TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

Größe: px
Ab Seite anzeigen:

Download "TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007"

Transkript

1 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste 4 2 Versuchsdurchführung 4 3 Auswertung 5 31 Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe 6 8

2 1 GRUNDLAGEN TR 2 1 Grundlagen Ein Transformator dient va dazu, Wechselspannungen in niedrigere oder höhere Wechselspannungen zu transformieren Der typische Aufbau mit zwei Spulen mit einem gemeinsamen Eisenkern ist in Abb 1 skizziert Am Primärstromkreis wird eine Wech- Abbildung 1: Transformator mit Primär- und Sekundärspule, sowie einem gemeinsamen Eisenkern (Quelle: Wikipedia) selspannung U p = U 1 angelegt, so dass der magnetische Fluss Φ im Eisenkern abwechselnd auf- und abgebaut wird Dies induziert eine Wechselspannung U S = U 2 im Sekundärstromkreis Die Amplitude von U 2 kann dabei durch das Verhältnis der Windungszahlen der Spulen geregelt werden 11 Unbelasteter Transformator Ein Transformator wird unbelastet genannt, wenn kein ohmscher Verbraucher an der Sekundärseite angeschlossen ist Im Primärkreis kompensiert wegen der Maschenregel die Induktionsspannung U 1,ind die angelegte Spannung U 1, dh U 1 = U 1,ind = n 1 Φ, wobei n 1 die Windungszahl der Primärspule ist Wegen des gemeinsamen Eisenkerns induziert Φ auf der Sekundärseite die Spannung U 2 = U 2,ind = n 2 Φ

3 1 GRUNDLAGEN TR 3 Die Spannungen verhalten sich also wie die Windungszahlen U 1 U 2 = n 1 n 2 Das Minuszeichen beschreibt dabei die Phasenverschiebung um 180 zwischen U 1 und U 2 Im Primärkreis sind Strom und Spannung wegen Z 1 = U 1 /I 1 = iωl um ϕ 1 = 90 phasenverschoben, dh der Strom ist ein reiner Blindstrom I 1,wirk = I 1,max cos ϕ 1 = 0, I 1,blind = I 1,max sin ϕ 1 = I 1,max und führt zu keiner Leistung im Primärkreis Da im Sekundärkreis des unbelasteten Transformators kein Strom fließt, ist die Energieerhaltung erfüllt 12 Belasteter Transformator Schließt man an den Sekundärstromkreis einen ohmschen Verbraucher an, so fließt dort ein Strom I 2 = U 2 /R, der mit der Spannung U 2 in Phase ist (ohmscher Widerstand), dh ϕ 2 = 0 Wegen Energieerhaltung müssen die Wirkleistungen auf Primär- und Sekundärseite gleich groß sein P 1 = P 2 U 1,eff I 1,eff cos ϕ 1 = U 2,eff I 2,eff cos ϕ 2 cos ϕ 1 I1,eff I 2,eff = U 2,eff U 1,eff = n 2 n 1 Wenn kein ohmscher Widerstand im Primärkreis (ϕ = 0 ) wirkt, verhalten sich also die Ströme in Primär- und Sekundärkreis gerade umgekehrt zu den Windungszahlen und Spannungen 13 Leistungsanpassung Spannungsquellen haben in der Regel einen Innenwiderstand R i An einem ohmschen Verbraucher R v fließt deshalb der Strom so dass die Leistung I v = U 0 R i + R v, P v = U 0 I v = R v I 2 v = R vu 2 0 (R i + R v ) 2 aufgebracht wird Diese Leistung wird bzgl R v maximal, wenn dp v = U 2 (R i + R v ) 2 2R v (R i + R v ) 0 dr v (R i + R v ) 4 = U0 2 R v R i (R i + R v ) 3 = 0

4 2 VERSUCHSDURCHFÜHRUNG TR 4 gilt, dh für R v = R i Für eine beliebige Spannungsquelle mit Innenwiderstand wird der Spannungsquelle also genau dann die größte Leistung entnommen, wenn die Last gleich dem Innenwiderstand der Spannungsquelle ist Man erhält als Maximalleistung 14 Verluste P max = U 2 0 4R i Die Rechnungen gelten nur für ideale Transformatoren In der Realität haben die Drähte der Spulen ohmsche Widerstände Wirbelströme im Eisenkern erwärmen diesen und disspieren deshalb ebenfalls Energie Durch die beim dauernd abwechselnden Magnetisieren des Eisenkerns entstehende Hysterese geht weitere Energie verloren Man versucht durch geeignete Anordnungen und Geometrien der Spulen, sowie durch geeignete Materialien diese Verluste zu minimieren 2 Versuchsdurchführung Der Schaltplan des Versuchs ist in Abb 2 gezeigt Zunächst werden bei unbelastetem Abbildung 2: Schaltplan zur Versuchsdurchführung (Quelle: Anleitung) Sekundärkreis für unterschiedliche Primärspannungen U 2, U Φ, I 1 und ϕ = ϕ 1 gemessen Anschließend werden bei belastetem Sekundärkreis und konstanter Primärspannung U 1 für verschiedene Sekundärströme I 2 die Größen I 1, U 2, U Φ und ϕ gemessen Zuletzt wird die Abhängigkeit der Sekundärspannung U 2 (I 2 ) vom Sekundärstrom I 2 gemessen (Primärspannung U 1 nicht konstant)

5 3 AUSWERTUNG TR 5 3 Auswertung 31 Aufgabe 1 Aus der ersten Versuchsreihe bekommen wir das Übersetzungsverhältnis ü = 9, 961 ± 0, 013 und die Phasenverschiebung ϕ = 57, 6±1, 7 für den unbelasteten Transformator Ein idealer Transformator hätte eine Phasenverschiebung von Aufgabe 2 In Abb 3 sind U 2, I 1 und ϕ als Funktion vom Sekundärstrom I 2 gezeigt Wie man sieht Abbildung 3: U 2, I 1 und ϕ in Abhängigkeit vom Sekundärstrom I 2 sinkt U 2 mit zunehmendem Sekundärstrom I 2 Dies lässt sich wie folgt erklären Die Maschenregel im belasteten Sekundärkreis liefert (U 2,ind Induktionsspannung an der Sekundärspule, R 2,i Innenwiderstand der Sekundärspule, R 2 Sekundärlast) U 2,ind = R 2,i I 2 + R 2 I 2 = R 2,i I 2 + U 2 U 2 = U 2,ind R 2,i I 2, dh U 2 (I 2 ) ist eine Gerade mit negativer Steigung Der Betrag der Steigung ist dabei der Innenwiderstand R 2,i Um den Innenwiderstand R 2,i zu berechnen, ermittelt man also die Steigung von U 2 (I 2 ): Aus dem Kurzschlussstrom I 2 (U 2 = 0) = 1, 79A und der Leerlaufspannung U 2 (I 2 = 0) = 4, 00V folgt R 2,i = 4, 00V 1, 79A = 2, 23Ω

6 3 AUSWERTUNG TR 6 Im Leerlauf beträgt der Primärstrom I 1 = 5, 33mA, woraus der Magnetisierungsstrom (Blindstromanteil) I M = 2, 86mA und der Verluststrom (Wirkstromanteil) I V = 4, 50mA folgen 33 Aufgabe 3 Für einen unbelasteten Transformator gilt für das Verhältnis von Primär- zu Sekundärstrom (vgl oben) I 1 = n 2 I 2 n 1 Für einen Transformator mit ohmscher Belastung erhält man aus den Kirchhoffschen Regeln (vgl Anleitung) I 1 = R + iωl 2 I 2 iωm, wobei L 2 die Induktivität der Sekundärspule und M die Gegeninduktivität ist In Abb 4 sind die dazugehörigen Zeigerdiagramme für Primär- und Sekundärstrom schematisch abgebildet Abbildung 4: Zeigerdiagramme für Primär- und Sekundärstrom I 1 und I 2 für einen unbelasteten (links) und einen belasteten Transformator (rechts) Der Fluss Φ ist proportional zu I 1, dh Φ = LI 1 In der Schaltung wird die Flussspannung U Φ gemessen, die proportional zum Fluss ist Den linearen Zusammenhang zwischen Fluss Φ und Primärstrom I 1 kann man in Abb 5 gut erkennen 34 Aufgabe 4 Wirk- und Blindstromanteil des Primärstroms I 1 für verschiedene Sekundärströme I 2 sind in Abb 6 gezeigt 35 Aufgabe 5 Der Wirkungsgrad η in Abhängigkeit der Sekundärleistung P 2 ist in Abb 7 gezeigt

7 3 AUSWERTUNG TR 7 Abbildung 5: Fluss Φ bzw Flussspannung U Φ als Funktion vom Primärstrom I 1 Abbildung 6: Wirk- und Blindstromanteil des Primärstroms I 1 für verschiedene Sekundärströme I 2

8 3 AUSWERTUNG TR 8 Abbildung 7: Wirkungsgrad η als Funktion der Sekundärleistung P 2 36 Aufgabe 6 ˆ ˆ ˆ In Abb 8 ist die abgegebene Leistung P 2 (R 2 ) als Funktion des Lastwiderstands R 2 aufgetragen Man kann ein Maximum der Leistung für R 2 = 6, 1Ω ablesen Der gesamte auf der Sekundärseite wirkende Innenwiderstand 1 R 2,i,ges ergibt sich aus der Steigung der Regressionsgeraden von U 2 (I 2 ) zu R 2,i,ges = 6, 13Ω Dies bestätigt die obige Rechnung (Leistungsanpassung), nach der einer Spannungsquelle mit Innenwiderstand die maximale Leistung entzogen wird, wenn die Last gleich dem Innenwiderstand der Quelle ist Der soeben direkt aus Messung 3 bestimmte insgesamt wirkende Innenwiderstand R 2,i,ges auf Sekundärseite lässt sich auch aus dem in Messung 2 bestimmten Innenwiderstand R 2,i = 2, 23Ω der Wicklungen der Sekundärspule und dem gemessenen Widerstand R 1,i = 400Ω auf Primärseite berechnen Der insgesamt wirkende Innenwiderstand R 2,i,ges ist die Summe aus dem Innenwiderstand R 2,i der Sekundärspule und dem transformierten Primär-Widerstand R 1,i, den der Sekundärkreis durch die Kopplung über die Spulen erfährt: R 2,i,ges = R 2,i + R 1,i (1) 1 Auf der Sekundärseite wirkt zum einen der Innenwiderstand R 2,i der Wicklungen der Sekundärspulen Zum anderen beeinflusst der Innenwiderstand R 1,i der Primärspule die Spannung an der Primärspule und somit auch die Spannung an der Sekundärspule Man kann deshalb den auf die Sekundärspule wirkenden Primär-Innenwiderstand als zusätzlichen Innenwiderstand auf der Sekundärseite auffassen

9 3 AUSWERTUNG TR 9 Abbildung 8: Leistung P 2 (R 2 ) (in Watt) als Funktion des Lastwiderstands R 2 (in Ω) Zur Berechnung des auf Sekundärseite wirkenden, transformierten Primär-Widerstands betrachte man die Spannungen U 10, U 20 und Ströme I 1, I 2 an Primär- und Sekundärspule, für welche die Transformationsformeln U 10 U 20 = n 1 n 2, I 1 I 2 = n 2 n 1 gelten Für die Widerstände R 1,i (Primärspule) und R 1,i (transformierter Widerstand an Sekundärspule) gilt das ohmsche Gesetz R 1,i = U 10 I 1, R1,i = U 20 I 2 Daraus folgt die Widerstandstransformation R 1,i R 1,i = n2 1 n 2 2 = ü 2 R 1,i = R 1,i ü 2 Setzen wir diesen auf Sekundärseite wirkenden Widerstand nun in (1) ein, so erhalten wir mit ü = 9, 961, R 1,i = 400Ω und R 2,i = 2, 23Ω R 2,i,ges = R 2,i + R 1,i ü 2 = 400Ω + 2, 23Ω = 6, 26Ω 9, 9612 Dieser Wert ist dem tatsächlich wirkenden Innenwiderstand R 2,i,ges von 6, 13Ω und dem Lastwiderstand von 6, 1Ω mit maximaler Leistung sehr nahe und bestätigt somit Leistungsanpassung und Widerstandstransformation

Praktikum II TR: Transformator

Praktikum II TR: Transformator Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 30. März 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

TR - Transformator Blockpraktikum - Herbst 2005

TR - Transformator Blockpraktikum - Herbst 2005 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort

Mehr

TR - Transformator Praktikum Wintersemester 2005/06

TR - Transformator Praktikum Wintersemester 2005/06 TR - Transformator Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr Torsten Hehl Tübingen, den 5. November 5 Theorie Leistung in Stromkreisen Für die erbrachte Leistung P eines

Mehr

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator

Mehr

Grundbegriffe Spule im Wechselstromkreis magnetische Induktion Induktionsfluss Induktionsgesetz Zeigerdiagramm Blindstrom Wirkstrom

Grundbegriffe Spule im Wechselstromkreis magnetische Induktion Induktionsfluss Induktionsgesetz Zeigerdiagramm Blindstrom Wirkstrom Physikalische Grundlagen Grundbegriffe Spule im Wechselstromkreis magnetische Induktion Induktionsfluss Induktionsgesetz Zeigerdiagramm Blindstrom Wirkstrom 1. Aufbau des s Der dient zur verlustarmen Änderung

Mehr

Versuch 16 Der Transformator

Versuch 16 Der Transformator Physikalisches A-Praktikum Versuch 16 Der Transformator Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 10.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

Physikalisches Grundpraktikum E6 - T ransformator. E6 - Transformator

Physikalisches Grundpraktikum E6 - T ransformator. E6 - Transformator E6 - Transformator Aufgabenstellung: Ermitteln Sie das Strom- und Spannungsübertragungsverhältnis eines Transformators für zwei verschiedene Sekundärwindungszahlen mittels Leerlauf- und Kurzschlussschaltung.

Mehr

Grundpraktikum der Physik. Versuch Nr. 25 TRANSFORMATOR. Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators

Grundpraktikum der Physik. Versuch Nr. 25 TRANSFORMATOR. Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators Grundpraktikum der Physik Versuch Nr. 25 TRANSFORMATOR Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators 1 1. Einführung Für den Transport elektrischer Energie über weite Entfernungen

Mehr

Lösungen. Lösungen LEVEL LEVEL. Arbeitsform. Übungsaufgabe 1 Thema: Transformator (Lösungen s. Rückseite)

Lösungen. Lösungen LEVEL LEVEL. Arbeitsform. Übungsaufgabe 1 Thema: Transformator (Lösungen s. Rückseite) Übungsaufgabe 1 Wahr oder falsch? Kreuze an. N 1 N 2 I 1 I 2 wahr falsch 250 1000 1,2 A 4,8 A 1000 250 1,2 A 4,8 A 250 500 0,9 A 450 ma 750 15000 20 ma 0,4 A 300 900 600 ma 3,6 A Wahr oder falsch? Kreuze

Mehr

Physikalisches Grundpraktikum für Chemiker/innen. Magnetismus und Transformator

Physikalisches Grundpraktikum für Chemiker/innen. Magnetismus und Transformator Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Chemiker/innen Magnetismus und Transformator WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/

Mehr

Universität Ulm Fachbereich Physik Grundpraktikum Physik

Universität Ulm Fachbereich Physik Grundpraktikum Physik Universität Ulm Fachbereich Physik Grundpraktikum Physik Versuchsanleitung Transformator Nummer: 25 Kompiliert am: 19. Dezember 2018 Letzte Änderung: 19.12.2018 Beschreibung: Webseite: Bestimmung der physikalischen

Mehr

V11 - Messungen am Transformator

V11 - Messungen am Transformator V11 - Messungen am Transformator Michael Baron, Frank Scholz 21.12.2005 Inhaltsverzeichnis 1 Aufgabenstellung 1 2 Physikalischer Hintergrund 1 3 Versuchsaufbau 3 4 Versuchsdurchführung 3 4.1 Leerlauf-Spannungs-Übersetzung................

Mehr

Protokoll: Grundpraktikum II E3 - Transformator

Protokoll: Grundpraktikum II E3 - Transformator Protokoll: Grundpraktikum II E3 - Transformator Sebastian Pfitzner 17. Januar 2014 Durchführung: Anna Andrle (550727), Sebastian Pfitzner (553983) Arbeitsplatz: Platz 2 Betreuer: Stefan Weidemann Versuchsdatum:

Mehr

Grundpraktikum E3 Transformatoren

Grundpraktikum E3 Transformatoren Grundpraktikum E3 Transformatoren Julien Kluge 3. Dezember 2015 Student: Julien Kluge (564513) Partner: Fredrica Särdquist (568558) Betreuer: M.Sc. E. Panofski Raum: 216 Messplatz: 4 INHALTSVERZEICHNIS

Mehr

Magnetisch gekoppelte Kreise Teil 1

Magnetisch gekoppelte Kreise Teil 1 Magnetisch gekoppelte Kreise Teil 1 Mitteilungen aus dem Institut für Umwelttechnik Nonnweiler - Saar Dr. Schau DL3LH Transformatoren bei Hochfrequenz Teil 1 Vorwort Wicklungs-Transformatoren bei Hochfrequenz

Mehr

Physikalisches Grundpraktikum. Versuch 16. Der Transformator. Ralph Schäfer

Physikalisches Grundpraktikum. Versuch 16. Der Transformator. Ralph Schäfer Physikalisches Grundpraktikum Versuch 16 Der Transformator Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

Magnetischer Kreis eines Rechteckkernes

Magnetischer Kreis eines Rechteckkernes Magnetischer Kreis eines Rechteckkernes Seite 1 von 21 Führer, Heidemann, Nerreter, Grundgebiete der Elektrotechnik, Band 1 R 1 und R 2 sind die ohmschen Widerstände der Wicklungen, Kupfer- oder Aluminium-Leiter

Mehr

Transformator. lässt sich mit der Eulerschen Beziehung. darstellen als Realteil einer komplexen Größe:

Transformator. lässt sich mit der Eulerschen Beziehung. darstellen als Realteil einer komplexen Größe: E10 Transformator Dieser Versuch befasst sich mit verschiedenen Aspekten des Transformators. Zunächst soll das Verhalten der Spannungen und Stromstärken am realen Transformator gemessen und mit dem idealen

Mehr

Uebungsserie 4.2 Der Transformator

Uebungsserie 4.2 Der Transformator 15 September 017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 4 Der Transformator Aufgabe 1 Netzwerktransformation Ein idealer Übertrager mit dem Spannungsübersetzungsverhältnis = U 1 U ist sekundärseitig

Mehr

Ersatzschaltbild und Zeigerdiagramm

Ersatzschaltbild und Zeigerdiagramm 8. Betriebsverhalten des Einphasentransformators Seite Ersatzschaltbild und Zeigerdiagramm Jeder Transformator besteht grundsätzlich aus zwei magnetisch gekoppelten Stromkreisen. Bild 8.-: Aufbau und Flusslinien

Mehr

i 2 (t) = 400 V 100 V = 4 f = 50 Hz A Fe 1. Wie groß müssen unter der Voraussetzung sinusförmiger Spannungen die ober- und unterspannungsseitigen

i 2 (t) = 400 V 100 V = 4 f = 50 Hz A Fe 1. Wie groß müssen unter der Voraussetzung sinusförmiger Spannungen die ober- und unterspannungsseitigen Aufgabe Ü1 Aus einem vorhandenen Blechkern mit dem wirksamen Eisenquerschnitt A Fe 80 cm soll ein Wechselstromtransformator mit einer Nennleistung von S N 5 kva und dem Übersetzungsverhältnis ü U 1 /U

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Name: Studienrichtung: Versuch 6 Messen der magnetischen Flussdichte Versuch 7 Transformator Versuch 8 Helmholtzspulen Versuch 9 Leistungsmessung Testat

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Der Transformator Aufbau Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Wirkungsweise Zwei Spulen teilen sich den magnetischen Fluss Primärspule : Es liegt eine

Mehr

Diplomvorprüfung WS 2009/10 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung WS 2009/10 Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2009/10

Mehr

Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte

Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte 30 38 Transformator Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte Die elektrotechnischen Grundlagen des Transformators (Selbstinduktion, Gegeninduktion) sind in Kapitel 8 dargestellt. Die Wirkungsweise

Mehr

1 1. Hausaufgabe Hausaufgabe. 1.1 Buch Seite 45, Aufgabe Buch Seite 49, Aufgabe HAUSAUFGABE 1

1 1. Hausaufgabe Hausaufgabe. 1.1 Buch Seite 45, Aufgabe Buch Seite 49, Aufgabe HAUSAUFGABE 1 1 1. HAUSAUFGABE 1 1 1. Hausaufgabe 1.1 Buch Seite 45, Aufgabe 1 Zwei Widerstände von 10Ω und 30Ω werden in eihe geschaltet und die Spannung 10V angelegt. a) Wie verhalten sich die Teilspannungen an den

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS 2003

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS 2003 Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik SS 2003 Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Physikalisches Grundpraktikum für Physiker/innen Teil I. Magnetismus

Physikalisches Grundpraktikum für Physiker/innen Teil I. Magnetismus Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil I Magnetismus WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/

Mehr

Physik LK 12, 3. Kursarbeit Induktion - Lösung

Physik LK 12, 3. Kursarbeit Induktion - Lösung Physik K 1, 3. Kursarbeit Induktion - ösung.0.013 Aufgabe I: Induktion 1. Thomson ingversuch 1.1 Beschreibe den Thomson'schen ingversuch in Aufbau und Beobachtung und erkläre die grundlegenden physikalischen

Mehr

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Name:...Vorname:... Seite 1 von 7 FH München, FB 03 Grundlagen der Elektrotechnik SS 2006 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

PW10 Wechselstrom I. Temperaturkoeffizient des elektrischen Widerstandes; Transformator Andreas Allacher Tobias Krieger

PW10 Wechselstrom I. Temperaturkoeffizient des elektrischen Widerstandes; Transformator Andreas Allacher Tobias Krieger PW10 Wechselstrom I Temperaturkoeffizient des elektrischen Widerstandes; Transformator 10. 01. 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr. Markowitsch Anfängerpraktikum

Mehr

Bewegter Leiter im Magnetfeld

Bewegter Leiter im Magnetfeld Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1

Mehr

Ferromagnetische Hysterese Versuch P1 83, 84

Ferromagnetische Hysterese Versuch P1 83, 84 Auswertung Ferromagnetische Hysterese Versuch P1 83, 84 Iris Conradi, Melanie Hauck Gruppe Mo-02 19. August 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer Lustspule

Mehr

Physikalisches Grundpraktikum für Physiker/innen Teil I Magnetismus

Physikalisches Grundpraktikum für Physiker/innen Teil I Magnetismus Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil I Magnetismus Grundpraktikum Physik: 0Hhttp://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen

Mehr

Praktikum Transformatoren und Übertrager

Praktikum Transformatoren und Übertrager Praktikum 4.1 - Transformatoren und Übertrager In diesem zweiten Teil des Praktikums soll die Übertragung von Leistung oder Signalen über eine galvanisch getrennte Verbindung mittels des Magnetfelds von

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Praktikum 5, Transformator

Praktikum 5, Transformator 23. November 206 Elektrizitätslehre 3 Martin Weisenhorn Praktikum 5, Transformator Lernziele In diesem Versuch sollen die Parameter des symmetrischen T-Ersatzmodells eines Einphasentransformators (single-phase

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem

Mehr

Temperaturkoeffizient des elektrischen Widerstands

Temperaturkoeffizient des elektrischen Widerstands emperaturkoeffizient des elektrischen Widerstands heorie Ohmscher Widerstand Reelle Widerstände haben eine emperaturabhängigkeit.. Die Änderung wird durch den emperaturkoeffizienten des Widerstandes beschrieben.

Mehr

Grundlagen der Elektrotechnik 2 Seminaraufgaben

Grundlagen der Elektrotechnik 2 Seminaraufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2005.10 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

Transformator und Gleichrichtung

Transformator und Gleichrichtung Studiengang Elektrotechnik/Informationstechnik Labor Elektrotechnik Labor 3 13. November 001 Revision 1 Transformator und Gleichrichtung Martin Strasser, 88 741 Patrick Kulle, 88 545 Inhalt 1 Vorbereitung,

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Elektrizitätslehre und Schaltungen Versuch 29 ELS-29-1 Wechselstromwiderstände 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre 1.2 Wechselspannung, Wechselstrom, Frequenz,

Mehr

Diplomvorprüfung SS 2009 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2009 Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 7 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2009 Grundlagen

Mehr

Versuch 18 Der Transformator

Versuch 18 Der Transformator Physikalisches Praktikum Versuch 18 Der Transformator Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 09.02.2007 Katharina Rabe Assistent: Tobias Liese kathinka1984@yahoo.de

Mehr

Elektrotechnik Formelsammlung. Ersatzschaltbilder und Zeigerdiagramme des einphasigen Transformators. jx h. R Fe

Elektrotechnik Formelsammlung. Ersatzschaltbilder und Zeigerdiagramme des einphasigen Transformators. jx h. R Fe 1) Vollständiges T-Ersatzschaltbild, Grundformeln jx σ R jx σ1 jx h Primärspannung Wicklungswiderstand primär Sekundärspannung R Wicklungswiderstand sekundär Quellenspannung X h Hauptinduktivität Eisenverlustwiderstand

Mehr

Hochspannungsleitung. Vorbereitungszeit. 10 Minuten

Hochspannungsleitung. Vorbereitungszeit. 10 Minuten Schwierigkeitsgrad Vorbereitungszeit Durchführungszeit mittel 10 Minuten 20 Minuten Prinzip Mithilfe zweier Hochspannungstransformatoren können die Fernleitungsverluste zwischen Kraftwerk und Verbraucher

Mehr

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld Kapitel Pearson Folie: Kapitel 5 Das stationäre Folie: 2 Lernziele Kapitel Pearson Folie: 3 5. Magnete Kapitel Pearson Folie: 4 5. Magnete Kapitel Pearson S N Folie: 5 5.2 Kraft auf stromdurchflossene

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung. 7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen

Mehr

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2003-2004

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand

Mehr

3. Klausur in K1 am

3. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am.. 0 Achte auf gute Darstellung und vergiss nicht Geg., Ges., Formeln herleiten, Einheiten, Rundung...! 9 Elementarladung:

Mehr

Versuch 16 Der Transformator

Versuch 16 Der Transformator Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 16 Der Transformator Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@zimmer209.eu Durchgeführt am: 17.09.2012 Abgabe:

Mehr

Fachpraktikum Elektrische Maschinen. Versuch 4: Transformatoren

Fachpraktikum Elektrische Maschinen. Versuch 4: Transformatoren Fachpraktikum Elektrische Maschinen Versuch 4: Transformatoren Versuchsanleitung Basierend auf den Unterlagen von LD Didactic Entwickelt von Thomas Reichert am Institut von Prof. J. W. Kolar November 2013

Mehr

Elektrotechnische Anwendungen: Wechselstromgenerator

Elektrotechnische Anwendungen: Wechselstromgenerator Elektrotechnische Anwendungen: Wechselstromgenerator Das Faradaysche Induktionsgesetz bildet die Grundlage für die technische Realisierung von elektrischen Motoren und Generatoren. Das einfachste Modell

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan

Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan TECHNOLOGISCHE GRUNDLAGEN INDUKTION, EINPHASEN-WECHSELSTROM REPETITIONEN INDUKTION DER RUHE 1 RE 2. 21 Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 30 Windungen. Ihr magnetischer

Mehr

Vorbereitung: Ferromagnetische Hysteresis

Vorbereitung: Ferromagnetische Hysteresis Vorbereitung: Ferromagnetische Hysteresis Carsten Röttele 10. Dezember 2011 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer Luftspule 2 1.1 Messung..................................... 2

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Stefan Schierle Versuchsdatum: 20. 12. 2011 Inhaltsverzeichnis 1 Widerstandsmessung 2 1.1 Messung des Innenwiderstands Ri I des µa-multizets............ 2 1.2 Berechnung

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

RE Elektrische Resonanz

RE Elektrische Resonanz RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Impedanz...................................... 2 1.2 Phasenresonanz...................................

Mehr

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat?

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat? Aufgabe 1: Widerstand einer Leitung In einem Flugzeug soll eine Leitung aus Kupfer gegen eine gleich lange Leitung aus Aluminium ausgetauscht werden. Die Länge der Kupferleitung beträgt 40 m, der Durchmesser

Mehr

REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9

REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9 REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9 AG BL, BS, BE 1-4, SO Pos.4 An einer Steckdose 1 x 230 V wird ein Kurzschluss verursacht. Der Wider - stand des gesamten Stromkreises wurde mit 150 ms2 ermittelt.

Mehr

Übungsaufgaben Elektrotechnik

Übungsaufgaben Elektrotechnik Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den Gesamtwiderstand

Mehr

Diplomvorprüfung WS 2010/11 Fach: Grundlagen der Elektrotechnik, Dauer: 90 Minuten

Diplomvorprüfung WS 2010/11 Fach: Grundlagen der Elektrotechnik, Dauer: 90 Minuten Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A eigene Aufzeichnungen Matr.-Nr.: Hörsaal: Diplomvorprüfung WS 2010/11 Fach: Grundlagen

Mehr

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise Elektrischer Grundstromkreis Reihenschaltung von Widerständen und Quellen Verzweigte Stromkreise Parallelschaltung von Widerständen Kirchhoffsche Sätze Ersatzquellen 1 2 Leerlauf, wenn I=0 3 4 Arbeitspunkt

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS 2002/03

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS 2002/03 Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS 2002/03 Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

AfuTUB-Kurs Das ohmsche Gesetz

AfuTUB-Kurs Das ohmsche Gesetz Technik Klasse E 03: Ohmsches, & Amateurfunkgruppe der TU Berlin https://dk0tu.de WiSe 2017/18 SoSe 2018 cbea This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Mehr

6.5 Transformator (Versuch 54)

6.5 Transformator (Versuch 54) 6.5 Transformator (Versuch 54) 73 6.5 Transformator (Versuch 54) (Fassung 03/2012) Dieser Versuch befasst sich mit den speziellen Eigenschaften eines Transformators als Leistungsübertrager. Dabei werden

Mehr

3.5. Prüfungsaufgaben zur Wechselstromtechnik

3.5. Prüfungsaufgaben zur Wechselstromtechnik 3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung

Mehr

Versuch 18. Der Transformator. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 18. Der Transformator. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 18 Der Transformator Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als E8 Magnetische Induktion Die Induktionsspannung wird in Abhängigkeit von Magnetfeldgrößen und Induktionsspulenarten untersucht und die Messergebnisse mit den theoretischen Voraussagen verglichen.. heoretische

Mehr

Der Transformator - Gliederung. Aufgaben Bestandteile eines Transformators Funktionsweise Der ideale Transformator Der reale Transformator Bauformen

Der Transformator - Gliederung. Aufgaben Bestandteile eines Transformators Funktionsweise Der ideale Transformator Der reale Transformator Bauformen Der Transformator Der Transformator - Gliederung Aufgaben Bestandteile eines Transformators Funktionsweise Der ideale Transformator Der reale Transformator Bauformen Der Transformator - Aufgaben Transformieren

Mehr

Cusanus-Gymnasium Wittlich. Physik Die Induktion. Die Kraft auf einen stromdurchflossenen Leiter

Cusanus-Gymnasium Wittlich. Physik Die Induktion. Die Kraft auf einen stromdurchflossenen Leiter Die Kraft auf einen stromdurchflossenen Leiter I F B - + I B F Grundversuch 1 zur Induktion lat: inductio -Einführung Bewegt man einen Magneten (ein Magnetfeld) relativ zu einer Spule (zu einem Leiter),

Mehr

Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis

Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis Marc Ganzhorn Tobias Großmann Bemerkung Alle in diesem Versuch aufgenommenen Hysteresis-Kurven haben wir gesondert im Anhang an diese Auswertung

Mehr

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV AUSWERTUNG: ELEKTRISCHE MESSMETHODEN TOBIAS FREY, FREYA GNAM, GRUPPE 6, DONNERSTAG 1. MESSUNGEN BEI GLEICHSTROM Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 7, 15V. 1.1. Innenwiderstand

Mehr

Wechselstromkreis E 31

Wechselstromkreis E 31 E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde

Mehr

Die Linien, deren Tangenten in Richtung des Magnetfeldes laufen, heißt magnetische Feldlinien. a) Das Magnefeld eine Stabmagneten

Die Linien, deren Tangenten in Richtung des Magnetfeldes laufen, heißt magnetische Feldlinien. a) Das Magnefeld eine Stabmagneten I. Felder ================================================================== 1. Das magnetische Feld Ein Raumgebiet, in dem auf Magnete oder ferromagnetische Stoffe Kräfte wirken, heißt magnetisches Feld.

Mehr

Übungsblatt 11. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 11. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 3.7.8 Aufgaben. Ein magnetischer Dipol Stabmagnet mit Länge l =, m, magnetischer Fluss Φ = 4 V s

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 23. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 23. 06.

Mehr

Anwendungen zu komplexen Zahlen

Anwendungen zu komplexen Zahlen HM an der HWS. Hj 08/9 Dr. Timo Essig, Dr. Marinela Wong timo.essig@kit.edu, wong@hw-schule.de Aufgabenblatt 7 Anwendungen zu komplexen Zahlen Achtung: Auf diesem Blatt schreiben wir die komplexe Einheit

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen

Mehr

RE - Elektrische Resonanz Blockpraktikum - Herbst 2005

RE - Elektrische Resonanz Blockpraktikum - Herbst 2005 E - Elektrische esonanz, Blockpraktikum - Herbst 25 13. Oktober 25 E - Elektrische esonanz Blockpraktikum - Herbst 25 Tobias Müller,Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 13. Oktober

Mehr

6.5 Transformator (Versuch 54)

6.5 Transformator (Versuch 54) 3 6.5 Transformator (Versuch 54) (Fassung 03/0) Physikalische Grundlagen Der ideale Transformator: Ein Transformator besteht aus zwei (oder mehr) Spulen meist unterschiedlicher Windungszahl und. An der

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

PrÄfung Sommersemester 2017 Grundlagen der Elektrotechnik Dauer: 60 Minuten

PrÄfung Sommersemester 2017 Grundlagen der Elektrotechnik Dauer: 60 Minuten PrÄfung GET Seite 1 von 6 Hochschule MÄnchen FK 03 Zugelassene Hilfsmittel: keine PrÄfung Sommersemester 2017 Grundlagen der Elektrotechnik Dauer: 60 Minuten Matr.-Nr.: HÅrsaal: Name, Vorname: Unterschrift:

Mehr

Elektrotechnisches Grundlagen-Labor I. Netzwerke. Versuch Nr. Anzahl Bezeichnung, Daten GL-Nr.

Elektrotechnisches Grundlagen-Labor I. Netzwerke. Versuch Nr. Anzahl Bezeichnung, Daten GL-Nr. Elektrotechnisches Grundlagen-Labor I Netzwerke Versuch Nr. 1 Erforderliche Geräte Anzahl Bezeichnung, Daten GL-Nr. 2 n (Netzgeräte) 0...30V, 400mA 111/112 2 Vielfachmessgeräte 100kΩ/V 125/126 2 Widerstandsdekaden

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse E 03 Ohmsches, & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 27.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

2. Drehstromtransformator

2. Drehstromtransformator Drehstromtransformator Seite 1/7 Name: Gruppe: Testat : 1. Aufgabenstellung 2. Drehstromtransformator Ein Drehstromtransformator ist messtechnisch zu untersuchen für die Betriebsfälle Leerlauf, Kurzschluss

Mehr

ELEKTRISCHE GRUNDSCHALTUNGEN

ELEKTRISCHE GRUNDSCHALTUNGEN ELEKTRISCHE GRUNDSCHALTUNGEN Parallelschaltung Es gelten folgende Gesetze: (i) An parallel geschalteten Verbrauchern liegt dieselbe Spannung. (U = U 1 = U 2 = U 3 ) (ii) Bei der Parallelschaltung ist der

Mehr

Name:...Vorname:... Seite 1 von 8. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...

Name:...Vorname:... Seite 1 von 8. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik SS 2005 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr