7.3 Lorentz Transformation
|
|
|
- Paul Beutel
- vor 9 Jahren
- Abrufe
Transkript
1 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche Transformationen des Koordinatensstems K K beschränken, bei denen der Koordinatenursprung, das heisst der Raumeitpunkt r = und t =, beibehalten wird. Außerdem soll bei der Transformation der Koordinaten der Betrag des Vektors gemäß der Minkowski Norm konstant gehalten werden. Im einfachen 3-dimensionalen Raum entsprechen solche Transformationen.B. den Drehungen des Koordinatensstems. In diesem Fall bleibt der Koordinatenursprung identisch, die Länge der räumlichen Vektoren bleibt erhalten. Ein Beispiel für eine Koordinatentransformation, die über eine einfache Drehung hinausgeht und die Transformation der Koordinate Zeit mit einbeieht, ist die Transformation auf ein Koordinatensstem K, das sich aus der Sicht des Koordinatensstems K mit einer Geschwindigkeit v = vê, also parallel ur -Achse bewegt. Dabei soll unächst einmal angenommen werden, dass die Achsen des raumartigen Koordinatensstems K parallel u denen des Sstems K stehen, wie das auch in Abb. 7.7 skiiert ist. Diese Transformation ist ein Speialfall der allgemeinen Lorent Transformation, den wir in den folgenden Diskussionen häufig als Beispiel heraniehen werden. Abbildung 7.7: Standard Beispiel für eine Lorent Transformation Ein Raumeitpunkt werde im Koordinatensstem K durch die Koordinaten des ugehörigen kontravarianten Vektors µ definiert. Die Koordinaten des gleichen Raumeitpunktes im Koordinatensstem K ergeben sich durch die lineare Transformationsgleichung = = a ct + a 1 + a 2 + a 3 1 = = a 1 ct + a a a = = a 2 ct + a a a = = a 3 ct + a a a 3 3 (7.23) In der kompakten Schreibweise, die wir im vorigen Abschnitt eingeführt haben, reduieren sich diese Gleichungen auf ν = a ν µ µ. (7.24)
2 7.3. LORENTZ TRANSFORMATION 261 Natürlich kann man die Koeffiienten a ν µ auch als Elemente einer 4 4 Matri A auffassen, wobei der erste Inde ν sich auf die Zeile und der weite Inde µ auf die Spalte beieht, womit die Transformation (7.23) sich als Multiplikation einer Matri mit einem Spaltenvektor schreiben lässt = A. (7.25) Die Lorent Transformation für das Standardbeispiel eines Boostes des Koordinatensstem K in -Richtung mit einer Geschwindigeit v (siehe auch Abb. 7.7) wird durch die Transformationsmatri 1 β 2 A = β mit β = v c, (7.26) 1 beschrieben. Dies bedeutet, dass ein Ereignispunkt, der im Koordinatensstwm K durch die Koordinaten µ = (ct,,, ) dargestellt ist im geboosteten Koordinatenstem K die Koordinaten besitt. 1 β β ct ct β βct+, (7.27) Zum Nachweis, dass diese Transformation (7.26) die richtige Lorent Transformation ist, machen wir die folgenden Bemerkungen: Bei der Koordinatentransformation (7.27) bleibt der Betrag des Vektors im Sinne der Metrik des Minkowski Raumes erhalten. Es gilt nämlich c 2 t [ = (ct β) 2 ( βct) 2] β 2 = c 2 t Im Koordinatensstem K werden die Ereignispunkte, die die aktuelle Position des räumlichen Koordinatenursprungs des geboosteten Sstems beschreiben durch die Koordinaten = ct und 1 = =, 2 = =, 3 = = erfasst. Mit der Transformation (7.27) ergibt sich für diese Ereignispunkte im geboosteten Sstem ct β βct+ ct 1 β 2, was natürlich genau dem räumlichen Koordinatenursprung entspricht. Die Zeit t = t 1 β 2 ist die Zeit, die von einem Messknecht gemessen wird, der sich mit dem Koordinatenursprung von K mitbewegt.
3 262 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE Für Geschwindigkeiten des Boostes v, die sehr klein sind verglichen mit der Lichtgeschwindigkeit c sollte die Lorent Transformation (7.27) natürlich die Ergebnisse der entsprechenden nicht-relativistischen Galilei Transformation liefern. In diesem Fall ist β = v/c sehr klein verglichen mit 1 und wir können berechnen = 1 β 2 [ = ( ) β2 + 3 ] 8 β4 + ( ). Beim Übergang ur weiten Zeile wurde die Talorentwicklung benutt, die für sehr kleine Werte von β natürlich sehr rasch konvergiert, so dass im nicht-relativistischen Grenfall β der Übergang ur dritten Zeile und damit um Ergebnis der Galilei Transformation legitimiert ist. Die Umkehrtansformation u (7.27) lautet ct 1 β 2 β β β +. (7.28) Dies kann man durch Ausrechnen betstätigen oder durch die Überlegung, dass ja das Koordinatensstem K aus der Sicht von K mit der Geschwindigkeit v in Richtung geboostet wird. Die Umkehrtransformation ergibt sich also aus (7.27) einfach dadurch, dass v v bw. β β gesett wird. Mit (7.27) haben wir die Lorent Transformation für den einfachen Boost in -Richtung kennen gelernt. Als nächstes Beispiel wollen wir nun die Transformation betrachten, die in Abb. 7.8 skiiert ist. Das Sstem K bewegt sich auch in diesem Beispiel mit einer Geschwindigkeit v in Richtung der -Achse von K ist aber außerdem noch um einen Winkel φ gedreht. Diese Koordinatentransformation behandeln wir in wei Schritten: 1. Im ersten Schritt transformieren wir auf das Koordinatensstem K, was durch die Boost-Transformation (7.24) geschieht α = a α µ µ, (7.29) wobei die Koeffiienten a α µ durch die Elemente der Matri A in (7.26) definiert sind. 2. Im weiten Schritt berechnen wir die Koordinaten eines Ereignispunktes aus den Koordinaten des Sstems K in die des Sstems K um. Bei dieser Transformation ruht der Koordinatenursprung, es erfolgt ledigleich eine Drehung um die Achse mit dem Winkel φ. Diese Transformation berechnet sich gemäß ν = b ν α α, (7.3)
4 7.3. LORENTZ TRANSFORMATION 263 φ Abbildung 7.8: Beispiel für eine Lorent Transformation mit Drehung. Die -Achsen sind hier nicht dargestellt um die Abbildung übersichtlicher u gestalten. mit b ν α B = 1 cosφ sin φ sin φ cosφ 1 (7.31) Insgesamt ergibt sich also die Transformation u mit ν = b ν αa α µ µ = c ν µ µ (7.32) c ν µ = b ν αa α µ, was auch bedeutet, dass sich die Transformationmatric C c ν µ als Produkt der Matrien A mit B ergibt (Achtung: das Ergebnis hängt von der Reihenfolge der Faktoren A und B ab). Ein weiteres Beispiel ist in Abb. 7.9 skiiert. In diesem Fall wird das Koordinatensstem K in eine beliebige Richtung (nicht parallel ur -Achse) geboostet. Die ugehörige Transformation kann in 3 Schritte erlegt werden: 1. Transformation K K was einer Drehung um die -Achse um den Winkel φ entspricht, in Matrischreibweise: = B 1
5 264 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE φ Abbildung 7.9: Boost in beliebige Richtung 2. Boost eines Koordinatensstems K in Richtung der -Achse des Koordinatensstems K (dieses Sstem ist in Abb. 7.9 nicht dargestellt). Dies entspricht der einfachen Boost Transformation von (7.25) also = A 3. Das Koordinatensstem K ergibt sich aus K durch Drehung um die -Achse um den Winkel φ, also = B = B A = B A B 1 Allgemeine Lorent Transformationen können nun nach dem Schema dieser Beispiele durch Drehungen und Boost Transformationen generiert werden.
3D-Transformationen. Kapitel Translation Skalierung
Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder
Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand
Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche
ART 5. Kontravarianter und kovarianter Vierervektor
ART 5. Kontravarianter und kovarianter Vierervektor Wolfgang Lange. Oktober 205 B. Mathematische Hilfsmittel für die Aufstellung allgemein kovarianter Gleichungen. Über 5. Kontravarianter und kovarianter
7.4 Einige Konsequenzen aus der Lorentz Transformation
7.4. EINIGE KONSEQUENZEN AUS DER LORENTZ TRANSFORMATION 265 7.4 Einige Konsequenzen aus der Lorentz Transformation Um zu sehen welche Konsequenzen sich aus der Lorentz Transformation und damit ja eigentlich
3 Koordinatentransformationen
8 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 3 Koordinatentransformationen Für die Darstellung von dreidimensionalen Objekten wird grundsätlich eine Reihe von Transformationen ausgeführt, die von den
3D-Transformationen. Kapitel Translation Skalierung
Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder
Computergrafik Sommersemester 2004 Übungen
Sommersemester 4 Freiwillige Zusatzübung Aufgabe 6: Transformationen im zweidimensionalen aum Berechnen Sie die Transformationsmatri, die eine Szene zuerst um 3 Grad um den Ursprung dreht und anschließend
Lorentz-Transformation
Lorentz-Transformation Aus Sicht von Alice fliegt Bob nach rechts. Aus Sicht von Bob fliegt Alice nach links. Für t = t' = 0 sei also x(0) = x'(0) = Lichtblitz starte bei t = t' = 0 in und erreiche etwas
14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y
4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen
1.3 Transformation der Geschwindigkeit
[Griffiths 1.1.3, 1..1] 1.3 Transformation der Geschwindigkeit Seien S und S Inertialsysteme. S bewege sich gegenüber S mit der Geschwindigkeit V = V e 1. Es sei wieder β = V/c, γ = 1/ 1 β. Für ein Ereignis
5.3.3 Die Lorentz-Transformationen
5.3. EINSTEINS SPEZIELLE RELATIVITÄTSTHEORIE 135 Wir kennen bereits die Transformationen zwischen Inertialsystemen der Potentiale der Elektrodynamik. So sind ϕ und A für eine gleichmäßig, geradlinig bewegte
Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie
Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation
09. Lineare Abbildungen und Koordinatentransformationen
09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ
0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1
Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht
Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben. 1 E1 Ma 1 Lubov Vassilevskaya
Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben 1 E1 Lineare Transformationen: cc Aufgaben 1, 2 Aufgabe 1: Wenden Sie die Transformation T auf den Punkt P und auf den Vektor OP an. Beschreiben
Brückenkurs Mathematik. Mittwoch Freitag
Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs
Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7
Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3
Übung 8 : Spezielle Relativitätstheorie
Universität Potsdam Institut für Physik Vorlesung Theoretische Physik I LA) WS 13/14 M. Rosenblum Übung 8 : Spezielle Relativitätstheorie Besprechung am Montag, dem 03.0.014) Aufgabe 8.1 Zeigen Sie die
Eigenwerte und Eigenvektoren
Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig
Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung
Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele
2.3.1 Rechtshändiges und linkshändiges Koordinatensystem
2.3. Rechtshändiges und linkshändiges Koordinatensstem Die Koordinatenachsen im dreidimensionalen Raum lassen sich auf wei verschieden Arten anordnen: Linkshändig und Rechtshändig (s. Abbildung 2.9). Um
Analytische Geometrie, Vektorund Matrixrechnung
Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
Eigenwerte und Eigenvektoren
Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte
Lineare (affine) Abbildung
Lineare affine Abbildung A e 2 b a e Wir überziehen die Ebene neben dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +
Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems
Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)
Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub
Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub 6. Dezember 2004 2 Inhaltsverzeichnis 2 spezielle Relativitätstheorie
Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie
Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Michael Mittermair 29. August 2013 1 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 3 1.1 Warum heißt das so?.......................
Geometrie in der Ebene und im Raum
KAPITEL Geometrie in der Ebene und im Raum. Koordinaten Wir beschreiben nach einer Idee von René Descartes (596 650) jeden Punkt in der Ebene durch ein Paar reeller Zahlen. Die Menge der Paare reeller
24 Minkowskis vierdimensionale Raumzeit
24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8
Dr. Erwin Schörner Klausurenkurs zum Staatseamen (SS 205): Lineare Algebra und analtische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik
Kapitel 15 Lineare Gleichungssysteme
Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem
I.2.3 Minkowski-Raum. ~r x 3 benutzt.
I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer
03. Vektoren im R 2, R 3 und R n
03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen
Computergrafik 1 Übung
Prof. Dr. Andreas Butz Dipl.-Medieninf. Hendrik Richter Dipl.-Medieninf. Raphael Wimmer Computergrafik Übung Wiederholung Lineare Algebra: Vektoren, Matrizen, Transformationen in D und 3D Computergrafik
3 Matrizenrechnung. 3. November
3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige
Übungsaufgaben zu Kapitel 1 und 2
Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel und Aufgabe : Vereinfachen Sie die folgenden komplexen Ausdrücke
Klein-Gordon-Gleichung
Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2
03. Vektoren im R 2, R 3 und R n
03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
35 Matrixschreibweise für lineare Abbildungen
35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir
Tensoren. Duale Basis ermitteln Zusammenhänge
Tensoren Koordinatentransformation Metrische Matri (Metrischer Tensor Parallelogrammfläche Drehung um den Ursprung Orthogonale Matri Koordinatentransformation bei einer Drehung Tensoren in der Phsik Tensoren
Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n
Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler
Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41
Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und
Transformationen. 09-Transformationen
Transformationen 9-Transformationen Als Transformationen werden affine Transformationen im R n betrachtet. Alle derartigen Transformationen lassen sich darstellen als: A + b wobei A die quadratische Transformationsmatri
Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:
Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:
Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).
Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt
Mathematische Grundlagen
Kapitel 2 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 2. 3D-Koordinatensystem Weit
Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1
Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,
Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x).
1 Kapitel 1 Clifford-Algebren 1 Innere Produkte Sei k {R, C}, V stets ein endlich-dimensionaler k-vektorraum. Fehlende Beweise finden sich in der Literatur ([Art1], [Bou1], [Brie], [Cohn]). Definition.
Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen
Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β
KORREKTURANLEITUNGEN zum Testheft A1
Projekt Standardisierte schriftliche Reifeprüfung in Mathematik KORREKTURANLEITUNGEN zum Testheft A1 A1 Zahlen N Z Q R 0,03-6 π 3 10-3 1 Bemerkung: Die Aufgabe gilt nur dann als richtig gelöst, wenn alle
Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.
Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis
D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18
D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )
2.9 Gedämpfter Harmonischer Oszillator
72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen
Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015
Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten
Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen
Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können
12. Flächenmomente. Umwelt-Campus Birkenfeld Technische Mechanik II
Technische Mechanik 1. Flächenmomente Prof. Dr.-ng. T. Preußler Flächenmomente werden in der tatik ur Berechnung von pannungen infolge Biegung, chub und Torsion sowie bei tabilitätsuntersuchungen (Knicken,
Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n
Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine
Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM
Darstellungstheorie Vortag von Heiko Fischer - Proseminar QM Wir haben uns in den vergangenen Vorträgen intensiv mit den Eigenschaften abstrakter Gruppen beschäftigt. Im physikalischen Kontext sind Gruppen
Relativistische Punktmechanik
KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen
Räumliche Bereichsintegrale mit Koordinatentransformation
Räumliche Bereichsintegrale mit Koordinatentransformation Gegeben seien ein räumlicher Bereich, das heißt ein Körper K im R 3, und eine von drei Variablen abhängige Funktion f f(,, z). Die Aufgabe bestehe
Vorkurs Mathematik B
Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein
Lorentz-Transformationen und Invarianz
Lorentz-Transformationen und Invarianz Wolfgang Lange. April 0 Einleitung Bei der Suche nach einer allgemeinverständlichen Erläuterung von Transformationen und Tensoren fand ich die besten Erklärungen
EINFÜHRUNG IN DIE TENSORRECHNUNG
EINFÜHRUNG IN DIE TENSORRECHNUNG Teil 3 SIEGFRIED PETRY Fassung vom 5. Juni 06 I n h a l t Transformation der Komponenten eines Vektors bei Basiswechsel. Einführung einer neuen Basis. Transformation der
Grundlagen der Vektorrechnung
Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt
Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =
Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a
6.6. Abstandsbestimmungen
6.6. Abstandsbestimmungen 6. Geraden und Ebenen im Raum In diesem Kapitel werden folgende Fälle vorgestellt:. Abstand zweier Punkte. Abstand zweier paralleler Geraden 3. Abstand einer Ebene zu einer zur
7 Lineare Gleichungssysteme
116 7 Lineare Gleichngsssteme Lineare Gleichngsssteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; m Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,
Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen
Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden
Vorlesung Mathematik 2 für Informatik
Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur
MATRIZEN. Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet. a 11 a a 1n a 21. a a 2n A = a m1 a m2...
MATRIZEN Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn A ist eine m n Matrix, dh: A hat m Zeilen und n Spalten A besitzt
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5
Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine
4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich
4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,
4 Lineare Abbildungen und Matrizen
Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt
Übungsblatt
Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen
