Feder-, Faden- und Drillpendel

Größe: px
Ab Seite anzeigen:

Download "Feder-, Faden- und Drillpendel"

Transkript

1 Dr Angela Fösel & Dipl Phys Tom Michler Revision: Eine Schwingung (auch Oszillation) bezeichnet den Verlauf einer Zustandsänderung, wenn ein System auf Grund einer Störung aus dem Gleichgewicht gebracht und durch eine rücktreibende Kraft wieder in Richtung des Ausgangszustandes gezwungen wird Grundsätzlich basiert das Schwingen eines Systems auf der periodischen Energieumwandlung zwischen zwei Energieformen Dabei durchläuft das System wiederholt nach einem festen Zeitintervall den Ausgangszustand In diesem Versuch sollen Sie verschiedene Schwingungsarten (Feder-, Faden und Torsionsschwingung) untersuchen 1

2 1 Vorbereitungen Zur Einarbeitung in diesen Versuch sollten Sie neben den allgemeinen Kenntnissen der klassischen Mechanik vor allem folgende Punkte vertiefen: ˆ Begrifflichkeiten mechanische (harmonische) Schwingungen ˆ Erklärung und Erläuterung des linearen Kraftgesetz (Gesetz von Hook) ˆ Herleitung der Bewegungsgleichungen (DGL) für mechanische harmonische Schwingungen (Federpendel und mathematisches Pendel) ˆ Erklärung der Begriffe Drehmoment, Trägheitsmoment, Steiner scher Satz im physikalischen Zusammenhang ˆ Erläuterung und Darstellung physikalischer Pendel und Herleitungen der Bewegungsgleichungen (DGL) ˆ Kenntnisse und Erläuterungen der Gesetzmäßigkeiten des Feder, Faden- und Drillpendels In der schriftlichen Vorbereitung gehen Sie neben der allg Beschreibung des Versuchs auf die Bewegungsgleichungen und Lösungen von n ein Achten Sie darauf, dass bestimmte Teilaufgaben in der Vorbereitung, also vor dem Versuchstag durchzuführen sind 2 Theorie 21 Federpendel Eine Schraubfeder der Federkonstanten D erfährt im Schwerefeld der Erde (g Fallschbeschleunigung) durch Anähngen einer Masse m eine Verlängerung l, die durch das Hook sche Gesetz bestimmt ist Es gilt: m g = D l (1) Versetzt man die Masse in Schwingungen parallel zur Achse der Schraubenfeder, so erhält man für nicht allzu große Schwingungsamplituden (Gültigkeitsbereich des Hook schen Gesetzes!) eine harmonische Schwingung mit der Schwingungsdauer m D (2) Die Schwingungsdauer ist also unabhängig von der Amplitude Nach Gl (2) wäre für m = 0 kg auch T = 0 s Dies ist nicht der Fall, da auch die Feder eine Masse m F besitzt Zur Berücksichtigung der Federmasse muss in Gleichung (2) statt m eine effektive Masse 2

3 m eingesetzt werden Sie ergibt sich aus der Pendelmasse m und der Federmasse m F zu m = m + m F (3) 3 Für ein reales Federpendel gilt somit: 211 Aufgaben zum Federpendel m + m f 3 D 1 Leiten Sie durch Aufstellen der Bewegungsgleichung und mit einem geeigneten Lösungsansatz den Audruck (2) her! (In der Vorbereitung!) 2 Bauen Sie aus den Einzelteilen (Stativmaterial, Schraubenfeder, Massestücke und Messlatte) eine Anordnung zur Untersuchung des Federpendels auf und fertigen Sie eine Skizze der Anordnung 3 Messen Sie für 5 verschiedene Massen m zwischen 20 g und 100 g die Dehnung l der Feder und bestimmen Sie jeweils die dazugehörige Schwingungsdauer T Mitteln Sie hierzu T über mindesten n = 20 Schwingungen Berechnen Sie aus den Messwerten die Mittelwerte für D/g und D Berechnen Sie aus diesen beiden Mittelwerten die Fallbeschleunigung g, führen dazu eine Fehlerbetrachtung durch und vergleichen Sie Ihr Ergebnis mit dem Literaturwert für g Ein Muster für die Darstellung der Ergebnisse gibt folgende Tabelle 1 m l D/g = m/ l n nt T T 2 D = 4π 2 m /T 2 in g in cm in kg/m in s in s in s 2 in N/m (4) Tabelle 1: Mustertabelle zur Erfassung der Messergebnisse zur Dehnung l und der Schwingungsdauer T eines Federpendels sowie daraus zu berechnende Werte für die Federkonstante D bzw D/g (g: Fallbeschleunigung, n: Anzahl der Schwingungen, m : effektive Masse) 4 Tragen Sie die Messwerte aus Tabelle 1 grafisch als m = f( l) und m = f(t 2 ) auf Welche Kurven müssen sich aufgrund der theoretischen Beziehungen Gl (1) und Gl (4) ergeben? Überzeugen Sie sich, dass der m-achsenabschnitt bei T 2 = 0 s 2 durch Gl (3) und Gl (4) gut wiedergegeben wird Bestimmen Sie aus der Steigung der Kurven die Federkonstante D bzw das Verhältnis D/g und vergleichen Sie diese Werte mit den in Tabelle 1 errechneten Mittelwerten 3

4 22 Fadenpendel Als Fadenpendel oder mathematisches Pendel bezeichnet man eine Anordnung, bei der eine möglichst punktförmige Masse m an einem (im Vergleich zur Masse m) masselosen Faden der Länge l aufgehängt ist Schwingungen nicht zu großer Amplitude senkrecht zum Faden sind ebenfalls harmonische Schwingungen Für ihre Schwingungsdauer eines Fadenpendels (Aplitude ϕ 0 1)gilt: l g (5) Die Schwingungsdauer beim Fadenpendel ist also unabhängig von der Amplitude und von der Masse 221 Aufgaben zum Fadenpendel 1 Leiten Sie durch Aufstellen der Bewegungsgleichung und mit einem geeigneten Lösungsansatz den Ausdruck (5) her! Begründen Sie, warum beim Fadenpendel eine harmonische Schwingung nur für kleine ϕ gilt (Tipp: Taylorreihe für sin x) (In der Vorbereitung!) 2 Messen Sie mit der Stahlkugel als Pendelmasse für 5 verschiedene Längen l des Pendelfadens die jeweilige Schwingungsdauer T (siehe Tabelle 2) Stellen Sie l = f(t 2 ) grafisch dar und bestimmen Sie aus der Steigung der Kurve einen Wert für die Fallbeschleunigung g l in cm n T ges (n) in s T = T ges (n)/n in s T 2 in s 2 Tabelle 2: Mustertabelle zur Erfassung der Messergebnisse eines Fadenpendels der Länge l (T : Schwingungsdauer, n: Anzahl der Perioden, messen Sie mindestens 10 pro Länge) 3 Überzeugen Sie sich, dass die Schwingungsdauer T beim Fadenpendel nicht von der Pendelmasse m abhängt Messen Sie dazu mit einer bestimmten Pendellänge die Schwingungsdauer T sowohl für die Stahlkugel als auch für eine gleich große Holzkugel 4

5 23 Drillpendel Ein drehbar gelagerter Körper, der durch eine Schneckenfeder in seiner Ruhelage gehalten wird, kann Drehschwingungen ausführen Für die Schwingungsdauer eines Drillpendels gilt: J D (6) Dabei ist J das Trägheitsmoment des Körpers in Bezug auf die gegebene Drehachse und D die Winkelrichtgröße der Schneckenfeder D kann unter Verwendung des linearen Zusammenhangs zwischen Auslenkwinkel ϕ und rücktreibendem Drehmoment M der Schneckenfeder bestimmt werden: 231 Satz von Steiner M = D ϕ (7) Wir betrachten nun das Trägheitsmoment J eines Körpers der Masse m, bei dem die Drehachse nicht durch den Schwerpunkt geht, sondern um eine Drehachse, die parallel zum Schwerpunkt im Abstand a verläuft Ist J 0 das Trägheitsmoment für eine Achse durch den Schwerpunkt, dann beträgt J für eine dazu parallel Achse im Abstand a vom Schwerpunkt: J = J 0 + m a 2 (8) Abbildung 1: Ein Körper rotiert im Abstand h um eine zum Schwerpunkt parallelen Achse 5

6 232 Aufgaben zum Drillpendel 1 Leiten Sie durch Aufstellen der Bewegungsgleichung und mit einem geeigneten Lösungsansatz den Audruck (6) her! (In der Vorbereitung!) 2 Stellen Sie die jeweiligen korrespondierenden Größen zwischen Feder- und Drillpendel gegenüber (F, m, etc) (In der Vorbereitung!) 3 Bestimmen Sie die Winkelrichtgröße D der Schneckenfeder: In einer direkten Messung wird dazu die Feder durch geeignete Drehmomente um +180 und um 180 verdrillt Wählen Sie zur Erzeugung der Drehmomente jeweils 2 verschiedene Hebelarme für den Angriffspunkt der Kraft, so dass Sie insgesamt 4 Messwerte erhalten, aus denen Sie schließlich einen Mittelwert für D berechnen können (Zubehör: Dynamometer und aufgesteckter Stab) 4 Bestimmen Sie aus der Schwingungsdauer T und der Winkelrichtgröße D das Trägheitsmoment J des Stabs, der Scheibe, der Kugel und des Hohlzylinders Für den Vollzylinder soll das Trägheitsmoment für 2 Drehachsen bestimmt werden Messen Sie T gemittelt über fünf Einzelmessungen 5 Vergleichen Sie Ihre Messdaten mit den theoretischen Werten (siehe Formelsammlung!) 6 Überprüfen Sie den Satz von Steiner an der Scheibe, die auch außerhalb des Mittelpunkts (Schwerpunkt) aufgesteckt werden kann Wählen Sie 2 verschiedene Abstände a und messen Sie analog zur Aufgabe 4 6

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Elektrische Schwingungen

Elektrische Schwingungen Dr. Angela Fösel & Dipl. Phys. Tom Michler Revision: 14.10.2018 Ein elektrischer Schwingkreis ist eine (resonanzfähige) elektrische Schaltung aus einer Spule (L) und einem Kondensator (C), die elektrische

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

DREHSCHWINGUNGEN AN DER DRILLACHSE

DREHSCHWINGUNGEN AN DER DRILLACHSE 16 REHSCHWINGUNGEN AN ER RILLACHSE 1) Einführung ie Bewegung eines ausgedehnten starren Körpers lässt sich im allgemeinen durch die Überlagerung zweier Bewegungen, nämlich einer translatorischen und einer

Mehr

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 .1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung

Mehr

Protokoll. zum Physikpraktikum. Versuch Nr.: 3 Gekoppelte Schwingungen. Gruppe Nr.: 1

Protokoll. zum Physikpraktikum. Versuch Nr.: 3 Gekoppelte Schwingungen. Gruppe Nr.: 1 Protokoll zum Physikpraktikum Versuch Nr.: 3 Gekoppelte Schwingungen Gruppe Nr.: 1 Theoretische Grundlagen Mathematisches Pendel: Bei einem mathematischen Pendel ist ein Massepunkt an einem Ende eines

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

Laborversuche zur Physik 1 I - 7. Trägheitsmomente

Laborversuche zur Physik 1 I - 7. Trägheitsmomente FB Physik Laborversuche zur Physik 1 I - 7 Trägheitsmomente Reyher Trägheitsmomente Ziele Beobachtung von Drehschwingungen, Bestimmung von Trägheitsmomenten, Verifizierung und Anwendung des Steiner'schen

Mehr

M 7 - Trägheitsmoment

M 7 - Trägheitsmoment 18..8 PHYSIKALISCHES PAKTIKU FÜ ANFÄNGE LGyGe ersuch: 7 - Trägheitsmoment Das Trägheitsmoment regelmäßiger Körper sollen gemessen werden. Literatur Gerthsen-Kneser-ogel: Physik; Kap.: Dynamik des starren

Mehr

Physikalisches Pendel

Physikalisches Pendel Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Physikalisches Praktikum 2. Semester

Physikalisches Praktikum 2. Semester Mathias Arbeiter 06.Mai 2004 Gunnar Schulz Betreuer: Dr.Walter Physikalisches Praktikum 2. Semester - Bestimmung von Trägheitsmomenten - mit Hilfe von Drehschwingungen 1 Aufgaben: 1. Das Direktionsmoment

Mehr

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuch P1-15 Pendel Auswertung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze 3.1.11 1 Inhaltsverzeichnis 1 Reversionspendel 3 1.0 Eichmessung................................... 3 1.1 Reduzierte Pendellänge.............................

Mehr

Physikalisches Anfaengerpraktikum. Trägheitsmoment

Physikalisches Anfaengerpraktikum. Trägheitsmoment Physikalisches Anfaengerpraktikum Trägheitsmoment Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Montag, 1. März 005 email: Marcel.Engelhardt@mytum.de Weisgerber@mytum.de 1 1. Einleitung

Mehr

Abschlußprüfung an Fachoberschulen: Physik 1996 Aufgabe III

Abschlußprüfung an Fachoberschulen: Physik 1996 Aufgabe III Abschlußprüfung an Fachoberschulen: Physik 1996 Aufgabe III 1.0 Die Abhängigkeit des Betrags der Coulombkraft F C von den Punktladungen gen Q 1, Q und ihrem Abstand r im Vakuum wird durch das Coulombgesetz

Mehr

S1 Bestimmung von Trägheitsmomenten

S1 Bestimmung von Trägheitsmomenten Christian Müller Jan Philipp Dietrich S1 Bestimmung von Trägheitsmomenten Versuch 1: a) Versuchserläuterung b) Messwerte c) Berechnung der Messunsicherheit ud u Versuch 2: a) Erläuterungen zum Versuchsaufbau

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Trägheitsmoment (TRÄ)

Trägheitsmoment (TRÄ) Physikalisches Praktikum Versuch: TRÄ 8.1.000 Trägheitsmoment (TRÄ) Manuel Staebel 3663 / Michael Wack 34088 1 Versuchsbeschreibung Auf Drehtellern, die mit Drillfedern ausgestattet sind, werden die zu

Mehr

Physikalisches Praktikum

Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 1.6: Bestimmung von Trägheitsmomenten mit dem Torsionspendel Gruppe 2, Mittwoch: Patrick Lipinski, Sebastian Schneider Patrick Lipinski, Sebastian Schneider Seite 1 von

Mehr

Elektrischer Widerstand

Elektrischer Widerstand Dr Angela Fösel & Dipl Phys Tom Michler Revision: 21092018 Abbildung 1: Ohms Drehwage, mit der er den Stromfluss in Drähten messen und daraus ihren Widerstand bestimmen konnte Die elektrische Ladung war

Mehr

Laborversuche zur Physik I. Versuch I-02: Trägheitsmomente

Laborversuche zur Physik I. Versuch I-02: Trägheitsmomente Laborversuche zur Physik I Versuch I-02: Trägheitsmomente Versuchsleiter: Autoren: Podlozhenov Kai Dinges Michael Beer Gruppe: 15 Versuchsdatum: 28. November 2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise

Mehr

Weitere Beispiele zu harmonischen Schwingungen

Weitere Beispiele zu harmonischen Schwingungen Weitere Beispiele zu harmonischen Schwingungen 1. Schwingung eines Wagens zwischen zwei horizontal gespannten, gleichartigen Federn Beide Federn besitzen die Federhärte D * und werden nur auf Zug belastet;

Mehr

Periodendauer eines Fadenpendels 9/10

Periodendauer eines Fadenpendels 9/10 1. Bezeichnung des Materials Periodendauer eines Fadenpendels 2. Autor(en) 3. Doppeljahrgangsstufe / Fach 9/10 Physik 4. Rahmlehrplanbezug 5. Einsatz der Aufgabe im Unterricht Lernaufgabe Hauptsächliche

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Jens Küchenmeister ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Jens Küchenmeister ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Jens Küchenmeister (153810) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Da die Schwingung sowohl in der Natur als auch in der

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

Universität Ulm Fachbereich Physik Grundpraktikum Physik

Universität Ulm Fachbereich Physik Grundpraktikum Physik Universität Ulm Fachbereich Physik Grundpraktikum Physik Versuchsanleitung Gekoppelte Pendel Nummer: 02 Kompiliert am: 13. Dezember 2018 Letzte Änderung: 11.12.2018 Beschreibung: Bestimmung der Eigenfrequenzen

Mehr

Versuch M1: Feder- und Torsionsschwingungen

Versuch M1: Feder- und Torsionsschwingungen Versuch M1: Feder- und Torsionsschwingungen Aufgaben: Federschwingungen: 1 Bestimmen Sie durch Messung der Dehnung in Abhängigkeit von der Belastung die Richtgröße D (Federkonstante k) von zwei Schraubenfedern

Mehr

Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus.

Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus. Versuch Beschreibung von Schwingungen Wir beobachten die Bewegung eines Fadenpendels Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus.

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

LS5. Trägheitsmoment und Steiner scher Satz Version vom 23. Februar 2016

LS5. Trägheitsmoment und Steiner scher Satz Version vom 23. Februar 2016 Trägheitsmoment und Steiner scher Satz Version vom 23. Februar 2016 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe................................. 2 1.1.2 Trägheitsmoment............................

Mehr

A7 Physikalisches Pendel

A7 Physikalisches Pendel Tobias Krähling email: Homepage: 21.03.2007 Version: 1.0 Stichworte: Literatur: Kräfte und Drehmomente am Pendel, Trägheitsmoment, Schwingungsdifferentialgleichung,

Mehr

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2 19 9. Harmonische Schwingungen (Sinusschwingungen) Der Punkt P rotiert gleichförmig in der Grundebene um den Ursprung O mit der Winkelgeschwindigkeit in positivem Drehsinn. Zur Zeit t = 0 schliesst uuur

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Bestimmung der Erdbeschleunigung mit dem Reversionspendel und dem Fadenpendel

Bestimmung der Erdbeschleunigung mit dem Reversionspendel und dem Fadenpendel Bestimmung der Erdbeschleunigung mit dem Reversionspendel und dem Fadenpendel Denis Nordmann http://physik.co-i60.com 9. Mai 2013 dn (physik.co-i60.com) Bestimmung der Erdbeschleunigung 9. Mai 2013 1 /

Mehr

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Aufgaben 17 Schwingungen Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen,

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Laborversuche zur Physik I. I-01 Pendelversuche. Versuchsleiter:

Laborversuche zur Physik I. I-01 Pendelversuche. Versuchsleiter: Laborversuche zur Physik I I-01 Pendelversuche Versuchsleiter: Autoren: Kai Dinges Michael Beer Gruppe: 15 Versuchsdatum:?.? 2005 1 Inhaltsverzeichnis 2 Aufgaben und Hinweise 2 2.1 Federpendel.....................................

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

Fachhochschule Flensburg. Torsionsschwingungen

Fachhochschule Flensburg. Torsionsschwingungen Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: M5 Torsionsschwingungen Gliederung: Seite 1. Das Hookesche Gesetz für Torsion 1 1.1 Grundlagen der

Mehr

Lösungen Aufgabenblatt 11

Lösungen Aufgabenblatt 11 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 11 Übungen E1 Mechanik WS 2017/2018 ozent: Prof. r. Hermann Gaub Übungsleitung: r. Martin Benoit und r. Res Jöhr Verständnisfragen

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

Protokoll zum Grundversuch Mechanik

Protokoll zum Grundversuch Mechanik Protokoll zum Grundversuch Mechanik Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 006/007 Grundpraktikum I Tutor: Sarah Dierk 09.01.007 Inhaltsverzeichnis 1 Ziel Theorie 3 Versuch

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Aufgaben zum Physikpraktikum : 1. E-Modul: (die angegebenen Seitenzahlen beziehen sich immer auf die jeweilige Protokollanleitung)

Aufgaben zum Physikpraktikum : 1. E-Modul: (die angegebenen Seitenzahlen beziehen sich immer auf die jeweilige Protokollanleitung) Aufgaben zum Physikpraktikum : 1. E-Modul: (die angegebenen Seitenzahlen beziehen sich immer auf die jeweilige Protokollanleitung) Messen Sie die Verlängerung des Drahtes δl in mm in Abhängigkeit von der

Mehr

gp : Gekoppelte Pendel

gp : Gekoppelte Pendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch gp : Gekoppelte Pendel Dr. Stephan Giglberger Dr. Tobias Korn Manuel

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

(a) In welcher Zeit nach einem Nulldurchgang ist der Betrag der Auslenkung

(a) In welcher Zeit nach einem Nulldurchgang ist der Betrag der Auslenkung Schwingungen SW1: 2 Ein Körper bewegt sich harmonisch. Bei einer Auslenkung aus der Ruhelage um x = 7,5 mm erfährt er eine Beschleunigung von a = 1,85 m s 2. Wie viele Schwingungen pro Sekunde führt er

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

Versuch M6 für Nebenfächler Trägheitsmoment und Drehschwingungen

Versuch M6 für Nebenfächler Trägheitsmoment und Drehschwingungen Versuch M6 für Nebenfächler Trägheitsmoment und Drehschwingungen I. Physikalisches Institut, Raum HS126 Stand: 21. Oktober 2015 Generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik Versuch 1: Massenträgheitsmoment 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Schwingungsdauer, Winkelrichtgröße, Massenträgheitsmoment,

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

Physik-Übung * Jahrgangsstufe 8 * Herleitung einer Formel für die Spannenergie

Physik-Übung * Jahrgangsstufe 8 * Herleitung einer Formel für die Spannenergie Physik-Übung * Jahrgangsstufe 8 * Herleitung einer Formel für die Spannenergie A. Hookesches Gesetz Die Dehnung s einer Feder hängt ab von der Kraft F, mit der an der Feder gezogen wird. Untersuche den

Mehr

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a:

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a: Gruppe 8 Björn Baueier Protokoll zu Versuch M1: Pendel 1. Einleitung Die Eigenschaften und Bewegungen der in diese Versuch untersuchten Fadenund Federpendel, werden durch eine besonders einfache haronische

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

A03 Gekoppelte Pendel

A03 Gekoppelte Pendel A3 Gekoppelte Pendel Beispiele für gekoppelte Oszillatoren Ziele Zahlreiche Phänomene der Physik lassen sich im Rahmen eines Modells gekoppelter Oszillatoren beschreiben: ie Anregung molekularer Schwingungs-

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Robert-Bosch-Gymnasium

Robert-Bosch-Gymnasium Seite - 1 - Gedämpfte, Resonanz am Drehpendel 1. Theoretische und technische Grundlagen Ein flaches Kupferspeichenrad ist in der Mitte leicht drehbar gelagert; die Gleichgewichtslage wird dabei durch zwei

Mehr

M,dM &,r 2 dm bzw. M &,r 2!dV (3)

M,dM &,r 2 dm bzw. M &,r 2!dV (3) - A8.1 - ersuch A 8: Trägheitsmoment und Steinerscher Satz 1. Literatur: Walcher, Praktikum der Physik Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Gerthsen-Kneser-ogel, Physik Stichworte: 2. Grundlagen

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Fakultät für Physik der LMU

Fakultät für Physik der LMU Fakultät für Physik der LMU 11.04.2013 Nachholklausur zur Vorlesung E1: Mechanik für Studenten der Physik für das Lehramt an Gymnasien und im Nebenfach (6 ECTS) Wintersemester 2012/13 Prof. Dr. Joachim

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

Schwingungen, Hookesches Gesetz bei Federn und Gummibändern

Schwingungen, Hookesches Gesetz bei Federn und Gummibändern Universität Bielefeld Fakultät für Physik Physik und ihre Didaktik Prof. Dr. Bärbel Fromme Schwingungen, Hookesches Gesetz bei Federn und Gummibändern Versuchziele Messung des Weg-Zeit-Gesetzes der Schwingung

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

1.1 Bestimmung der Erdbeschleunigung mit dem Pendel

1.1 Bestimmung der Erdbeschleunigung mit dem Pendel Kapitel 1 Mechanik 1.1 Bestimmung der Erdbeschleunigung mit dem Pendel Aufgaben In diesem Experiment werden die Schwingungen eines physikalischen Pendels untersucht. Aus den Messungen der Schwingungsdauern

Mehr

W Themenkreis 3: Translation und Rotation sowie Themenkreis 8: Trägheitsmoment. 5. Harmonische Schwingungen. Schwingungen eines Federpendels

W Themenkreis 3: Translation und Rotation sowie Themenkreis 8: Trägheitsmoment. 5. Harmonische Schwingungen. Schwingungen eines Federpendels 5. Harmonische Schwingungen Fr m Bild 5.1. Federpendel F r = -Dx F r -A 0 A x Einführung von Grundbegriffen der Schwingungslehre am Beispiel des Feder- und des Fadenpendels. Überprüfung der Geset- V ze

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 2

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 2 1 .1.5 Experimentelle Aspekte von Kräften Bisher behandelt: - Gravitationskraft - Rückstellkraft einer Feder - Lorentzkraft: elektrisches und magnetisches Feld - Reibungskräfte - Scheinkräfte Gravitationskonstante

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)

Mehr

Schraubenfederpendel (Artikelnr.: P )

Schraubenfederpendel (Artikelnr.: P ) Lehrer-/Dozentenblatt Schraubenfederpendel (Artikelnr.: P1002700) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Mechanik Unterthema: Schwingungen und Wellen Experiment:

Mehr

Aus der Schwingungsdauer eines physikalischen Pendels.

Aus der Schwingungsdauer eines physikalischen Pendels. 2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Versuch 2 Gekoppelte Pendel. 20. Oktober 2006 durchgefuhrt am 09. Oktober 2006 Betreuer: Tobias Roder

Versuch 2 Gekoppelte Pendel. 20. Oktober 2006 durchgefuhrt am 09. Oktober 2006 Betreuer: Tobias Roder 1 Versuch Gekoppelte Pendel Sascha Hankele sascha@hankele.com Kathrin Alpert kathrin.alpert@uni-ulm.de 0. Oktober 006 durchgefuhrt am 09. Oktober 006 Betreuer: Tobias Roder INHALTSVERZEICHNIS Inhaltsverzeichnis

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Versuch 6/3 Gekoppelte Schwingungen

Versuch 6/3 Gekoppelte Schwingungen Versuch 6/3 Gekoppelte Schwingungen Versuchdurchührung: 19.11.009 Praktikanten: Sven Köppel, Sebastian Helgert Assistent: Simon Untergrasser Theoretischer Hintergrund: Es soll die Bewegung eines einzelnen

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

1. ZIEL 2. FRAGEN ZUR VORBEREITUNG. A02 Schwingungen A02

1. ZIEL 2. FRAGEN ZUR VORBEREITUNG. A02 Schwingungen A02 Schwingungen 1. ZIEL In diesem Versuch sollen Sie Schwingungen und ihre Gesetzmäßigkeiten untersuchen. Sie werden die Erdbeschleunigung messen und mit einem Foucault-Pendel die Drehung der Erde um ihre

Mehr

Experiment I: Pappstreifen in Bewegungsrichtung. Experiment II: Pappstreifen quer zur Bewegungsrichtung

Experiment I: Pappstreifen in Bewegungsrichtung. Experiment II: Pappstreifen quer zur Bewegungsrichtung Abitur 2002 Physik Lk Seite 3 Pflichtaufgaben (30 BE) Aufgabe P1 Bewegungen auf der Luftkissenbahn 1. Auf einer Luftkissenbahn wird in zwei Experimenten die Bewegung eines Gleiters untersucht. Die Anfangsgeschwindigkeit

Mehr

Themengebiet: Mechanik

Themengebiet: Mechanik Stand: 15. Januar 018 Seite 1 Themengebiet: Mechanik Der Versuch besteht aus zwei Teilversuchen. Im ersten Teil wird mit einem Reversionspendel die Erdbeschleunigung im Praktikumsraum bestimmt. Im zweiten

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr