RE Elektrische Resonanz

Größe: px
Ab Seite anzeigen:

Download "RE Elektrische Resonanz"

Transkript

1 RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen Impedanz Phasenresonanz Serienschwingkreis Parallelkreis 1. Ordnung Parallelkreis 2. Ordnung Versuchsdurchführung und Auswertung Versuchsdurchführung Auswertung

2 1 GRUNDLAGEN RE 2 1 Grundlagen 1.1 Impedanz Legt man eine Wechselspannung U = U sin(ωt) an eine Schaltung, so erweist es sich sinnvoll, Strom und Spannung als Realteil komplexer Größen aufzufassen. Schwingungen lassen sich dann z.b. durch U = U exp(iωt) beschreiben. Misst man das Verhätltnis zwischen Spannung und Strom, so erhält man die Impedanz Z = U/I, die komplexwertig sein kann. Die Phase von Z steht dabei für die zeitliche Phasendifferenz zwischen Spannung und Strom. Aufstellen und Lösen der zugehörigen Differentialgleichungen liefert für ohmschen Widerstand, Spule und Kondensator folgende Impedanzen: Bauteil Ohmscher Widerstand Spule Kondensator Impedanz Z R iωl i ωc 1.2 Phasenresonanz In Phasenresonanz bezeichnet man ein schwingendes System, wenn die Anregung des Systems und dessen Antwort mit gleicher Frequenz schwingen und um π/2 phasenverschoben sind (vgl. getriebenes Pendel). Es ist zu beachten, dass nur im ungedämpften Fall die Phasenresonanzfrequenz mit der Frequenz der Amplitudenresonanz (extremale Amplitude der Schwingung) übereinstimmt. Im Folgenden ist mit Resonanz stets die Phasenresonanz gemeint. In einem elektrischen Schwingkreis ist die Anregung die Wechselspannung U = U exp(iωt), als Antwort fasst man die Ladung Q = Q exp(i(ωt φ)) auf. Der Strom I = Q = Q iωe i(ωt φ) = Q ωe i(ωt φ)+ π 2 ist um i bzw. π/2 gegenüber der Ladung phasenverschoben. Bei Phasenresonanz, d.h. wenn Spannung und Ladung um φ = π/2 phasenverschoben sind, sind Strom und Spannung somit in Phase. Die Impedanz ist im Fall der Phasenresonanz also rein reellwertig. 1.3 Serienschwingkreis In Abb. 1 ist ein Serienschwingkreis aus in Reihe geschaltetem Widerstand, Spule und Kondensator abgebildet. Für die Gesamtimpedanz Z folgt Abbildung 1: Serienschwingkreis und Parallelschwingkreise 1. und 2. Ordnung. ( Z = R + i ωl 1 ) = R ωc 2 + ( ωl 1 ) 2, (1) ωc Version: 24. Oktober 27

3 1 GRUNDLAGEN RE 3 sowie für die Phase ϕ von Z tan ϕ = Im Z Re Z = ωl 1 ωc. (2) R Aus der Bedingung ϕ = erhält als man nötige Frequenz für Phasenresonanz 1.4 Parallelkreis 1. Ordnung ω = 1 LC f = 1 2π LC. (3) Ein Parallelkreis 1. Ordnung ist in Abb. 1 gezeigt. Hier addieren sich die einzelnen Admittanzen zur Gesamtadmittanz Y = 1/Z, Y = 1 R + 1 i ( ) 1 ωl ωc = 1 R 2 + ( ) 1 2 ωl ωc Z = 1 Y = (. (4) 1 R 2 ωl ωc) 2 Die Phase der Impedanz ist tan ϕ = Im Z Re Z = Im Y ( ) 1 Re Y = R ωl ωc. (5) Daraus ergibt sich bei Phasenresonanz wiederum die Resonanzfrequenz (3). 1.5 Parallelkreis 2. Ordnung Beim Parallelkreis 2. Ordnung (siehe Abb. 1 gilt für Admittanz Y bzw. Impedanz Z ( ) Y = 1 R + iωl + iωc = R iωl R 2 + ω 2 L 2 + iωc = R 2 ( R 2 + ω 2 L 2 + ωc ( ( Z = 1 ) Y = R 2 ( R 2 + ω 2 L 2 + ωc Für die Phase ϕ der Impedanz folgt tan ϕ = Im Y Re Y = ωc ωl R 2 +ω 2 L 2 R Für die Phasenresonanz (ϕ = ) erhält man aus ) ωl 2 R 2 + ω 2 L 2 ) ) ωl 2 1/2 R 2 + ω 2 L 2. (6) = ωl ωc(r2 + ω2l2 ). (7) R R 2 +ω 2 L 2 ω L ω C(R 2 + ω 2 L 2 ) = ω (L CR 2 ω 2 CL 2 ) = Version: 24. Oktober 27

4 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 4 die Triviallösung ω =, die Gleichstrom entspricht, bei welchem natürlich Strom und Spannung in Phase sind, und die Phasenresonanzfrequenz der gedämpften Schwingung ( ) 1 R 2 ω = LC f = 1 ( ) 1 R 2 L 2π LC. L Da hier der Widerstand R dämpfend wirkt, ist bei der Phasenresonanzfrequenz die Amplitude von Strom bzw. Spannung im Gegensatz zu den ersten beiden Schaltungen nicht extremal (vgl. gedämpftes angetriebenes Pendel). Die Amplitudenresonanz wird für eine Frequenz über f erreicht. 2 Versuchsdurchführung und Auswertung 2.1 Versuchsdurchführung Betrag und Phase der Impedanz Z werden für die drei beschriebenen Schwingkreise in Abhängigkeit von der Frequenz f der Wechselspannungsquelle gemessen. Dabei werden zwei verschiedene Messverfahren benutzt. Zunächst wird auf einem Analog-Oszilloskop eine Ellipse (Lissajous-Figur) erzeugt, indem Spannung und Strom (an einem bekannten Widerstand abfallende Spannung) auf den x- und y-kanal gelegt werden. Durch Einbeschreiben der Ellipse in ein Quadrat lässt sich aus den Halbachsen a und b der Ellipse mit die Phase und mit tan ϕ 2 = b a Z = U I = R p x p y der Betrag der Impedanz bestimmen. Dabei sind p x und p y die Spannungswerte, die 1cm auf der x- bzw. y-achse entsprechen. Als zweite Messmethode wird die Software Cassy verwendet, die bereits fertige Graphen für Betrag und Phase der Impedanz in Abhängigkeit von der Frequenz liefert. Zudem kann Cassy die Kurve Z(f) in der komplexen Zahlenebene darstellen. 2.2 Auswertung Serienschwingkreis Für die Messung mit dem Analog-Oszilloskop wird eine Fehlerrechnung für ϕ und Z durchgeführt. Mit geschätzten Fehlern a = b = 1mm erhält man als Fehler 1 für ϕ ϕ = ϕ a a + ϕ b b = 2 a + b a 2 (a a + b b) = 2mm + b2 a 2 + b 2. 1 Da a und b nicht mehrfach gemessen und gemittelt wurden, wird hier die einfache Fehlerfortpflanzung für systematische Fehler an Stelle der Gaußschen Fehlerfortpflanzung für zufällige Fehler verwendet. Version: 24. Oktober 27

5 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 5 Dabei wurde arctan(x) = 1/(1 + x 2 ) verwendet. Für den Fehler des Betrags der Impedanz folgt wegen Z = U = R p xx I p y Y für systematische Fehler X = Y = 1mm und R =, 1R Z = Z R R + Z X X + Z Y Y = R p x X + R p xx p y Y p y Y 2 Y + p xx, 1R p y Y = R p x p y X (2mm +, 1X ). Während der Messungen war X = Y = 3mm konstant. Parallelkreis 1. Ordnung Für den Parallelkreis 1. Ordnung mit R = 21, 94kΩ, L = 314, 8mH und C = 22nF ergeben sich mit Cassy folgende Kurven für Phase, Impedanz und Admittanz. Parallelkreis 2. Ordnung Für den Parallelkreis 2. Ordnung mit R = 1, 485kΩ, L = 314, 8mH und C = 22nF ergeben sich mit Cassy folgende Kurven für Phase, Impedanz und Admittanz. Version: 24. Oktober 27

6 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 6 (a) (b) Abbildung 2: Serienschwingkreis: Mit dem Analogoszilloskop gemessene Diagramme ϕ(f) und Z (f) für R = 3, 276kΩ, L = 314, 8mH und C = 5, 166nF. Theoretische Kurven nach (2) und (1). Version: 24. Oktober 27

7 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 7 CASSY Lab - Reihe1 - Phase ϕ Abbildung 3: Serienschwingkreis: Mit Cassy gemessene Abhängigkeit ϕ(f) für R = 3, 276kΩ, L = 314, 8mH und C = 22nF. Theoretische Kurve nach (2). Version: 24. Oktober 27

8 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 8 CASSY Lab - Reihe1 - Impedanz Z kω (a) CASSY Lab - Reihe1 - Ortskurve Z Z kω (b) Z / kω Abbildung 4: Serienschwingkreis: Mit Cassy gemessene Impedanz Z (f) und Ortskurve Z(f) für R = 3, 276kΩ, L = 314, 8mH und C = 22nF. Theoretische Kurve in a) nach (1). Version: 24. Oktober 27

9 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 9 CASSY Lab - Reihe1 - Admittanz Y 1/kΩ,3,2, (a) CASSY Lab - Reihe1 - Ortskurve Y Y 1/kΩ,3,2,1,1,2,3,3,2,1,1,2,3 (b) Y / 1/kΩ Abbildung 5: Serienschwingkreis: Mit Cassy gemessene Admittanz Y (f) und Ortskurve Y (f) für R = 3, 276kΩ, L = 314, 8mH und C = 22nF. Version: 24. Oktober 27

10 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 1 CASSY Lab - Parallel11v2 - Phase ϕ Abbildung 6: Parallelkreis 1. Ordnung: Phase ϕ(f), theoretische Kurve nach (5). Version: 24. Oktober 27

11 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 11 CASSY Lab - Parallel11v2 - Impedanz Z kω (a) CASSY Lab - Parallel11v2 - Ortskurve Z Z kω (b) Z / kω Abbildung 7: Parallelkreis 1. Ordnung: Impedanz Z (f) und Ortskurve Z(f). Theoretische Kurve in a) nach (4). Version: 24. Oktober 27

12 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 12 CASSY Lab - Parallel11v2 - Admittanz Y 1/kΩ (a) CASSY Lab - Parallel11v2 - Ortskurve Y Y 1/kΩ (b) Y / 1/kΩ Abbildung 8: Parallelkreis 1. Ordnung: Admittanz Y (f) und Ortskurve Y (f). Version: 24. Oktober 27

13 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 13 CASSY Lab - Parallel21v2 - Phase ϕ Abbildung 9: Parallelkreis 2. Ordnung: Phase ϕ(f), theoretische Kurve nach (7). Version: 24. Oktober 27

14 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 14 CASSY Lab - Parallel21v2 - Impedanz Z kω (a) CASSY Lab - Parallel21v2 - Ortskurve Z Z kω (b) Z / kω Abbildung 1: Parallelkreis 2. Ordnung: Impedanz Z (f) und Ortskurve Z(f). Theoretische Kurve in a) nach (6). Version: 24. Oktober 27

15 2 VERSUCHSDURCHFÜHRUNG UND AUSWERTUNG RE 15 CASSY Lab - Parallel21v2 - Admittanz Y 1/kΩ,7,6,5,4,3,2, (a) CASSY Lab - Parallel21v2 - Ortskurve Y Y 1/kΩ,7,6,5,4,3,2,1,1,2,3,4,5,6,7,7,6,5,4,3,2,1,1,2,3,4,5,6,7 (b) Y / 1/kΩ Abbildung 11: Parallelkreis 2. Ordnung: Admittanz Y (f) und Ortskurve Y (f). Version: 24. Oktober 27

Praktikum II RE: Elektrische Resonanz

Praktikum II RE: Elektrische Resonanz Praktikum II E: Elektrische esonanz Betreuer: Dr. Torsten Hehl Hanno ein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 29. März 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06 RE - Elektrische Resonanz Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 8. November 5 Einführung Ziel dieses Versuches ist es, elektrische Resonanz

Mehr

RE - Elektrische Resonanz Blockpraktikum - Herbst 2005

RE - Elektrische Resonanz Blockpraktikum - Herbst 2005 E - Elektrische esonanz, Blockpraktikum - Herbst 25 13. Oktober 25 E - Elektrische esonanz Blockpraktikum - Herbst 25 Tobias Müller,Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 13. Oktober

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Physikalisches A-Praktikum Versuch 14 Wechselstromwiderstände Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 18.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden.

Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum E 13 Reihenschwingkreis In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)

Mehr

Elektrische Schwingungen

Elektrische Schwingungen E05 Elektrische Schwingungen Elektrische Schwingungen am Serien- und Parallelschwingkreis werden erzeugt und untersucht. Dabei sollen Unterschiede zwischen den beiden Schaltungen und Gemeinsamkeiten mit

Mehr

Versuch 15 Wechselstromwiderstände

Versuch 15 Wechselstromwiderstände Physikalisches Praktikum Versuch 15 Wechselstromwiderstände Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 06.02.2007 Katharina Rabe Assistent: Tobias Liese

Mehr

Vorbereitung: elektrische Messverfahren

Vorbereitung: elektrische Messverfahren Vorbereitung: elektrische Messverfahren Marcel Köpke 29.10.2011 Inhaltsverzeichnis 1 Ohmscher Widerstand 3 1.1 Innenwiderstand des µa Multizets...................... 3 1.2 Innenwiderstand des AVΩ Multizets.....................

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Grundlagen der Elektrotechnik Protokoll Schwingkreise. Christian Kötz, Jan Nabbefeld

Grundlagen der Elektrotechnik Protokoll Schwingkreise. Christian Kötz, Jan Nabbefeld Grundlagen der Elektrotechnik Protokoll Schwingkreise Christian Kötz, Jan Nabbefeld 29. Mai 200 3. Versuchsdurchführung 3.. Versuchsvorbereitung 3..2. Herleitung Resonanzfrequenz und der 45 o Frequenz

Mehr

Wechselstromkreis. lässt sich mit der Eulerschen Beziehung. darstellen als Realteil einer komplexen Größe:

Wechselstromkreis. lässt sich mit der Eulerschen Beziehung. darstellen als Realteil einer komplexen Größe: E04 Wechselstromkreis Es soll die Frequenzabhängigkeit von kapazitiven und induktiven Widerständen untersucht werden. Als Anwendung werden Übertragungsverhältnisse und Phasenverschiebungen an Hoch-, Tief-

Mehr

Serienschwingkreis (E16)

Serienschwingkreis (E16) Serienschwingkreis (E6) Ziel des Versuches Die Eigenschaften einer eihenschaltung von ohmschem Widerstand, Kondensator und Spule werden untersucht. Dabei werden sowohl freie als auch erzwungene Schwingungen

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Elektrischer Schwingkreis

Elektrischer Schwingkreis Fakultät für Technik Bereich Informationstechnik Elektrischer Schwingkreis Name 1: Name 2: Name 3: Gruppe: Datum: 2 1 Allgemeines Im Versuch Mechanischer Schwingkreis haben Sie einen mechanischen Schwingkreis

Mehr

Auswertung P1-22 Schwingungen & Resonanz

Auswertung P1-22 Schwingungen & Resonanz Auswertung P- Schwingungen & Resonanz Michael Prim & Tobias Volkenandt 4. November 5 Aufgabe Drehpendel/Pohlsches Rad und freie Schwingungen Mit dem Messwerterfassungssystem CASSY nahmen wir die Auslenkung

Mehr

Frequenzselektion durch Zwei- und Vierpole

Frequenzselektion durch Zwei- und Vierpole Frequenzselektion durch wei- und Vierpole i u i 1 u 1 Vierpol u 2 i 2 Reihenschwingkreis L R C Reihenschwingkreis Admitanzverlauf des Reihenschwingkreises: Die Höhe ist durch R die Breite durch Q R bestimmt.

Mehr

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung Aufgabe 1. Komplexe Impedanz von Zweipolen Bestimmen Sie für die nachfolgenden Schaltungen

Mehr

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt DHBW Karlsruhe Grundlagen der Elektrotechnik II Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt 5 Hoch und Tiefpässe 5. L--Hoch und Tiefpass Abbildung

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Elektrische Messverfahren Versuchsauswertung

Elektrische Messverfahren Versuchsauswertung Versuche P1-70,71,81 Elektrische Messverfahren Versuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 22.11.2010 1 1 Wechselstromwiderstände

Mehr

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2. Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die

Mehr

3.5. Prüfungsaufgaben zur Wechselstromtechnik

3.5. Prüfungsaufgaben zur Wechselstromtechnik 3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Laborversuche zur Physik I. Versuch 1-10 Wechselstrom und Schwingkreise. Versuchsleiter:

Laborversuche zur Physik I. Versuch 1-10 Wechselstrom und Schwingkreise. Versuchsleiter: Laborversuche zur Physik I Versuch - 0 Wechselstrom und Schwingkreise Versuchsleiter: Autoren: Kai Dinges Michael Beer Gruppe: 5 Versuchsdatum: 3. Oktober 2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Grundpraktikum Versuch 14 Wechselstromwiderstände Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

Grundlagen der Elektrotechnik 2 Seminaraufgaben

Grundlagen der Elektrotechnik 2 Seminaraufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2005.10 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Grundlagenvertiefung zu PW11. A. Biedermann Updated by W. Markowitsch 21. Mai 2019

Grundlagenvertiefung zu PW11. A. Biedermann Updated by W. Markowitsch 21. Mai 2019 Grundlagenvertiefung zu A. Biedermann Updated by W. Markowitsch 21. Mai 2019 Inhaltsverzeichnis Inhaltsverzeichnis 1 Analogie zwischen mechanischen und elektrischen Schwingungen 1 2 2.1 Serienresonanz..................................

Mehr

Gedämpfte harmonische Schwingung

Gedämpfte harmonische Schwingung Gedämpfte harmonische Schwingung Die Differentialgleichung u + 2ru + ω 2 0u = c cos(ωt) mit r > 0 modelliert sowohl eine elastische Feder als auch einen elektrischen Schwingkreis. Gedämpfte harmonische

Mehr

GP Getriebenes Pendel

GP Getriebenes Pendel GP Getriebenes Pendel Blockpraktikum Frühjahr 7 (Gruppe ) 5. April 7 Inhaltsverzeichnis 1 Einführung Theoretische Grundlagen 3 Versuchsdurchführung 3 4 Messergebnisse und Auswertung 3 4.1 Abhängigkeit

Mehr

Grundpraktikum II E4 Wechselstromwiderstände

Grundpraktikum II E4 Wechselstromwiderstände Mathematisch-Naturwissenschaftliche Fakultät Institut für Physik Grundpraktikum II E4 Wechselstromwiderstände Julien Kluge 15. Januar 2016 Student: Julien Kluge (564513) julien@physik.hu-berlin.de Partner:

Mehr

Versuch B2/3: Parallelschwingkreis

Versuch B2/3: Parallelschwingkreis Versuch B2/3: Parallelschwingkreis 3. Einleitung Als realer Parallelschwingkreis wird die Parallelschaltung einer realen Kapazität (physikalisch als kapazitive Admittanz darstellbar) und einer realen Induktivität

Mehr

Vorbereitung. Resonanz. Stefan Schierle. Versuchsdatum:

Vorbereitung. Resonanz. Stefan Schierle. Versuchsdatum: Vorbereitung Resonanz Stefan Schierle Versuchsdatum: 17. 01. 2012 Inhaltsverzeichnis 1 Drehpendel, freie Schwingung 2 1.1 Der Versuchsaufbau.............................. 2 1.2 Trägheitsmoment des Pendelkörpers.....................

Mehr

Physik III - Anfängerpraktikum- Versuch 354

Physik III - Anfängerpraktikum- Versuch 354 Physik III - Anfängerpraktikum- Versuch 354 Sebastian Rollke (03095) und Daniel Brenner (05292) 2. September 2005 Inhaltsverzeichnis Einleitung und Zielsetzung 2 2 Theorie 2 2. Gedämpfte Schwinungen................................

Mehr

Wechselstromwiderstände und Reihenresonanz

Wechselstromwiderstände und Reihenresonanz Versuch C8/9: Wechselstromwiderstände und Reihenresonanz. Literatur: Demtröder, Experimentalphysik : Elektrizität und Optik Pohl, Einführung in die Physik, Bd. Gerthsen, Kneser, Vogel; Physik Bergmann-Schaefer,

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

Grundlagenvertiefung zu PS2. A. Biedermann Updated by W. Markowitsch 15. September 2015

Grundlagenvertiefung zu PS2. A. Biedermann Updated by W. Markowitsch 15. September 2015 Grundlagenvertiefung zu PS2 A. Biedermann Updated by W. Markowitsch 15. September 2015 Inhaltsverzeichnis Inhaltsverzeichnis 1 Analogie zwischen mechanischen und elektrischen Schwingungen 2 2 Der elektrische

Mehr

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anfängerpraktikum Elektromagnetischer Schwingkreis Gruppe, Team 5 Sebastian Korff Frerich Max 8.5.6 Inhaltsverzeichnis. Einleitung -3-. Versuchsdurchführung -5-. Eigenfrequenz und Dämpfung

Mehr

Kapitel 6: Grundlagen der Wechselstromtechnik

Kapitel 6: Grundlagen der Wechselstromtechnik Inhalt Kapitel 6: Grundlagen der technik Sinusförmige Signale Zeigerdarstellung Darstellung mit komplexen Zahlen komplexe Widerstände Grundschaltungen Leistung im kreis Ortskurven Übertragungsfunktion

Mehr

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof.

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof. Technische Universität München Lehrstuhl für Technische Elektrophysik Tutorübungen zu Elektromagnetische Feldtheorie Prof. Wachutka Wintersemester 08/09 Lösung Blatt 0 Allgemeines zum Thema komplexe Wechselstromrechnung

Mehr

FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-1

FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-1 FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-4.) Lineare Schaltungen mit passiven Bauelementen 4. Die Schaltelemente Widerstand, Kapazität, Induktivität und Übertrager 4..

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

1.2) Bestimmen Sie die Leistung, welche in Abhängigkeit der Frequenz ω am Widerstand abfällt und stellen Sie diesen Zusammenhang graphisch dar.

1.2) Bestimmen Sie die Leistung, welche in Abhängigkeit der Frequenz ω am Widerstand abfällt und stellen Sie diesen Zusammenhang graphisch dar. Übung /Grundgebiete der Elektrotechnik 3 (WS7/8 Frequenzabhängiges Übertragungsverhalten Dr. Alexander Schaum, Lehrstuhl für vernetzte elektronische Systeme Christian-Albrechts-Universität zu Kiel Aufgabe

Mehr

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste

Mehr

Physik III - Anfängerpraktikum- Versuch 355

Physik III - Anfängerpraktikum- Versuch 355 Physik III - Anfängerpraktikum- Versuch 355 Sebastian Rollke (03095) und Daniel Brenner (05292) 2. September 2005 Inhaltsverzeichnis Einleitung 2 2 Theorie 2 2. Die Resonanzfrequenz gekoppelter Schwingkreise..................

Mehr

Drehpendel. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss

Drehpendel. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss Drehpendel Praktikumsversuch am 10.11.2010 Gruppe: 3 Thomas Himmelbauer Daniel Weiss Abgegeben am: 17.11.2010 Inhaltsverzeichnis 1 Einleitung 2 2 Versuchsaufbau 2 3 Eigenfrequenzbestimmung 2 4 Dämpfungsdekrementbestimmung

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Wechselstromkreis E 31

Wechselstromkreis E 31 E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde

Mehr

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001 Elektrotechnik Protokoll - Wechselstromkreise André Grüneberg Mario Apitz Versuch: 6. Mai Protokoll: 9. Mai 3 Versuchsdurchführung 3. Vorbereitung außerhalb der Versuchszeit 3.. Allgemeine Berechnungen

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 4 Wechselstromwiderstände Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 3.09.202 Abgabe:

Mehr

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann.

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann. Brückenschaltungen Grolik Benno, Kopp Joachim 2. Januar 2003 Grundlagen des Versuchs. Brückenschaltung für Gleichstromwiderstände Zur genauen Bestimmung ohmscher Widerstände eignet sich die klassische

Mehr

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010 Versuch P1-70,71,81 Elektrische Messverfahren Auswertung Von Ingo Medebach und Jan Oertlin 26. Januar 2010 Inhaltsverzeichnis 1. Aufgabe...2 I 1.1. Messung des Innenwiderstandes R i des µa-multizets im

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 06.0.206 06.0.206 Musterlösung Grundlagen der Elektrotechnik B Seite von 3 Aufgabe : Gleichstrommaschine (20 Punkte) In dieser

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik

Ferienkurs Experimentalphysik II Elektrodynamik Ferienkurs Experimentalphysik II Elektrodynamik Lennart Schmidt 07.09.2011 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 3 1.1 Induktion.................................... 3 1.2 Die Maxwell-Gleichungen...........................

Mehr

3, wobei C eine Konstante ist. des Zentralgestirns abhängig ist.

3, wobei C eine Konstante ist. des Zentralgestirns abhängig ist. Abschlussprüfung Berufliche Oberschule 00 Physik Technik - Aufgabe I - Lösung Teilaufgabe.0 Für alle Körper, die sich antriebslos auf einer Kreisbahn mit dem Radius R und mit der Umlaufdauer T um ein Zentralgestirn

Mehr

4.5 Gekoppelte LC-Schwingkreise

4.5 Gekoppelte LC-Schwingkreise 4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Stefan Schierle Versuchsdatum: 20. 12. 2011 Inhaltsverzeichnis 1 Widerstandsmessung 2 1.1 Messung des Innenwiderstands Ri I des µa-multizets............ 2 1.2 Berechnung

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Ernst-Moritz-Arndt-niversität Greifswald Fachbereich hysik Elektronikpraktikum rotokoll-nr.: 3 chwingkreise rotokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 6.4.997 rotokoll abgegeben: 23.4.997

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand

Mehr

Physikalisches Praktikum I. Wechselstromwiderstände: Serienschwingkreis Matrikelnummer:

Physikalisches Praktikum I. Wechselstromwiderstände: Serienschwingkreis Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I E10 Name: Wechselstromwiderstände: Serienschwingkreis Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat:

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B Themengebiet E: Komplexe Zahlen Aufgabe 1: echnen mit komplexen Zahlen Stellen Sie die folgenden komplexen Zahlen in der arithmetischen Form (z = x + jy und der exponentiellen

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Elektronik-Praktikum: Institut für angewandte Physik. Protokollant: Versuch 1 Einführung und Messungen

Elektronik-Praktikum: Institut für angewandte Physik. Protokollant: Versuch 1 Einführung und Messungen Elektronik-Praktikum: Institut für angewandte Physik Protokoll Versuch 1 Einführung und Messungen Intsar Bangwi Physik Master bangjowi@gmail.com Sven Köppel Physik Master koeppel@itp.uni-frankfurt.de Versuchsdurchführung:

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Lehramtspraktikum APL1 WS 09/10 Versuch M3: Resonanz

Lehramtspraktikum APL1 WS 09/10 Versuch M3: Resonanz Lehramtspraktikum APL1 WS 09/10 Versuch M3: Resonanz I Vorbereitung Bereiten Sie sich auf die Beantwortung von Fragen zu folgenden Themen vor: Freie Schwingung (gedämpft, ungedämpft), erzwungene Schwingung,

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen

Mehr

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments.

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Musterlösung zur Klausur Grundlagen der Elektrotechnik I im SoSe 18 Aufgabe 1 Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Aufgabe 2 1. R 1 = R a und R b = R 2 R L R 2 +R L 2. R 1 + R 2 = 1

Mehr

Filter. Ortsverband Pulheim G40

Filter. Ortsverband Pulheim G40 Filter Ortsverband Pulheim G40 Filter, Einführung 16.02.2018 Filter 2 Vierpol I e I a U e Vierpol U a Übertragungsverhalten bei I a = 0 ist A(jω) A jω = U a U e 16.02.2018 Filter 3 Streuparameter it wissen.de

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 7.4.2 7.4.2 Musterlösung Grundlagen der Elektrotechnik B Seite von 4 Version vom 6. Mai 2 Aufgabe : Ausgleichsvorgang 2 Punkte).

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

Schwerpunktfach Physik und Anwendungen der Mathematik

Schwerpunktfach Physik und Anwendungen der Mathematik KANTONSSCHULE REUSSBÜHL MATURITÄTSPRÜFUNG 003 (Bv, Bh) Schwerpunktfach Physik und Anwendungen der Mathematik Bemerkungen: Zeit: 3 Stunden Jede vollständig gelöste Aufgabe wird mit 10 Punkten bewertet.

Mehr

Kleine Formelsammlung für IuK

Kleine Formelsammlung für IuK Kleine Formelsammlung für IuK Florian Franzmann 17. März 4 Inhaltsverzeichnis 1 Dezimale Vielfache und Teile von Einheiten Konstanten 3 Shannon 3.1 Informationsgehalt...................................

Mehr

1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Name:... Vorname:... Matr.-Nr.:... Bewertung. Bearbeitungszeit: 135 Minuten

1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Name:... Vorname:... Matr.-Nr.:... Bewertung. Bearbeitungszeit: 135 Minuten 1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur 2013 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bearbeitungszeit: 135

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand C eines Kondensators soll mit Hilfe einer spannungsrichtigen Messschaltung (vergleiche Versuch 1) bei verschiedenen

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

Rückkopplung und Schwingung

Rückkopplung und Schwingung Sie werden in diesem Versuch die Rückkopplung von Verstärkern als ein Verfahren kennen lernen, die Verluste in elektrischen Schwingkreisen am ohmschen eitungswiderstand der Spule R so auszugleichen, dass

Mehr

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS Messtechnikpraktikum

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS Messtechnikpraktikum Friedrich-Schiller-Universität Jena Physikalisch-Astronomische Fakultät SS 2008 Protokollbuch Messtechnikpraktikum Erstellt von: Christian Vetter (894) Helena Kämmer (92376) Christian.Vetter@Uni-Jena.de

Mehr

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation 1. Oktober 2015 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation Aufgabe 1. Ersatzzweipole a) Berechnen Sie die Bauteilwerte für R r und L

Mehr

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation Aufgabe 1. Ersatzzweipole a) Berechnen Sie die Bauteilwerte für R r und

Mehr

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Übung 19 Resonanz Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen, was eine

Mehr

Komplexe Widerstände

Komplexe Widerstände Komplexe Widerstände Abb. 1: Versuchsaufbau Geräteliste: Kondensator 32μ F 400V, Kapazitätsdekade, Widerstandsdekade, Widerstand ( > 100Ω), Messwiderstand 1Ω, verschiedene Spulen, Funktionsgenerator Speicheroszilloskop,

Mehr

Division komplexer Zahlen

Division komplexer Zahlen Division komplexer Zahlen Der Quotient z /z 2 zweier komplexer Zahlen z k = x k + iy k = r k exp(iϕ k ) ist Speziell ist x x 2 + y y 2 x 2 2 + y 2 2 + x 2y x y 2 x 2 2 + y 2 2 i = r r 2 exp(i(ϕ ϕ 2 )).

Mehr

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Aufgaben 19 Resonanz Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen, was eine

Mehr

TR - Transformator Blockpraktikum - Herbst 2005

TR - Transformator Blockpraktikum - Herbst 2005 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Sommersemester 2013 Grundlagen der Elektrotechnik I Datum: 09. September 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1 AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN TOBIAS FREY & FREYA GNAM, GRUPPE 6, DONNERSTAG 1. AUFGABE 1 An das Winkel-Zeit-Diagramm (Abb. 1) haben wir eine einhüllende e-funktion der Form e = Ae βt angelegt.

Mehr

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV AUSWERTUNG: ELEKTRISCHE MESSMETHODEN TOBIAS FREY, FREYA GNAM, GRUPPE 6, DONNERSTAG 1. MESSUNGEN BEI GLEICHSTROM Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 7, 15V. 1.1. Innenwiderstand

Mehr

Protokoll zum Versuch

Protokoll zum Versuch Protokoll zum Versuch Elektronische Messverfahren Kirstin Hübner Armin Burgmeier Gruppe 15 3. Dezember 2007 1 Messungen mit Gleichstrom 1.1 Innenwiderstand des µa-multizets Zunächst haben wir in einem

Mehr

Wechselstromwiderstände: Serienschwingkreis

Wechselstromwiderstände: Serienschwingkreis E10 Name: Wechselstromwiderstände: Serienschwingkreis Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Prof. Dr.-Ing. habil. Andreas Binder Praktikum Grundlagen der Elektrotechnik Versuch 5.2 Schwingkreise & Wellenausbreitung - Musterprotokoll - Praktikum: Grundlagen der Elektrotechnik 5 / 2 Schwingkreise

Mehr