Induktion. Bewegte Leiter
|
|
|
- Manuela Engel
- vor 9 Jahren
- Abrufe
Transkript
1 Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor F L = F el Q v B = E Q homogenes elektrisches Feld U = (-) B v l mehrere Leiter: Magnetischer Fluss Bei jeder Änderung des magnetischen Flusses Φ durch eine Leiterschleife oder Spule tritt eine Induktionsspannung U ind auf. Formelzeichen: Φ Einheit: Wb (Weber) 1Wb = 1m 2 1T = 1Vs Gleichung: Φ = B A
2 1. Ableitung: Erzeugung einer U ind bei konstanter Fläche durch Änderung der Flussdichte (z.b. durch Änderung der Stromstärke) Transformator Erzeugung einer U ind bei konstanter magnetischer Flussdichte bei Änderung der Fläche Generator Herleitung: Generator Induktionsspannung durch Änderung der Fläche bei konstantem Magnetfeld Flächenänderung A(t) = A 0 cos φ mit φ = ω t ω... Kreisfrequenz 2 π f
3 U ind = N B A 0 ω sin (ω t) U ind = N B A 0 2 π f sin (ω t) Maximalspannung U max = 2 π f N B A 0 f... Frequenz des Wechselstroms (Drehbewegung) N... Windungszahl der Induktionsspulen B... magnetische Flussdichte des Erregerfeldes A 0... Fläche der Induktionsspulen u(t) = U max sin (ω t) Leistung im Wechselstromkreis: P(t) = u(t) i(t) = U max I max sin 2 (ω t) Aufbau: Rotor Stator Schleifringe oder Kommutator Kohlebürsten Wirkungsweise über Anwendung des Induktionsgesetzes durch Veränderung der Fläche:
4 Transformator Primärspule Wechselspannung Φ ändert sich ständig Φ durchsetzt auch Sekundärspule Induktionsspannung idealer Transformator: R=0 nicht belastet (Stromkreis auf Sekundärseite nicht geschlossen) bei idealem Transformator im Kurzschlussfall gilt: in der Primärspule wird durch Selbstinduktion eine Sapnnung induziert, die der angelegten Spannung entgegenwirkt der sich periodisch ändernde Fluss Φ im Eisenkern führt zu einer Induktionsspannung U 2 Gesetzmäßigkeiten: Spannungsübersetzung am idealen unbelasteten Transformator (R ) Stromstärkeübersetzung am idealen stark belasteten Transformator (R=0) Leistung am Transformator bei starker Belastung unter Vernachlässigung aller Verluste (Φ 1 = Φ 2 ) U 1 I 1 = U 2 I 2 Energieumwandlung: Wirkungsgrad:
5 Lenzsches Gesetz Energieerhaltungssatz bei elektromagnetischer Induktion vor nach 0 = E mech + E el 0 = F Δs+Q U ind Kraft entspricht Lorentzkraft F = B I l = Lenzsche Regel: Der Induktionsstrom (und damit Spannung; wirkende Kräfte) sind stets so gerichtet, dass sie der Ursache der Entstehung entgegenwirken. Wirbelströme zeitlich konstantes Magnetfeld zeitlich veränderliches Magnetfeld Wirbelströme sind abhängig von der Bewegungsrichtung und der Richtung des Magnetfeldes Wirbelströme sind abhängig von der Änderungsrichtung der magnetischen Flussdichte und der Richtung des Magnetfeldes Wirbelströme entstehen in massiven metallischen Leitern, wenn sich das umfasste magnetische Feld ändert. Wirbelströme können durch Blätterung vermieden werden. Wirbelströme sind: erwünscht Wirbelstrombremse Oberflächenhärten Tachometer kwh-zähler Induktionsherd unerwünscht Motor Generator Transformator
6 Selbstinduktion Induktionsspannung als Folge der Verringerung des magnetischen Flusses (beim Ausschalten) ansteigender Strom magnetischer Fluss nimmt zu (Einschalten) Induktionsspannung wirkt diesem Vorgang entgegen Stromstärke erreicht erst allmählich Höchstwert. lange dünne Spule: Induktivität L Die Induktivität einer Spule gibt an, wie stark die Änderung der Stromstärke in der Spule aufgrund der Selbstinduktion behindert wird. Formelzeichen: L Einheit: H (Henry) Die Induktivität einer langen Spule kann mit folgender Gleichung berechnet werden: Interpretation: physikalische Größen: A... Querschnittsfläche der Spule l... Länge der Spule N... Windungszahl der Spule μ r... Permeabilitätszahl μ 0... magnetische Feldkonstante Zusammenhänge: L A: je größer A desto größer L L N 2 : bei doppelter N vervierfacht sich L -indirekte Proportionalität zur l -Induktivität ist vom Stoff in der Spule abhängig -Gültigkeitsbedingungen: lange, dünne Spule
7 Wechselstromkreis Ohmsches Bauelement: Durch Wechselwirkung zwischen Elektronen und Metallgitter entsteht der ohmsche Widerstand. R = R Spannung und Stromstärke verlaufen zeitgleich E el E th Der Spannungsquelle wird Energie entnommen. Anmerkung: R = Z... Scheinwiderstand im Wechselstromkreis Spulen: Durch Selbstinduktion in der Spule entsteht ein induktiver Widerstand. X L = 2 π f L X L... induktiver (Blind-)Widerstand E el E magn. Feld Spannungsquelle Spule Die Stromstärke eilt der Spannung hinterher Der Spannungsquelle wird keine Energie entnommen. Kondensatoren: Im Gleichstromkreis ist der Stromfluss unterbrochen. Durch die begrenzte Aufnahmefähigkeit des Kondensators für elektrische Ladungen entsteht der kapazitive Widerstand. X C... kapazitiver (Blind-)Widerstand
8 E el E el. Feld Spannungsquelle Kondensator Die Stromstärke eilt der Spannung voraus. Der Spannungsquelle wird keine Energie entnommen. Hoch- und Tiefpass: Hochpass Tiefpass Leistung im Wechselstromkreis: φ... Phasenverschiebung zwischen U und I cos φ... Leistungsfaktor; cos φ 1 Es ist zwischen der Wirkleistung, der Blindleistung und der Scheinleistung zu unterscheiden. Die Wirkleistung ist die im Wechselstromkreis an ohmschen Widerständen (Wirkwiderständen) "nach außen" umgesetzte Leistung. Die Blindleistung ist die in den Blindwiderständen X L und X C kurzzeitig zum Aufbau des magnetischen bzw. elektrischen Feldes erforderliche Leistung, die beim Abbau der Felder wieder an den Stromkreis abgegeben wird. Ihr zeitlicher Mittelwert ist daher null. Wirkleistung P P = U I cos φ Blindleistung Q Q = U I sin φ Die Scheinleistung S erhält man damit zu: S = P 2 +Q 2
9 Leitungsvorgänge in Metallen und Halbleitern Teilchenaufbau Elektronen im Metallgitter frei beweglich (ortsfeste positive Ladungen) in Halbleitern: bei Energiezufuhr zusätzliche e - werden frei jedes e - hinterlässt Elektronenfehlstelle kann durch e - des Nachbaratoms besetzt werden Temperaturabhängigkeit in Metallen: Bändermodell Valenzband: voll besetzt Leitungsband: teilweise besetzt, Abstand und Besetzung entscheiden über elektrische Leitfähigkeit r n = k a 0 n 2 Driftgeschwindigkeit: in Halbleitern: je höher T, desto größer e - -Anzahl
Bewegter Leiter im Magnetfeld
Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1
Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.
7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen
Vorlesung 5: Magnetische Induktion
Vorlesung 5: Magnetische Induktion, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2016/17 Magnetische Induktion Bisher:
Wechselstromwiderstände
Wechselstromwiderstände Wirkwiderstand, ideale Spule und idealer Kondensator im Wechselstromkreis Wirkwiderstand R In einem Wirkwiderstand R wird elektrische Energie in Wärmeenergie umgesetzt. Er verursacht
Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.
Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,
Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft):
Wiederholung: 1 r F r B Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): = r q v q = Ladung des Teilchens v = Geschwindigkeit des Teilchens B = magnetische Kraftflussdichte Rechte Hand Regel
Elektrostaitische Felder
Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel
Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom
Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................
Elektromagnetische Induktion
Elektromagnetische M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis im bewegten und im ruhenden Leiter Magnetischer Fluss und sgesetz Erzeugung sinusförmiger Wechselspannung In diesem Abschnitt
O. Sternal, V. Hankele. 4. Magnetismus
4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt
Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen
Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle
E2: Wärmelehre und Elektromagnetismus 20. Vorlesung
E2: Wärmelehre und Elektromagnetismus 20. Vorlesung 28.06.2018 Barlow-Rad Heute: Telefon nach Bell - Wechselstrom - Transformatoren - Leistungsverluste - R, L, C im Wechselstromkreis 28.06.2018 https://xkcd.com/2006/
Wechselstromwiderstände
Elektrizitätslehre und Schaltungen Versuch 29 ELS-29-1 Wechselstromwiderstände 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre 1.2 Wechselspannung, Wechselstrom, Frequenz,
Vorkurs Physik des MINT-Kollegs
Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum
15.Magnetostatik, 16. Induktionsgesetz
Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v
V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum
Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:
Cusanus-Gymnasium Wittlich. Physik Die Induktion. Die Kraft auf einen stromdurchflossenen Leiter
Die Kraft auf einen stromdurchflossenen Leiter I F B - + I B F Grundversuch 1 zur Induktion lat: inductio -Einführung Bewegt man einen Magneten (ein Magnetfeld) relativ zu einer Spule (zu einem Leiter),
Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld
37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld
4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule,
4 Induktion Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, induziert eine Spannung ( Stromfluss U=RI) in der Spule. Caren Hagner / PHYSIK 2 / Sommersemester 2015
rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag
Gert Hagmann Grundlagen der Elektrotechnik Das bewährte Lehrbuch für Studierende der Elektrotechnik und anderer technischer Studiengänge ab 1. Semester Mit 225 Abbildungen, 4 Tabellen, Aufgaben und Lösungen
Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?
Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen
Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom
Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen
4.1.0 Widerstand im Wechselstromkreis. Das Verhalten eines Ohmschen Widerstandes ist im Wechselstromkreis identisch mit dem im Gleichstromkreis:
4.0 Wechselstrom 4.1.0 Widerstand im Wechselstromkreis 4.2.0 Kondensator im Wechselstromkreis 4.3.0 Spule im Wechselstromkreis 4.4.0 Wirk-, Blind- und Scheinleistung 4.5.0 Der Transformator 4.6.0 Filter
Bestimmende die fehlenden Angaben bei der Induktion! + +
Bestimmende die fehlenden Angaben bei der Induktion! + + N S Bewegung Bewegung S N Polarität? + N keine Induktionsspannung Bewegungsrichtung? N Bewegung S S Bewegung Magnetpole? Polarität? Induktion durch
Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H
ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke
was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?
Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig
Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:
Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator
IV. Elektrizität und Magnetismus
IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem
1.10 Elektromagnetische Induktion
1.10 Elektromagnetische Induktion Wasserkraft: Deutschland 5% weltweit 18% Deutschland 30% weltweit 17% Deutschland 59% weltweit 64% Quelle: Wikipedia 1.10.1 Experimente zur elektromagnetischen Induktion
Lösungen. Lösungen LEVEL LEVEL. Arbeitsform. Übungsaufgabe 1 Thema: Transformator (Lösungen s. Rückseite)
Übungsaufgabe 1 Wahr oder falsch? Kreuze an. N 1 N 2 I 1 I 2 wahr falsch 250 1000 1,2 A 4,8 A 1000 250 1,2 A 4,8 A 250 500 0,9 A 450 ma 750 15000 20 ma 0,4 A 300 900 600 ma 3,6 A Wahr oder falsch? Kreuze
Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )
Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)
Die Lenzsche Regel. Frage : In welche Richtung fließt der Induktionsstrom? Versuch :
Die Lenzsche Regel Frage : In welche Richtung fließt der Induktionsstrom? Versuch : Beobachtung : Bewegungsrichtung des Magneten in den Ring hinein aus dem Ring heraus Bewegungsrichtung des Metallringes
E2: Wärmelehre und Elektromagnetismus 20. Vorlesung
E2: Wärmelehre und Elektromagnetismus 20. Vorlesung 28.06.2018 Barlow-Rad Heute: Telefon nach Bell - Wechselstrom - Transformatoren - Leistungsverluste - R, L, C im Wechselstromkreis 28.06.2018 https://xkcd.com/2006/
Die Linien, deren Tangenten in Richtung des Magnetfeldes laufen, heißt magnetische Feldlinien. a) Das Magnefeld eine Stabmagneten
I. Felder ================================================================== 1. Das magnetische Feld Ein Raumgebiet, in dem auf Magnete oder ferromagnetische Stoffe Kräfte wirken, heißt magnetisches Feld.
Elektrotechnik. 16., verbesserte und aktualisierte Auflage
Dieter Zastrow Elektrotechnik Ein Grundlagenlehrbuch 16., verbesserte und aktualisierte Auflage Mit 526 Abbildungen, 142 Beispielen und 225 Übungsaufgaben mit Lösungen sowie 27 Übersichten als Wissensspeicher
Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds
Der Transformator Aufbau Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Wirkungsweise Zwei Spulen teilen sich den magnetischen Fluss Primärspule : Es liegt eine
Praktikum II TR: Transformator
Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein [email protected] Florian Jessen [email protected] 30. März 2004 Made with L A TEX and Gnuplot Praktikum
20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21.
20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. Wechselstrom Versuche: Induktion: Handdynamo und Thomson-Transformator Diamagnetismus:
Physik LK 12, 3. Kursarbeit Induktion - Lösung
Physik K 1, 3. Kursarbeit Induktion - ösung.0.013 Aufgabe I: Induktion 1. Thomson ingversuch 1.1 Beschreibe den Thomson'schen ingversuch in Aufbau und Beobachtung und erkläre die grundlegenden physikalischen
Grundlagen der Elektrotechnik
Grundlagen der Elektrotechnik Das bewährte Lehrbuch für Studierende der Elektrotechnik und anderer technischer Studiengänge ab 1. Semester Bearbeitet von Gert Hagmann 17., durchgesehene und korr. Auflage.
Elektrotechnik. Dieter Zastrow
Dieter Zastrow Elektrotechnik Ein Grundlagenlehrbuch 17., überarbeitete und ergänzte Auflage Mit 527 Abbildungen, 142 Beispielen und 225 Übungsaufgaben mit Lösungen sowie 27 Übersichten als Wissensspeicher
Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld
1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu
Inhaltsverzeichnis. Arbeitshinweise zu diesem Buch
Dieter Zastrow Elektrotechnik Lehr- und Arbeitsbuch 13., überarbeitete Auflage Mit 496 Abbildungen, 134 Lehrbeispielen und 221 Übungen mit Lösungen vieweg VI Inhaltsverzeichnis Arbeitshinweise zu diesem
Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld
5b Induktion Zusammenfassung Induktion ist ein physikalisches Phänomen, bei der eine Spannungspuls in einem Leiter oder einer Spule induziert wird, wenn sich der Leiter in einem Magnetischen Feld befindet.
Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016
Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen
TR - Transformator Blockpraktikum - Herbst 2005
TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort
TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007
TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste
Übungen zu Experimentalphysik 2
Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld
Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld
(2013-06-07) P3.4.3.1 Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld
Physik DJ Induktion. Elektromagnetische Induktion. Wie verläuft die Induktion
Physik DJ Induktion Elektromagnetische Induktion Wie verläuft die Induktion Bei der Induktion wird ein Leiter (Kupferkabel, ) durch ein Magnetfeld gezogen. Hierbei entsteht eine Lorenzkraft. Die Richtung
Physik Klausur
Physik Klausur 12.2 1 19. Februar 23 Aufgaben Aufgabe 1 In einer magnetfelderzeugenden Spule fließt ein periodisch sich ändernder Strom I (siehe nebenstehendes Schaubild) mit der für jede Periode geltenden
Praktikum EE2 Grundlagen der Elektrotechnik Teil 2
Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Name: Studienrichtung: Versuch 6 Messen der magnetischen Flussdichte Versuch 7 Transformator Versuch 8 Helmholtzspulen Versuch 9 Leistungsmessung Testat
Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.
Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.
5.1 Statische und zeitlich veränderliche
5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante
Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand
E-Dynamik Teil II IV Der elektrische Strom 4.1 Stromstärke, Stromdichte, Kontinuitätsgleichung Definition der Stromstärke: ist die durch eine Querschnittsfläche pro Zeitintervall fließende Ladungsmenge
4.10 Induktion. [23] Michael Faraday. Gedankenexperiment:
4.10 Induktion Die elektromagnetische Induktion wurde im Jahre 1831 vom englischen Physiker Michael Faraday entdeckt, bei dem Bemühen die Funktions-weise eines Elektromagneten ( Strom erzeugt Magnetfeld
Inhalt. 2.2.9 Leistungsanpassung...63 2.2.10 Die Ersatzspannungsquelle...65
1 Physikalische Größen, Einheiten, Gleichungen...1 1.1 Physikalische Größen...1 1.2 Das internationale Einheitensystem...1 1.3 Gleichungen...5 2 Gleichstromkreise...6 2.1 Grundbegriffe der elektrischen
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche
Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.
Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a
Schulinterner Lehrplan Qualifikationsphase Q1. Präambel
Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase
FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Wechselstromtechnik
4 4. Wechselgrößen Nimmt eine Wechselgröße in bestimmten aufeinander folgenden Zeitabständen wieder denselben Augenblickswert an, nennt man sie periodische Wechselgröße. Allgemeine Darstellung periodischer
3. Klausur in K1 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am.. 0 Achte auf gute Darstellung und vergiss nicht Geg., Ges., Formeln herleiten, Einheiten, Rundung...! 9 Elementarladung:
GRUNDLAGEN DER WECHSELSTROMTECHNIK
ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6
TR - Transformator Praktikum Wintersemester 2005/06
TR - Transformator Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr Torsten Hehl Tübingen, den 5. November 5 Theorie Leistung in Stromkreisen Für die erbrachte Leistung P eines
Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als
E8 Magnetische Induktion Die Induktionsspannung wird in Abhängigkeit von Magnetfeldgrößen und Induktionsspulenarten untersucht und die Messergebnisse mit den theoretischen Voraussagen verglichen.. heoretische
Inhaltsverzeichnis. Vorwort...
Inhaltsverzeichnis Vorwort... V 1 Elektrische Ladung... 1 1.1 Beobachtungen und Grundannahmen... 1 1.2 Atomistische Deutung... 2 1.3 Ladungstrennung und elektrisches Feld... 3 1.4 Ladungsträger... 5 1.5
Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten.
Elektrizitätslehre I: Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elementarladung: Ladung: Q Einheit: 1 Coulomb = 1C = 1 Amperesekunde Stromstärke: I Einheit: 1 A = 1 Ampere elektrische
Maßeinheiten der Elektrizität und des Magnetismus
Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange
1 Allgemeine Grundlagen
Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente
Grundlagen der Elektrotechnik 1
Grundlagen der Elektrotechnik 1 von Wolf-Ewald Büttner Oldenbourg Verlag München Wien Vorwort V VII 1 Einleitung 1 2 Grundbegriffe 3 2.1 Elektrische Ladung 3 2.2 Leiter und Nichtleiter 4 2.3 Elektrischer
Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L.
Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 20. Februar 2016 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ein Widerstand... u i Ohmsches Gesetz
Physik Klausur
Physik Klausur 12.1 2 15. Januar 2003 Aufgaben Aufgabe 1 Ein Elektron wird mit der Geschwindigkeit v = 10 7 m s 1 von A aus unter 45 in ein begrenztes Magnetfeld geschossen. Der Geschwindigkeitsvektor
Magnetisches Induktionsgesetz
Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung
Elektrotechnik. ~ Springer Vieweg. Ein Grundlagenlehrbuch. Dieter Zastrow. 19., korrigierte Auflage
Dieter Zastrow Elektrotechnik Ein Grundlagenlehrbuch 19., korrigierte Auflage Mit 547 Abbildungen, 140 Beispielen und 224 Übungsaufgaben mit Lösungen sowie 27 Übersichten als Wissensspeicher ~ Springer
Inhaltsverzeichnis. Gleichstromlehre
Inhaltsverzeichnis I Gleichstromlehre 1 Elektrische Grundgrößen... 12 1.1 Elektrische Ladung... 12 1.2 Elektrische Stromstärke... 13 1.3 Elektrische Spannung... 15 1.4 Elektrischer Gleichstromkreis......
i 2 (t) = 400 V 100 V = 4 f = 50 Hz A Fe 1. Wie groß müssen unter der Voraussetzung sinusförmiger Spannungen die ober- und unterspannungsseitigen
Aufgabe Ü1 Aus einem vorhandenen Blechkern mit dem wirksamen Eisenquerschnitt A Fe 80 cm soll ein Wechselstromtransformator mit einer Nennleistung von S N 5 kva und dem Übersetzungsverhältnis ü U 1 /U
Musterlösung: Auswertung einer Messreihe
Aufgabe 1: Kupferlegierung Musterlösung: Auswertung einer Messreihe a) Beschreibung: Je größer die Spannung U ist, desto größer ist auch die Stromstärke I im Manganindraht. Quantitative Vermutung: Die
3.5. Prüfungsaufgaben zur Wechselstromtechnik
3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung
Physikalisches Grundpraktikum E6 - T ransformator. E6 - Transformator
E6 - Transformator Aufgabenstellung: Ermitteln Sie das Strom- und Spannungsübertragungsverhältnis eines Transformators für zwei verschiedene Sekundärwindungszahlen mittels Leerlauf- und Kurzschlussschaltung.
18. Magnetismus in Materie
18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der
6.4.4 Elihu-Thomson ****** 1 Motivation
V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring
Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten
Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen
(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas!
Zeitlich veränderliche Felder: Elektrodynamik Die Maxwell-Gleichungen im statischen Fall (1) 1 E d = ρdv E = V( ) (2) B d = B = etwas! (3) E dr = E = (4) Integralform ε Hier fehlt noch Differentialform
Strom durch Bewegung
5 Induktion 1 Strom durch ewegung Stromimpuls ei ewegung des Stabmagneten wird eine Spannung erzeugt kein Stromimpuls Ohne ewegung des Stabmagneten wird keine Spannung erzeugt Stromimpuls ei ewegung des
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.
Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung
Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen
2. Parallel- und Reihenschaltung. Resonanz
Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U
Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R.
Wechselspannung Eine zeitlich sich periodisch bzw. sinusförmig verändernde Spannung heißt Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem
Gliederung des Vorlesungsskriptes zu "Grundlagen der Elektrotechnik I" Physikalische Grundbegriffe... 1
- Grundlagen der Elektrotechnik I - I 23.05.02 Gliederung des Vorlesungsskriptes zu "Grundlagen der Elektrotechnik I" 1 Physikalische Grundbegriffe... 1 1.1 Aufbau der Materie, positive und negative Ladungen...
Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:
Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.
Lösung der Problemstellung 1
Lösung der Problemstellung 1 1. Zunächst untersuchen wir die Wechselwirkung nach dem Thomson-Modell: Da das α Teilchen sehr viel kleiner als das Goldatom ist, sehen wir es als punktförmig an. Das Goldatom
Basiswissen Physik Jahrgangsstufe (G9)
Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.
Grundkurs Physik (2ph2) Klausur
1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.
Inhaltsverzeichnis. Rainer Ose. Elektrotechnik für Ingenieure. Grundlagen. ISBN (Buch): ISBN (E-Book):
Inhaltsverzeichnis Rainer Ose Elektrotechnik für Ingenieure Grundlagen ISBN (Buch): 978-3-446-43244-4 ISBN (E-Book): 978-3-446-43955-9 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43244-4
