbildung 5). An Primär- und Sekundärseite ist bei dieser Transformatorart fast die gleiche Spannung zu messen. Eingesetzt wird er vor allem zur galvanischen Trennung von Wechselstromkreisen. Diese sind somit nicht elektrisch Leitend miteinander verbunden und können trotzdem zwischen einander elektrische Energie übertragen. Der Trenntransformator wird insbesondere bei Messungen eingesetzt, um eine erdfreie Messung zu erreichen. Martin Strasser, Patrick Kulle Seite 7/14
9 5. Spartransformator Ein Spartransformator trennt Eingang und Ausgang im Gegensatz zum Trenntransformator nicht galvanisch, aufgrund der gemeinsamen Masse von Primär- und Sekundärseite. Es handelt sich quasi um eine Spule mit Mittenanzapfung. Gemessen wurde als Ausgangsspannung u =1,55 V. U=3V f=50hz ~ V Abbildung 6 6 Harter und Weicher Transformator Der Unterschied zwischen dem Harten und dem Weichen Transformator besteht darin, wie die Primärund Sekundärwindungen auf dem Kern aufgebracht werden. Beim Weichen Transformator sind die Wicklungen nur über den Eisenkern miteinander verbunden, beim Harten Transformator sind die Wicklungen übereinander angebracht. Daraus folgt ein unterschiedliches Verhalten am Sekundärkreis bei Belastung. Dies äußert sich darin, dass sich die Ausgangsspannung (Sekundärseite) mal mehr (weiches Verhalten) mal weniger ändert (hartes Verhalten). Dies wird durch das folgende Diagramm deutlich. Weiche Transformatoren haben den Vorteil, dass sie nicht so leicht abrauchen bzw. wegen des geringeren fließenden Stromes schonender mit den Bauteilen im Sekundärkreis umgehen. Sekundärstrom zu Sekundärspannung bei Belastung mit 10kΩ 3,5 3,5 U in V 1,5 Weicher Transformator Harter Transformator 1 0, I in ma Diagramm 3 Martin Strasser, Patrick Kulle Seite 8/14
10 7 Stromtransformation U=6V f=50hz ~ A A Abbildung 7 Bei Sekundärseitigem (Ausgangsseitigem) Kurzschluss am Transformator fließt der maximale Ausgangsstrom. Bei einem Übertragungsverhältnis von 1:3 und einem Eingangsstrom i 1 =1,7 A haben wir einen Ausgangsstrom i =0,391 A gemessen was die Formel für das Übersetzungsverhältnis aus 1. bestätigt. n 1 = n i i 1 Martin Strasser, Patrick Kulle Seite 9/14
11 8 Gleichrichtung 8.1 Gleichrichtung mit einer Diode U=5V f=50hz ~ V V 10kΩ 47µF Abbildung 8 In diesem Versuch wurde die Welligkeit der Ausgangsspannung an einem Einweggleichrichter in Abhängigkeit von der Kapazität des Glättungskondensators untersucht. Aus dem Diagramm 4 geht hervor, wie die Welligkeit der Ausgangsspannung kleiner wird, je größer die Kapazität gewählt wird. Welligkeit in Abhängigkeit Welligkeit in % Kapazität in nf Diagramm 4 Martin Strasser, Patrick Kulle Seite 10/14
12 8. Erzeugung einer symmetrischen Ausgangsspannung U=6V f=50hz ~ u1 u Abbildung 9 Wird ein Transformator entsprechend Abbildung 9 so verschaltet, dass in der Sekundärwicklung eine Mittenanzapfung hat, so kann über eine Einweggleichrichtung in beiden Zweigen eine symmetrische Ausgangsspannung erzeugt werden (u 1 = -u ). Gemessen wurden u 1 =3,80 V und u =3,7 V. 8.3 Brückengleichrichter U=6V f=50hz ~ V - + V Abbildung 10 Der Brückengleichrichter nutzt im Gegensatz zum Einweggleichrichter auch die negative Halbwelle der Eingangs-Sinusschwingung, indem er sich hochklappt. Er hat somit eine geringere Welligkeit (vgl. Diagramm 5 und Tabelle unter 9.3.). Martin Strasser, Patrick Kulle Seite 11/14
13 Welligkeit in Abhängigkeit vom Lastwiderstand 5,00 0,00 Welligkeit in % 15,00 10,00 5,00 0, Widerstand in Ω Diagramm 5 Martin Strasser, Patrick Kulle Seite 1/14
14 9 Messwerte, Protokolle 9.1 Induktiver Widerstand, Induktivität U in V I in ma X L in Ω L in mh 0,00 0,0 0,00 0 0,50 8,0 6, ,01 13,1 77, ,51 17,3 87,8 78 1,75 19, 91,15 90,0 1,3 94, ,01 8,7 104, ,01 36,1 111, ,0 44,1 113, ,00 5,4 114, ,01 61,9 113, ,0 73,4 109, ,0 85,9 105, ,03 101,5 98, ,06 1,1 90, ,05 148,0 81, ,06 18,1 71,7 8 14,00 9,1 61, ,11 307,3 49, Harter und Weicher Transformator 9..1 Weicher Transformator R in Ω U in V I in ma,98 0,0 4,7 1,74 77,3 10,0 19,0 47,78 58,0 100,89 8,7 0 0,00 490,0 Martin Strasser, Patrick Kulle Seite 13/14
15 9.. Harter Transformator R in Ω U in V I in ma 3,00 0,0 4,7 1,98 313, 10,33 03,0 47,81 58,5 100,91 8,1 0 0,00 900,0 9.3 Gleichrichtung Einweggleichrichter U,SS in V U,eff in V R in Ω C in F Welligkeit in % 8,0 3,60 10k 0 40,75 8,0 3,80 10k 10n 41,00 8,0 3,130 10k 100n 39,13 8,0 0,069 10k 47µ 0,86 8,0 0,01 10k 470µ 0,15 8,0 1, µ 14,75 8,0 0, µ, Brückengleichrichter U,ss U,eff R in Ω Welligkeit in % 7,7 0,00 100k 0,00 7,7 0,00 47k 0,00 7,6 0,03 10k 0,39 7,8 0, ,05 8, 1,8 100,0 0,0 0,00 0 0,00 10 Quellen [1] Fotografie: Stefanie Bahr,, WS 001/0 Martin Strasser, Patrick Kulle Seite 14/14
Transformator und Gleichrichtung
FB 2 ET / IT Transformator und Gleichrichtung Laborbericht Für Labor Physik und Grundlagen der Elektrotechnik SS 2003 Erstellt von: G. Schley, B. Drollinger Mat.-Nr.: 290933, 291339 Datum: 27.05.2003 G.
Praktikum II TR: Transformator
Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein [email protected] Florian Jessen [email protected] 30. März 2004 Made with L A TEX and Gnuplot Praktikum
Versuch: Transformator und Gleichrichtung
Labor Physik und Grundlagen der Elektrotechnik Versuch: Transformator und Gleichrichtung Prof. Dr. Karlheinz Blankenbach Dipl.-Phys. Michael Bauer Blankenbach / transformatoren.doc 1 Transformator und
Transformator und Gleichrichtung
Fakultät für Technik Bereich Informationstechnik Versuch 4 Transformator und Gleichrichtung SS 2009 Name: Gruppe: Version ankreuzen 1 2 Erstelldatum Zu korrigierende Seiten Korrektur- Datum Version ankreuzen
TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007
TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste
Grundpraktikum der Physik. Versuch Nr. 25 TRANSFORMATOR. Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators
Grundpraktikum der Physik Versuch Nr. 25 TRANSFORMATOR Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators 1 1. Einführung Für den Transport elektrischer Energie über weite Entfernungen
TR - Transformator Praktikum Wintersemester 2005/06
TR - Transformator Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr Torsten Hehl Tübingen, den 5. November 5 Theorie Leistung in Stromkreisen Für die erbrachte Leistung P eines
TR - Transformator Blockpraktikum - Herbst 2005
TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort
Praktikum EE2 Grundlagen der Elektrotechnik Teil 2
Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Name: Studienrichtung: Versuch 6 Messen der magnetischen Flussdichte Versuch 7 Transformator Versuch 8 Helmholtzspulen Versuch 9 Leistungsmessung Testat
Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis
Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis Marc Ganzhorn Tobias Großmann Bemerkung Alle in diesem Versuch aufgenommenen Hysteresis-Kurven haben wir gesondert im Anhang an diese Auswertung
Physikalisches Grundpraktikum für Chemiker/innen. Magnetismus und Transformator
Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Chemiker/innen Magnetismus und Transformator WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/
Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen
Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises
Filter und Schwingkreise
FH-Pforzheim Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5: Filter und Schwingkreise 28..2000 Sven Bangha Martin Steppuhn Inhalt. Wechselstromlehre Seite 2.2 Eigenschaften von R, L und C
5. Anwendungen von Dioden in Stromversorgungseinheiten
in Stromversorgungseinheiten Stromversorgungseinheiten ( Netzgeräte ) erzeugen die von elektronischen Schaltungen benötigten Gleichspannungen. Sie bestehen oft aus drei Blöcken: Transformator Gleichrichter
Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan
TECHNOLOGISCHE GRUNDLAGEN INDUKTION, EINPHASEN-WECHSELSTROM REPETITIONEN INDUKTION DER RUHE 1 RE 2. 21 Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 30 Windungen. Ihr magnetischer
Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.
7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen
Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5
Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der
3. Übungen zum Kapitel Der Wechselstromkreis
n n n n n n n n n n n n n n n n n n n n n n n Fachhochschule Köln University of Applied Sciences ologne ampus Gummersbach 18 Elektrotechnik Prof. Dr. Jürgen Weber Einführung in die Mechanik und Elektrote
Induktion. Bewegte Leiter
Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor
Inhaltsverzeichnis Grundlagen der Elektrotechnik
Inhaltsverzeichnis 1 Grundlagen der Elektrotechnik................. 1 1.1 Gleichstromkreis........................ 1 1.1.1 Elektrischer Gleichstromkreis................ 2 1.1.2 Elektrische Spannung...................
Versuch 3 Einphasentransformator
Versuch 3 Einphasentransformator Martin Schlup 3. Oktober 2013 1 Lernziele In diesem Versuch sollen die Parameter des symmetrischen T-Ersatzmodells eines Einphasentransformators (single-phase transformer)
Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten
Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen
Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur
Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:
Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =
Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem
Aufgabe 1 Transiente Vorgänge
Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe
4 Ein- und dreiphasige Diodengleichrichtung
4 Ein- und dreiphasige Diodengleichrichtung Abb.4.1 zeigt die in das ETH Zurich Converter Lab integrierte dreiphasige Gleichrichterbrücke mit der verschiedene Gleichrichterschaltungen experimentell analysiert
Strukturbildung und Simulation technischer Systeme. Leseprobe aus Kapitel 6 Transformatoren und Übertrager des Buchs
Leseprobe aus Kapitel 6 Transformatoren und Übertrager des Buchs Strukturbildung und Simulation technischer Systeme Weitere Informationen zum Buch finden Sie unter strukturbildung-simulation.de 7.3.1 Der
Mechatroniker. Mathematik für. Elektronik FRANZIS. Lehr- und Übungsbuch mit über Aufgaben aus der Mechatponik und Elektrotechnik
Elektronik Herbert Bernstein Mathematik für Mechatroniker Lehr- und Übungsbuch mit über 3.000 Aufgaben aus der Mechatponik und Elektrotechnik FRANZIS Inhalt 1 Elektrotechnische Grundrechnungen 11 1.1 Größen
Robert-Bosch-Gymnasium
Seite - 1 - L-C-Schwingkreis niedriger Frequenz in Meißner-Schaltung 1. Theoretische Grundlagen Eine Parallelschaltung von Kondensator und Spule wirkt, nachdem der Kondensator aufgeladen wurde, als elektromagnetischer
Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld
37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld
Bewegter Leiter im Magnetfeld
Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1
Magnetfeld in Leitern
08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz
Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als
E8 Magnetische Induktion Die Induktionsspannung wird in Abhängigkeit von Magnetfeldgrößen und Induktionsspulenarten untersucht und die Messergebnisse mit den theoretischen Voraussagen verglichen.. heoretische
Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik
erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 2 Ersatzspannungsquelle und Leistungsanpassung Teilnehmer: Name orname Matr.-Nr. Datum
Übungsaufgaben Elektrotechnik
Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den Gesamtwiderstand
Versuch P1-83 Ferromagnetische Hysteresis Auswertung
Versuch P1-83 Ferromagnetische Hysteresis Auswertung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuchsdurchführung: Montag, 24.10.2011 1 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer
Die Diode. Roland Küng, 2009
Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter
Tu-Berlin SoS Al-sarea,Adam Gruppe: 1
29.04.2013 Tu-Berlin SoS 2013 0 Al-sarea,Adam Gruppe: 1 1 Was ist ein Transformator? Aufbau und Funktionweise Ideal Transformator Real Transformator Anwendung Der Transformator im Netzteil Quellen 2 Was
Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/
Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in
Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016
Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen
Physikalisches Grundpraktikum. Versuch 16. Der Transformator. Ralph Schäfer
Physikalisches Grundpraktikum Versuch 16 Der Transformator Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: [email protected] [email protected] Tutor: Gruppe:
V2.5 Eigenschaften eines Transformators
V2.5 Eigenschaften eines Transformators 1 Theorie Transformatoren gehören zu den häufigsten Bauelementen der Elektrotechnik. Sie dienen zur Übertragung elektrischer Energie über ein elektromagnetisches
Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum
Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 1 Grundschaltungen Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 02.04.1997 Protokoll abgegeben:
Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt!
Aufgabe 1 An eine Reihenschaltung bestehend aus sechs Widerständen wird eine Spannung von U = 155V angelegt. Die Widerstandwerte betragen: R 1 = 390Ω R 2 = 270Ω R 3 = 560Ω R 4 = 220Ω R 5 = 680Ω R 6 = 180Ω
6.5 Transformator (Versuch 54)
3 6.5 Transformator (Versuch 54) (Fassung 03/0) Physikalische Grundlagen Der ideale Transformator: Ein Transformator besteht aus zwei (oder mehr) Spulen meist unterschiedlicher Windungszahl und. An der
Übung 3: Oszilloskop
Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,
Physikalisches Grundpraktikum für Physiker/innen Teil I. Magnetismus
Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil I Magnetismus WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/
Versuchsvorbereitung P1-80: Magnetfeldmessung
Versuchsvorbereitung P1-80: Magnetfeldmessung Kathrin Ender Gruppe 10 5. Januar 2008 Inhaltsverzeichnis 1 Induktivität einer Spule 2 1.1 Entmagnetisieren des Kerns............................ 2 1.2 Induktiver
Laboratorium für Grundlagen Elektrotechnik
niversity of Applied Sciences Cologne Fakultät 07: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 1 1.1 Aufnahme von Widerstandskennlinien
Physikalisches Grundpraktikum für Physiker/innen Teil I Magnetismus
Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil I Magnetismus Grundpraktikum Physik: 0Hhttp://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen
Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom
Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen
Praktikum GEE Grundlagen der Elektrotechnik Teil 3
Grundlagen der Elektrotechnik Teil 3 Jede Gruppe benötigt zur Durchführung dieses Versuchs einen USB-Speicherstick! max. 2GB, FAT32 Name: Studienrichtung: Versuch 11 Bedienung des Oszilloskops Versuch
Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1
Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Magnetisches Feld Lernziel:
E l e k t r o n i k I
Fachhochschule Südwestfalen Hochschule für Technik und Wirtschaft E l e k t r o n i k I Dr.-Ing. Arno Soennecken EEX European Energy Exchange AG Neumarkt 9-19 04109 Leipzig Vorlesung Gleichrichter etc
Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den
E Wheatstonesche Brücke Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den 7..000 INHALTSVEZEICHNIS. Einleitung. Theoretische Grundlagen. Die Wheatstonesche Brücke. Gleichstrombrücke
Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.
Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien
Peter Lawall. Thomas Blenk. Praktikum Messtechnik 1. Hochschule Augsburg. Versuch 4: Oszilloskop. Fachbereich: Elektrotechnik.
Hochschule Augsburg Fachbereich: Elektrotechnik Arbeitsgruppe: 8 Praktikum Messtechnik 1 Versuch 4: Oszilloskop Arbeitstag :26.11.2009 Einliefertag: 03.12.2009 Peter Lawall Thomas Blenk (Unterschrift)
Vorbereitung: Vierpole und Leitungen
Vorbereitung: Vierpole und Leitungen Marcel Köpke Gruppe 7 27..20 Inhaltsverzeichnis Aufgabe 3. Vierpole..................................... 3.2 RC-Spannungsteiler............................... 3.2.
E 4 Spule und Kondensator im Wechselstromkreis
E 4 Spule und Kondensator im Wechselstromkreis 1. Aufgaben 1. Die Scheinwiderstände einer Spule und eines Kondensators sind in Abhängigkeit von der Frequenz zu bestimmen und gemeinsam in einem Diagramm
Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...
Name:...Vorname:... Seite 1 von 7 FH München, FB 03 Grundlagen der Elektrotechnik SS 2006 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:
IV. Elektrizität und Magnetismus
IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem
AUSWERTUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER
AUSWERTUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER FREYA GNAM, TOBIAS FREY 1. EMITTERSCHALTUNG DES TRANSISTORS 1.1. Aufbau des einstufigen Transistorverstärkers. Wie im Bild 1 der Vorbereitungshilfe wurde
4. GV: Wechselstrom. Protokoll zum Praktikum. Physik Praktikum I: WS 2005/06. Protokollanten. Jörg Mönnich - Anton Friesen - Betreuer.
Physik Praktikum I: WS 005/06 Protokoll zum Praktikum 4. GV: Wechselstrom Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Marcel Müller Versuchstag Dienstag, 0.1.005 Wechselstrom Einleitung Wechselstrom
WECHSELSTROM. 1. Messung von Wechselspannungen, Blindwiderstand. a) Maximalspannung. Geräte: Netzgerät Ossi Spannungsmessgerät (~)
WECHSELSTROM 1. Messung von Wechselspannungen, Blindwiderstand a) Maximalspannung Spannungsmessgerät (~) Miss 3 unterschiedliche Spannungen der Wechselspannungsquelle (
Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?
Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen
7.1 Aktive Filterung von elektronischem Rauschen (*,2P)
Fakultät für Physik Prof. Dr. M. Weber, Dr. K. abbertz B. Siebenborn, P. Jung, P. Skwierawski,. Thiele 17. Dezember 01 Übung Nr. 7 Inhaltsverzeichnis 7.1 Aktive Filterung von elektronischem auschen (*,P)....................
3.2 Ohmscher Widerstand im Wechselstromkreis 12
3 WECHSELSPANNNG 3 3.1 Grundlagen der 3 3.1.1 Festlegung der Wechselstromgrößen 3 3.1.2 Sinusförmige Wechselgrößen 7 3.1.3 Graphische Darstellung von Wechselgrößen 9 3.2 Ohmscher Widerstand im Wechselstromkreis
Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld
(2013-06-07) P3.4.3.1 Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld
S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF
Spule und Transformator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T301 n eine Spule wird über einen Widerstand eine Gleichspannung angelegt. Welches der nachfolgenden iagramme zeigt den
Praktikum 5, Transformator
23. November 206 Elektrizitätslehre 3 Martin Weisenhorn Praktikum 5, Transformator Lernziele In diesem Versuch sollen die Parameter des symmetrischen T-Ersatzmodells eines Einphasentransformators (single-phase
Technische Grundlagen der Informatik
Technische Grundlagen der Informatik WS 2008/2009 3. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Kapazität, Induktivität Halbleiter, Halbleiterdiode Wechselspannung
Versuchsprotokoll zum Versuch Nr. 10 Kondensator und Spule im Wechselstromkreis
Gruppe: A Versuchsprotokoll zum Versuch Nr. 0 Künzell, den 9.0.00 In diesem Versuch ging es darum die Kapazität eines Widerstandes und die Induktivität von Spulen zu bestimmen. I. Kondensator im Wechselstromkreis
351 - Übertragungsfunktionen
351 - Übertragungsfunktionen 1. Aufgaben 1.1 Bauen Sie mit den vorhandenen Bauelementen einen RC-Hochpass oder einen RC-Tiefpass auf. a) Bestimmen Sie die Amplituden- und Phasenübertragungsfunktion des
Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:...
Universität Hamburg, Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2 Kapazität Wechselspannung Name:... Bogen erfolgreich
Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2
Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle
Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:
Gruppe: 2/9 Versuch: 5 PAKTIKM MESSTECHNIK VESCH 5 Operationsverstärker Versuchsdatum: 22..2005 Teilnehmer: . Versuchsvorbereitung Invertierender Verstärker Nichtinvertierender Verstärker Nichtinvertierender
PW10 Wechselstrom I. Temperaturkoeffizient des elektrischen Widerstandes; Transformator Andreas Allacher Tobias Krieger
PW10 Wechselstrom I Temperaturkoeffizient des elektrischen Widerstandes; Transformator 10. 01. 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr. Markowitsch Anfängerpraktikum
4. Klausur Thema: Wechselstromkreise
4. Klausur Thema: Wechselstromkreise Physik Grundkurs 0. Juli 2000 Name: 0 = 8, 8542$ 0 2 C Verwende ggf.:,, Vm 0 =, 2566$ 0 6 Vs Am g = 9, 8 m s 2 0. Für saubere und übersichtliche Darstellung, klar ersichtliche
U-Kern mit Joch, geblättert 114.2035 I-Kern, geblättert 114.2034 E-Kern mit Joch, geblättert 114.2036
Schüleraufbautransformator [ Schüleraufbautransformator_neu.doc ] Einleitung Schüler können selbstständig Versuche zu den Themen Induktion und Kräfte in magnetischen Feldern durchführen. Das System verfügt
13. Dioden Grundlagen
13.1 Grundlagen Die Diode ist ein Bauteil mit zwei Anschlüssen, das die Eigenschaft hat den elektrischen Strom nur in einer Richtung durchzulassen. Dioden finden Anwendung als Verpolungsschutz (siehe Projekt)
3. Transformator. EM1, Kovalev/Novender/Kern (Fachbereich IEM)
1 Grundgesetze 2 Idealer Transformator Ideal: Streufluss bleibt unberücksichtigt, Keine Verluste. 3 Leerlauf 4 Lastfall 5 Kernausführungen Kerntransformator Manteltransformator 6 Kernschichtung Normal-Schichtung
Versuch 18 Der Transformator
Physikalisches Praktikum Versuch 18 Der Transformator Praktikanten: Johannes Dörr Gruppe: 14 [email protected] physik.johannesdoerr.de Datum: 09.02.2007 Katharina Rabe Assistent: Tobias Liese [email protected]
Elektrische Messverfahren Versuchsauswertung
Versuche P1-70,71,81 Elektrische Messverfahren Versuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 22.11.2010 1 1 Wechselstromwiderstände
Aufgaben Wechselstromwiderstände
Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose
Praktikumsteam: Von der Studentin bzw. dem Studenten auszufüllen. Name / Vorname. Matrikelnummer. Unterschrift
Praktikumsteam: Dr.-rer.nat. Michael Pongs Dipl.-Ing. Aline Kamp B. Eng. B.Eng. Alphonsine Bindzi Effa Von der Studentin bzw. dem Studenten auszufüllen Name / Vorname Matrikelnummer Unterschrift Von einem
Hochspannungsleitung. Vorbereitungszeit. 10 Minuten
Schwierigkeitsgrad Vorbereitungszeit Durchführungszeit mittel 10 Minuten 20 Minuten Prinzip Mithilfe zweier Hochspannungstransformatoren können die Fernleitungsverluste zwischen Kraftwerk und Verbraucher
Brückenschaltung (BRÜ)
TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Brückenschaltung (BRÜ) Inhaltsverzeichnis 9. Januar 2007 1. Einleitung... 2 2. Messung ohmscher und komplexer Widerstände... 2 3. Versuchsauswertung...
Versuch 245 Induktion
Versuch 245 Induktion Windungszahl je Spule: 124 Daten der Induktionspule: Windungszahl: 4000 Fläche: 41,7 cm 2 II Literatur Standardwerke der Physik: Gerthsen, Bergmann-Schäfer, Tipler, Demtröder. III
352 - Halbleiterdiode
352 - Halbleiterdiode 1. Aufgaben 1.1 Nehmen Sie die Kennlinie einer Si- und einer Ge-Halbleiterdiode auf. 1.2 Untersuchen Sie die Gleichrichtungswirkung einer Si-Halbleiterdiode. 1.3 Glätten Sie die Spannung
PrÄfung Wintersemester 2015/16 Grundlagen der Elektrotechnik Dauer: 90 Minuten
PrÄfung GET Seite 1 von 8 Hochschule MÄnchen FK 03 Zugelassene Hilfsmittel: Taschenrechner, 1 DIN-A4-Blatt PrÄfung Wintersemester 2015/16 Grundlagen der Elektrotechnik Dauer: 90 Minuten Matr.-Nr.: HÅrsaal:
Labor Elektrotechnik. Versuch: Temperatur - Effekte
Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5 Versuch: Temperatur - Effekte 13.11.2001 3. überarbeitete Version Markus Helmling Michael Pellmann Einleitung Der elektrische Widerstand ist
d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )=
Übung zur Vorlesung PN II Physik für Chemiker Sommersemester 2012 Prof. Tim Liedl, Department für Physik, LMU München Lösung zur Probeklausur (Besprechungstermin 08.06.2012) Aufgabe 1: Elektrostatik Elektrische
Übungsaufgaben EBG für Mechatroniker
Übungsaufgaben EBG für Mechatroniker Aufgabe E0: Ein Reihen- Schwingkreis wird aus einer Luftspule und einem Kondensator aufgebaut. Die technischen Daten von Spule und Kondensator sind folgendermaßen angegeben:
Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den
E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L
Grundlagen der Elektrotechnik für Maschinenbauer
Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche
Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.
Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.
Operationsverstärker
Operationsverstärker Martin Adam Versuchsdatum: 17.11.2005 Betreuer: DI Bojarski 23. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben...............................
Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!
Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie
