20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21.

Größe: px
Ab Seite anzeigen:

Download "20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21."

Transkript

1 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. Wechselstrom Versuche: Induktion: Handdynamo und Thomson-Transformator Diamagnetismus: schwebender Magnet über Supraleiter Steckdose Hörnerblitz (E07.13)

2 19. Magnetische Felder Fortsetzung:Materie im Magnetfeld: 19.Magnetische Felder Beispiel: stromdurchflossene Spule (Strom I, N Windungen, Länge L, magnetische Erregung H = I N/L) im Vakuum: B = µ 0 H im Medium: B = µ 0. µ. r H µ r = relative Permeabilität: 1.Diamagnetisches Medium: µ r < 1 2.Paramagnetisches Medium: µ r > 1 3.Ferromagnetisches Medium: µ r >> 1 (typisch: µ r ~ 2000) Spule: B = µ r µ o I N L allgemein: B = µ r µ o H = µ r B Vakuum (µ r ist analog zur Dielektrizitätskonstanteε r von Materie im elektrischen Feld.)

3 1.Diamagnetismus (µ r <1): Materie ohne permanente innere magn. Dipole Bringt man Materie in Magnetfelder, so werden immer mikroskopische Kreisströme induziert, die ihrer Ursache entgegenwirken (Lenz sche Regel, Induktionsgesetz, s. Kap.20) 2. Paramagnetismus (µ r >1): Existieren in der Materie bereits atomare magnetische Dipole, so werden diese ausgerichtet und ein resultierendes magnet. Dipolmoment erzeugt. 3. Ferromagnetismus (µ r >>1): 19.Magnetische Felder Atomare Wechselwirkungen führen zur Ausrichtung ganzer Bezirke im Festkörper. µ r ist von magnetischer Vorbehandlung abhängig ( Hysterese ).

4 19.Magnetische Felder 3. Ferromagnetismus (µ r >>1): Typisch z.b. bei Fe, Ni Durch Ausrichtung von permanenten magnet. Dipolen entstehen Bereiche mit starken result. Dipolmomenten (Weißsche Bezirke) Äußeres Feld kann diese Bezirke ausrichten und starke Magnetisierung M bewirken. Sättigung von M bei ca 2 Tesla, wenn alle Bezirke ausgerichtet. Der Zusammenhang von magnetischer Flußdichte (Kraftfeld) B und Erregung H ist nichtlinear und zeigt eine Hysterese.

5 20. Induktion 20. Induktionsgesetz (Faraday 1831): Zeitlich veränderliche Magnetfelder erzeugen zirkulare elektrische Felder (geschlossene Feldlinien so wie B-Felder. Felder ohne Quellen oder Senken). In Materie führen diese E-Felder zu Kreisströmen bzw. durch Verschiebung der Ladungsträger zu elektrischen Spannungen.

6 20. Induktion 1. Beobachtung zur Induktion Wird im Bereich einer offenen Leiterschleife ein Magnet bewegt, so tritt zwischen den Enden der Schleife eine Induktionsspannung auf Alternativ kann der Strom in einer Spule variiert werden (B-Änderung) Deren Vorzeichen wird durch die Bewegungsrichtung bestimmt. Induktionsspannung U(t) ~ db/dt konsistent mit der Erzeugung eines zirkularen elektr. Feldes bzw. Stroms, falls Leiter geschlossen Versuch: Handdynamo

7 20. Induktion 2. Beobachtung zur Induktion Wird die Fläche A einer solchen Leiterschleife in einem Magnetfeld verändert (durch echtes Verkleinern = Zusammenziehen der Drahtschleife oder durch seitl. Herausziehen), so wird ebenfalls eine Induktionsspannung gemessen. U(t) Beobachtung 1. und 2. ergibt (B A) U(t) = t d(b A) dt Das Produkt aus B-Feld und durchflossener Fläche heißt magnetischer Fluss Φ Φ = BA

8 20. Induktion 3. Beobachtung zur Induktion (Faraday) Es tritt auch eine Induktionsspannung auf, wenn die Drahtschleife im Magnetfeld gedreht wird (ihre Fläche bleibt dabei unverändert, aber ihre Projektion senkrecht zum Feld ändert sich) α -> magnetischer Fluss ist ein Skalarprodukt φ = ( B r A r ) = ( B A cos( α)) dφ d Faradays Induktionsgesetz: U ( t) = = ( B A cos( α)) dt dt

9 20. Induktion 4. Beobachtungen zur Induktion (Lenz sche Regel) Achtung: das Vorzeichen der induzierten Spannung ist negativ! Bewegter Magnet Induzierter Ringstrom Entgegengesetztes (abstoßendes) B-Feld Der Aufbau des Schleifenstroms kostet Energie, also muß beim Bewegen des Magneten Arbeit geleistet werden (Energieerhaltung) Lenz sche Regel: das durch den in einem Leiter induzierten Strom erzeugte Magnetfeld ist so gerichtet, dass es seiner Ursache entgegenwirkt. Versuch mit Aluring

10 20. Induktion Erklärung des Diamagnetismus (µ r <1) Beispiel: Wasser, Wismut Beobachtung: Einige Materialien werden im inhomogenen B-Feld abgestoßen Lenz sche Regel: Bringt man Materie in Magnetfelder, so werden immer mikroskopische Kreisströme induziert, die ihrer Ursache entgegenwirken Der Effekt ist nur sichtbar, wenn keine para- oder ferromagnetischen Effekte auftreten (sonst Anziehung durch Ausrichtung atomarer magnetischer Dipole) Frosch schwebt im B-Feld (B=20T) Supraleiter: idealer Diamagnet

11 für Interessierte: Selbstinduktion einer langen Spule (Lenz sche Regel) 20. Induktion In einer Spule bewirkt eine Änderung des primären Stroms eine Änderung des magnetischen Flusses in der Spule und damit eine induzierte Spannung. Beim Ein-(Aus-)Schalten ist diese der primären Spannung entgegengesetzt (gleichgerichtet). Induktionsgesetz für Spule (Selbstinduktion) Induktivität L der Spule Einheit [L] = Henry (1H=1Vs/A) U ind

12 20. Induktion Erzeugung von Wechselspannungen (Dynamo) Eine Leiterschleife rotiert mit einer konstanten Winkelgeschwindigkeit ω in einem homogenen Magnetfeld B U ind Anwendung des Induktionsgesetzes d ( t) = ( B A cos( ωt)) = B A ω sin( ωt) = U 0 sin( ωt) dt Resultat also eine sinusförmige Wechselspannung U 0 sin(ωt)

13 21. Wechselstrom Wechselstrom und Wechselspannung Bei Wechselstrom variiert die Stromrichtung (bzw. das Spannungsvorzeichen) mit der Zeit (Dynamo, meist sinusförmig) U ( t) = U 0 cos( ωt) I ( t) = I 0 cos( ωt ϕ) Aus der Steckdose: f = 50 Hz, U eff = 230 V Versuch } Erde Drehstrom: drei Phasen mit 120 o Phasenverschiebung, Effektivspannung zwischen den Phasen 400 V, gegen Null 230 V

14 21. Wechselstrom Wechselstrom und Wechselspannung Oszillierende Leistung P=U I ~I 2 -> mittlere (effektive) Leistung P = U 2 2 ( t) I ( t) = R I ( t) = R I eff I eff = I 0 U eff = U Die effektive Stromstärke I eff entspricht dem Gleichstrom, der die gleiche mittlere Leistung erzielen würde, wie der Wechselstrom. (U eff analog definiert) Haushaltsspannung: U 0 = 325 [V] U eff = 230 [V] Für Ohm sche Widerstände (R) beträgt die Phase φ zwischen Strom und Spannung Null Grad (mit Effektivwerten wie Gleichstrom zu behandeln) Bei Kondensatoren oder Spulen treten zusätzlich Phasenverschiebungen auf 5 Folien für Interessierte

15 für Interessierte: 21. Wechselstrom Wechselstromwiderstand Z eines Kondensators (C): U(t) = Q(t) / C Phasenlage und Amplitude aus I= dq/dt = CdU/dt: Widerstand (Impedanz) Z = 1 ωc U eff =Z I eff Im Mittel wird am Kondensator keine Leistung P abgegeben, da durch die Phasenverschiebung die Leistung um Null oszilliert (Blindleistung) (erst Ladestrom, dann Spannung)

16 für Interessierte: Wechselstromwiderstand Z einer Spule (L): U(t) = L di/dt 21. Wechselstrom Phasenlage und Amplitude: Impedanz Z = ωl Auch an der Spule tritt nur eine Blindleistung auf (Trafo!) (Spannung -> Induktionsspannung, dann Strom)

17 für Interessierte: Wechselstromwiderstand Z von Spule (L) und Widerstand (R) 21. Wechselstrom ( L) 2 ( R) 2 Z = ω + Aufgrund der Phasenänderungen werden Wechselstromwiderstände wie 2-dimens. Vektoren behandelt Bei hohen Frequenzen dominiert der induktive Widerstand, bei niedrigen der Ohm sche

18 für Interessierte: 21. Wechselstrom Zusammenfassung: R, C und L im Wechselstrom(schwing)kreis Bei Serienschaltung findet man einen minimalen Widerstand Z min bei gleichen Impedanzen Z C =Z L, also bei der Frequenz L (U vor I) R (in Phase) C (I vor U) ω 0 = 1 LC

19 Schwingkreis für Interessierte: 21. Wechselstrom Gespeicherte Energie wird periodisch zwischen Kondensator (CU 2 /2) und Spule (LI 2 /2) ausgetauscht U(t) = RI R = Q C /C= LdI L /dt Aus der Knotenregel I ges = I R + I C + I L folgt die gleiche Differentialgleichung wie für die erzwungene mechanische Schwingung Resonanzfrequenz ω 0 = 1 LC

20 Transformator: Wechselstromtransformation 21.Wechselstrom Idee: Anwendung der Induktion und der Feldführung in einem Eisenkern zur verlustarmen Transformation der Amplitude von Wechselspannungen Anwendung (n 2 >>n 1 ): Hochspannungserzeugung U U 2 1 n n 2 1 = = (gilt bei Ohm schen Lasten 1 I I 2 und hohen Strömen)

21 21.Wechselstrom Wechselstromtransformation - Anwendungen Um Wirbelstromverluste zu vermeiden, wird das Joch aus Lamellen gefertigt Trenntrafo für entkoppelte Schutzerde (z.b. im OP) Phase Null Steckdose Spannungstransformation zur Reduktion von Übertragungsverlusten U Leitung = R PV U Transport: hohe Spannung U, da niedriger Spannungsabfall für gleiche Leistung Verbraucher: rückstransformierte niedrige Spannung

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung)

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) 20. Vorlesung III Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) Versuche: Aluring (Nachtrag zur Lenzschen Regel, s.20)

Mehr

17. Wechselströme. me, 18.Elektromagnetische Wellen. Wechselstromtransformation. = = (gilt bei Ohm schen Lasten

17. Wechselströme. me, 18.Elektromagnetische Wellen. Wechselstromtransformation. = = (gilt bei Ohm schen Lasten Wechselstromtransformation Idee: Anwendung der Induktion und der Feldführung in einem Eisenkern zur verlustarmen Transformation der Amplitude von Wechselspannungen Anwendung (n >>n 1 ): Hochspannungserzeugung

Mehr

21. Wechselstrom 22. Elektromagnetische Wellen

21. Wechselstrom 22. Elektromagnetische Wellen 1. Vorlesung EP III Elektrizität und Magnetismus 1. Wechselstrom. Elektromagnetische Wellen Versuche: Steckdose Phase bei RC-, RL- Kreis E07.09, -10 Hörnerblitz (E07.13) Überlandleitung E07.1 Teslatransformator

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Inhalt. Kapitel 4: Magnetisches Feld

Inhalt. Kapitel 4: Magnetisches Feld Inhalt Kapitel 4: Magnetische Feldstärke Magnetischer Fluss und magnetische Flussdichte Induktion Selbstinduktion und Induktivität Energie im magnetischen Feld A. Strey, DHBW Stuttgart, 015 1 Magnetische

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

E2: Wärmelehre und Elektromagnetismus 18. Vorlesung

E2: Wärmelehre und Elektromagnetismus 18. Vorlesung E2: Wärmelehre und Elektromagnetismus 18. Vorlesung 21.06.2018 Barlow-Rad Heute: Telefon nach Bell - Materie im Magnetfeld: Dia-, Para-, Ferromagnetismus - Supraleitung - Faradaysches Induktionsgesetz

Mehr

1 Gesetz von Biot-Savart

1 Gesetz von Biot-Savart 1 1 Gesetz von Biot-Savart d l: Längenelement entlang der Stromrichtung für eine beliebige Anordnung von Strömen gilt: L I = B( r 2 ) = µ 4π I L A I d l = j d A L ( B( r 2 ) = µ 4π A d l r 12 r12 3 dv

Mehr

Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft):

Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): Wiederholung: 1 r F r B Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): = r q v q = Ladung des Teilchens v = Geschwindigkeit des Teilchens B = magnetische Kraftflussdichte Rechte Hand Regel

Mehr

E2: Wärmelehre und Elektromagnetismus 18. Vorlesung

E2: Wärmelehre und Elektromagnetismus 18. Vorlesung E2: Wärmelehre und Elektromagnetismus 18. Vorlesung 21.06.2018 Barlow-Rad Heute: Telefon nach Bell - Materie im Magnetfeld: Dia-, Para-, Ferromagnetismus - Supraleitung - Faradaysches Induktionsgesetz

Mehr

Elektromagnetische Induktion

Elektromagnetische Induktion Elektromagnetische M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis im bewegten und im ruhenden Leiter Magnetischer Fluss und sgesetz Erzeugung sinusförmiger Wechselspannung In diesem Abschnitt

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Versuch: Induktions - Dosenöffner Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Der schwebende Supraleiter (idealer Diamagnet) Supraleiter B ind Magnet B Magnet

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand E-Dynamik Teil II IV Der elektrische Strom 4.1 Stromstärke, Stromdichte, Kontinuitätsgleichung Definition der Stromstärke: ist die durch eine Querschnittsfläche pro Zeitintervall fließende Ladungsmenge

Mehr

Bewegter Leiter im Magnetfeld

Bewegter Leiter im Magnetfeld Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1

Mehr

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld 5b Induktion Zusammenfassung Induktion ist ein physikalisches Phänomen, bei der eine Spannungspuls in einem Leiter oder einer Spule induziert wird, wenn sich der Leiter in einem Magnetischen Feld befindet.

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Strom durch Bewegung

Strom durch Bewegung 5 Induktion 1 Strom durch ewegung Stromimpuls ei ewegung des Stabmagneten wird eine Spannung erzeugt kein Stromimpuls Ohne ewegung des Stabmagneten wird keine Spannung erzeugt Stromimpuls ei ewegung des

Mehr

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld Kapitel Pearson Folie: Kapitel 5 Das stationäre Folie: 2 Lernziele Kapitel Pearson Folie: 3 5. Magnete Kapitel Pearson Folie: 4 5. Magnete Kapitel Pearson S N Folie: 5 5.2 Kraft auf stromdurchflossene

Mehr

Magnetismus. Prof. DI Michael Steiner

Magnetismus. Prof. DI Michael Steiner Magnetismus Prof. DI Michael Steiner www.htl1-klagenfurt.at Magnetismus Natürlicher Künstlicher Magneteisenstein Magnetit Permanentmagnete Stabmagnet Ringmagnet Hufeisenmagnet Magnetnadel Temporäre Magnete

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem

Mehr

Vorlesung : Roter Faden:

Vorlesung : Roter Faden: Vorlesung 18+19+20: Roter Faden: Heute: Elektrostatik, Magnetostatik, Elektrodynamik, Magnetodynamik, Elektromagnetische Schwingungen Versuche: Feldlinien, Kondensator, Spule, Generator, Elektromoter Applets:

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik

Ferienkurs Experimentalphysik II Elektrodynamik Ferienkurs Experimentalphysik II Elektrodynamik Lennart Schmidt 07.09.2011 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 3 1.1 Induktion.................................... 3 1.2 Die Maxwell-Gleichungen...........................

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

Magnetische Suszeptibilität: Magnetismusarten

Magnetische Suszeptibilität: Magnetismusarten agnetische Suszeptibilität, agnetismusarten agnetische Suszeptibilität: Im allgemeinen ist H: = χ m H χ m = magnetische Suszeptibilität [χ m ] = 1 Damit wird: at = µ 0 ( H + ) = µ 0 (1 + χ m ) }{{} =µ

Mehr

E2: Wärmelehre und Elektromagnetismus 19. Vorlesung

E2: Wärmelehre und Elektromagnetismus 19. Vorlesung E2: Wärmelehre und Elektromagnetismus 19. Vorlesung 25.06.2018 Barlow-Rad Heute: Telefon nach Bell - Faradaysches Induktionsgesetz - Lenzsche Regel - LR-Kreis - Wechselstrom - Generator & Elektromotor

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum

Mehr

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2003-2004

Mehr

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R.

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R. Wechselspannung Eine zeitlich sich periodisch bzw. sinusförmig verändernde Spannung heißt Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

Elektrotechnik II Formelsammlung

Elektrotechnik II Formelsammlung Elektrotechnik II Formelsammlung Achim Enthaler 20.03.2007 Gleichungen Allgemeine Gleichungen aus Elektrotechnik I siehe Formelsammlung Elektrotechnik I, SS2006 Maxwell Gleichungen in Integralform Durchutungsgesetz

Mehr

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen: Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten

Mehr

E2: Wärmelehre und Elektromagnetismus 20. Vorlesung

E2: Wärmelehre und Elektromagnetismus 20. Vorlesung E2: Wärmelehre und Elektromagnetismus 20. Vorlesung 28.06.2018 Barlow-Rad Heute: Telefon nach Bell - Wechselstrom - Transformatoren - Leistungsverluste - R, L, C im Wechselstromkreis 28.06.2018 https://xkcd.com/2006/

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen

Mehr

5 t % = 0, j = 0 entstehen. Für diese gelten die Gleichungen E = % 0. E = 0 Eds = 0 (5.2) B = 0 Bd A = 0 (5.3) j Bds = µ 0 I (5.

5 t % = 0, j = 0 entstehen. Für diese gelten die Gleichungen E = % 0. E = 0 Eds = 0 (5.2) B = 0 Bd A = 0 (5.3) j Bds = µ 0 I (5. 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

E2: Wärmelehre und Elektromagnetismus 20. Vorlesung

E2: Wärmelehre und Elektromagnetismus 20. Vorlesung E2: Wärmelehre und Elektromagnetismus 20. Vorlesung 28.06.2018 Barlow-Rad Heute: Telefon nach Bell - Wechselstrom - Transformatoren - Leistungsverluste - R, L, C im Wechselstromkreis 28.06.2018 https://xkcd.com/2006/

Mehr

Elektrizität und Magnetismus

Elektrizität und Magnetismus 1 Ergänzungen zum Kapitel Elektrizität und Magnetismus 4.7.7 Gefährdung durch Elektrizität Wie ernst ein Stromschlag zu nehmen ist, hängt davon ab, wie groß die durch den Körper fließende Stromstärke ist,

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Technische Universität München Physik Department Ferienkurs Experimentalphysik 2 Vorlesung 3: Zeitlich veränderliche Felder und Wechselstromkreise Tutoren: Hagen Übele Maximilian Ries Nach dem Skript Konzepte

Mehr

Cusanus-Gymnasium Wittlich. Physik Die Induktion. Die Kraft auf einen stromdurchflossenen Leiter

Cusanus-Gymnasium Wittlich. Physik Die Induktion. Die Kraft auf einen stromdurchflossenen Leiter Die Kraft auf einen stromdurchflossenen Leiter I F B - + I B F Grundversuch 1 zur Induktion lat: inductio -Einführung Bewegt man einen Magneten (ein Magnetfeld) relativ zu einer Spule (zu einem Leiter),

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 30. 06.

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

E2: Wärmelehre und Elektromagnetismus 17. Vorlesung

E2: Wärmelehre und Elektromagnetismus 17. Vorlesung E2: Wärmelehre und Elektromagnetismus 17. Vorlesung 18.06.2018 Barlow-Rad Elektromagnet Telefon nach Bell Wissenschaftliche Instrumente aus dem 18. und 19. Jahrhundert aus der Sammlung des Teylers Museum

Mehr

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator

Mehr

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben. Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 23. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 23. 06.

Mehr

Vorbereitung: Ferromagnetische Hysteresis

Vorbereitung: Ferromagnetische Hysteresis Vorbereitung: Ferromagnetische Hysteresis Carsten Röttele 10. Dezember 2011 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer Luftspule 2 1.1 Messung..................................... 2

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 18. 06. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 18. 06. 2009

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2004-2005

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für

Mehr

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion 19. Volesung III. Elektizität und Magnetismus 19. Magnetische Felde 20. Induktion Vesuche: Elektonenstahl-Oszilloskop (Nachtag zu 18., Stöme im Vakuum) Feldlinienbilde fü stomduchflossene Leite Feldlinienbilde

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis

Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis Praktikum Klassische Physik I Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis Jingfan Ye Gruppe Mo-11 Karlsruhe, 23. November 2009 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Materie im Magnetfeld

Materie im Magnetfeld . Stromschleifen - Permanentmagnet Materie im Magnetfeld EX-II SS007 = > µmag = I S ˆn S = a b µ bahn = e m L µ spin = e m S Stromschleife im Magnetfeld Magnetisierung inhomogenes Magnetfeld = D = µmag

Mehr

Zusammenfassung v13 vom 20. Juni 2013

Zusammenfassung v13 vom 20. Juni 2013 Zusammenfassung v13 vom 20. Juni 2013 Magnetfeldberechnungen Gerader Leiter im Abstand r: B = µ 0 I/(2 r) (57) Auf der Achse einer Leiterschleife mit Radius R im Abstand x von der Mitte der Schleife: B

Mehr

Magnetismus der Materie. Bernd Fercher David Schweiger

Magnetismus der Materie. Bernd Fercher David Schweiger Magnetismus der Materie Bernd Fercher David Schweiger Einleitung Erste Beobachtunge in China und Kleinasien Um 1100 Navigation von Schiffen Magnetismus wird durch Magnetfeld beschrieben dieses wird durch

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

3.6 Materie im Magnetfeld

3.6 Materie im Magnetfeld 3.6 Materie im Magnetfeld Vorversuche Die magnetische Feldstärke, gemessen mit einer sog. Hall-Sonde, ist am Ende einer stromdurchflossenen Spule deutlich höher, wenn sich in der Spule ein Eisenkern statt

Mehr

Leistung bei Wechselströmen

Leistung bei Wechselströmen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 27 VL #4 am 6.7.27 Vladimir Dyakonov Leistung bei Wechselströmen I(t) I(t) Wechselspannung U Gleichspannung

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Elektrizitätslehre und Schaltungen Versuch 29 ELS-29-1 Wechselstromwiderstände 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre 1.2 Wechselspannung, Wechselstrom, Frequenz,

Mehr

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig

Mehr

vor ca Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus

vor ca Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus Magnetismus vor ca. 2000 Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus Magnetismus ist permanent, durch Überstreichen können andere magnetische Materialien

Mehr

Wir demonstrieren die Spannungserzeugung in einer Leiterschleife bei Änderung der vom Magnetfeld durchsetzten Fläche:

Wir demonstrieren die Spannungserzeugung in einer Leiterschleife bei Änderung der vom Magnetfeld durchsetzten Fläche: 4.2: Versuche zum Faraday'schen Induktionsgesetz Wir demonstrieren die Spannungserzeugung in einer Leiterschleife bei Änderung der vom Magnetfeld durchsetzten Fläche: a) Veränderliche Fläche der Leiterschleife

Mehr

Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung. 1. Elektrisches Feld

Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung. 1. Elektrisches Feld Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung 1. Elektrisches Feld 1.1 Nehmen Sie den Potentialverlauf einer der folgenden Elektrodenanordnungen auf: - Plattenkondensator mit Störung

Mehr

Elektrostaitische Felder

Elektrostaitische Felder Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel

Mehr

Magnetische Induktion

Magnetische Induktion Dr. Angela Fösel & Dipl. Phys. Tom Michler Revision: 12.10.2018 Abbildung 1: Historischer Induktionsapparat aus dem Physikunterricht Unter elektromagnetischer Induktion versteht man das Entstehen einer

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

Lösung der Problemstellung 1

Lösung der Problemstellung 1 Lösung der Problemstellung 1 1. Zunächst untersuchen wir die Wechselwirkung nach dem Thomson-Modell: Da das α Teilchen sehr viel kleiner als das Goldatom ist, sehen wir es als punktförmig an. Das Goldatom

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte: Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ

Mehr

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte: Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ

Mehr