Eigenwerte und Eigenvektoren

Größe: px
Ab Seite anzeigen:

Download "Eigenwerte und Eigenvektoren"

Transkript

1 Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung

2 Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig kartesischen Koordinatensstems Trägt man einen Pfeil in das Diagramm ein, dessen P (, ) Anfangspunkt im Ursprung des Koordinatensstems liegt und dessen Spitze auf den Punkt P V r zeigt, erhält man einen sog. (Orts-)Vektor. Der Vektor ist definiert durch seine Länge (Betrag), seine Richtung und Orientierung (Pfeilsitze). Er lässt sich vollständig beschreiben durch seine Endkoordinaten und wird meistens als Spaltenvektor dargestellt V r Die Werte in der Klammer werden auch als skalare Komponenten des Vektors bezeichnet.

3 Vortrag Gmnasium Birkenfeld Die Länge (Betrag) des Vektors ergibt sich nach dem Satz von Pthagoras V V r + Die Richtung lässt sich durch den Winkel zur -A chse des Koordinatensstems ausdrücken tan ϕ V r Beispiel: Für die Koordinaten und erhält man p + +,6 und tan ϕ ϕ 6, 6 Multipliziert man den Vektor mit einer Zahl λ, so wird er für λ> gestreckt und für λ< gestaucht. Ist λ - wird die Orientierung des Vektors entgegengesetzt zur ursprünglichen Richtung. Es gilt r V r λ V λ λ λ ϕ

4 Vortrag Gmnasium Birkenfeld Wir betrachten wieder den Vektor V r. Dieser soll in -Richtung um den Faktor gestreckt werden, in -Richtung soll eine Streckung mit dem Faktor und eine Umkehrung der Orientierung erfolgen. Der neue Vektor V r ergibt sich mit V r Ein weiteres Beispiel ist die Spieglung des Vektors an der Winkelhalbierenden. Diese ergibt sich durch Vertauschen der - und -Koordinaten V r Die Koordinatentransformation ist in beiden Fällen mit einer Richtungsänderung des Vektors verbunden. V V V 4

5 5 Umwelt-Campus Birkenfeld Vortrag Gmnasium Birkenfeld Wird die Spiegelung und Streckung nacheinander auf den Vektor angewandt, erhält man den Vektor + V r + 5 Allgemein lässt sich eine beliebige Koordinatentransformation eines Ortsvektors ausdrücken durch die Linearkombination + + a a a a Werden die Koeffizienten a, a, a und a in einer Tabelle (Matri) angeordnet, lässt sich die Beziehung übersichtlich in der Matrizenschreibweise angeben a a a a Die Matri [a] bestimmt, wie die Koordinaten umgerechnet werden.

6 6 Umwelt-Campus Birkenfeld Vortrag Gmnasium Birkenfeld Somit lässt sich auch schreiben Weitere Beispiele Die Transformationsmatri bestimmt, wie die Koordinaten in ihre sog. Bildpunkte umgerechnet werden. V, und V r V r V V V V 4 V r 5 V r (Einheitsmatri) V 5 V 4

7 Vortrag Gmnasium Birkenfeld. Eigenvektoren Zur Herleitung des Begriffs Eigenvektor wird ein Fünfeck betrachtet. Die Kanten werden durch EV einer Koordinatentransformation unterworfen. Frage: EV Für welche zu den Punkten P(,) gehörenden Vektoren bleibt die Richtung dabei erhalten? Dies trifft offensichtlich nur für die linear unabhängigen Eigenvektoren r EV α EV β zu, wobei die Parameter α und β beliebige reelle Zahlen sind. 7

8 8 Umwelt-Campus Birkenfeld Vortrag Gmnasium Birkenfeld. Eigenwerte Wir betrachten nun die schon behandelte Transformation, bei der ein Vektor zunächst an der Winkelhalbierenden gespiegelt und anschließend gestreckt wird Die Eigenvektoren lassen sich hier nicht mehr so einfach bestimmen, sondern müssen berechnet werden. Da Eigenvektoren durch die Koordinatentransformation in kollineare Vektoren, d. h. in Vektoren mit gleicher oder entgegengesetzter Richtung übergehen, gilt die Bedingung Die Erweiterung mit der Einheitsmatri führt auf λ! λ λ λ

9 Vortrag Gmnasium Birkenfeld Durch Subtraktion der rechten Seite erhält man den Nullvektor. Durch Ausklammern des Ortvektors und Zusammenfassen der Matrizen auf der linken Seite erhält man die sog. Eigenwertgleichungen λ λ Es handelt sich um ein lineares, homogenes Gleichungssstem und lautet ausgeschrieben ( λ) + + ( λ) mit den unbekannten Koordinaten und und dem ebenfalls noch unbekannten Parameter λ. Dieses Gleichungssstem besitzt nur dann von Null verschiedene sog. Nichttriviale Lösungen, wenn die Determinante der Matri Null wird. λ det λ 9

10 Vortrag Gmnasium Birkenfeld Eine zweireihige Determinante wird berechnet, indem die Diagonalelemente multipliziert und das Produkt der Nebendiagonalelemente davon abgezogen wird. Man erhält damit das sog. charakteristische Polnom ( λ) ( λ) Werden die Klammern ausmultipliziert, erhält man die quadratische Gleichung λ + λ 7 Mit Hilfe der pq-formel ergibt sich als Lösung λ 4, ± + 7 λ,9584 λ, 9584 Die Parameter λ und λ heißen Eigenwerte der Transformationsmatri und sind die Nullstellen des charakteristischen Polnoms.

11 Vortrag Gmnasium Birkenfeld Die Eigenvektoren ergeben sich, indem man nacheinander die Eigenwerte in das homogene Gleichungssstem einsetzt. Für den Eigenwert λ,96 erhält man:,96 + 5,96 Eine der beiden Koordinaten ist frei wählbar. Setzt man beispielsweise in der zweiten Gleichung α, ergibt sich α 5,96, 96 α Einsetzen von in die erste Gleichung liefert,96 +,96 α α Damit erhält man den Eigenvektor r EV α,96

12 Vortrag Gmnasium Birkenfeld Analog erhält man den zweiten Eigenvektor für den Eigenwert λ -,96: r EV β,96 Multipliziert man die Eigenvektoren mit der Transformationsmatri, müssen die resultierenden Vektoren kollinear zu den Eigenvektoren sein. Es gilt v V,96,96,4 EV EV v,96,648 V V,96 r r r r Man erkennt, dass V λ EV und V λ EV ist. Somit sind die Vektoren V r und kollinear zu und und stellen ihrerseits wieder Eigenvektoren dar. Als Besonderheit im vorliegenden Fall stehen die linear unab- V r EV r EV r hängigen Eigenvektoren senkrecht aufeinander. V

13 Vortrag Gmnasium Birkenfeld 4. Technische Anwendung Viele technischen Anwendungen der Ingenieurwissenschaften führen auf die Lösung eines Eigenwertproblems, z. B. in der Maschinendnamik, der Festigkeitslehre und der Elektrotechnik. Am Beispiel eines ungedämpften Zweimassenschwingers soll die Bedeutung von Eigenwerten und Eigenvektoren erläutert werden. c m k m c Zwei Massen m sind mit einer elastischen Feder mit der Steifigkeit c verbunden und werden über eine Feder mit der Steifigkeit k gekoppelt. Das Sstem schwingt sinusförmig nach einem Stoß in horizontaler Richtung mit der Kreisfrequenz ωπ f, wobei die Frequenz f die Anzahl der Schwingungen pro Sekunde angibt. Die Lage der Massen, ausgedrückt durch die Koordinaten und, ändern sich periodisch mit der Schwingungsdauer T/fπ/ω.

14 Vortrag Gmnasium Birkenfeld Die Bewegungsgleichungen führen auf ein gekoppeltes, lineares Differentialgleichungssstem. Ordnung, deren Lösung durch die Eigenwertgleichung a λ b a b λ beschrieben wird mit den Abkürzungen a (c+k)/m und b k/m sowie den noch unbekannten Eigenwerten λ. Nullsetzen der Determinante führt auf das charakteristische Polnom (a λ) b mit den Lösungen c + k λ a b m k m c m λ a + b c + k k c + k + m m m 4

15 Vortrag Gmnasium Birkenfeld Die Eigenvektoren erhält man wieder durch Einsetzen der Eigenwerte in die Eigenwertgleichungen. Für den Eigenwert λ a b erhält man b b b + b Setzt man in eine der Gleichung α, ergibt sich α. Der Eigenvektor lautet r EV α Für den Eigenwert λ a + b erhält man hingegen den Eigenvektor r EV β Im ersten Fall ist die Bewegung und der der Massen gleichgerichtet, die Kopplungsfeder wird nicht beansprucht. Im zweiten Fall sind die Bewegungen der Massen entgegengerichtet, die Beanspruchung der Koppelfeder wird maimal. 5

16 Vortrag Gmnasium Birkenfeld Für jede der beiden Schwingungsformen erhält man die Eigenkreisfrequenz aus der Wurzel der Eigenwerte ω λ c m und ω λ c + k m Ist für das Beispiel m kg, c 4 N/m und k 6 N/m, ergeben sich die Eigenkreisfreqenzen ω c m 4 s und ω c + k m s und damit die Frequenzen, mit denen das Sstem schwingen kann ω, Hz und 6,4 Hz π π f ω 4 π π f Die Schwingungsdauern ergeben sich aus T π π π π,4 s T,57 s ω ω 4 6

17 Vortrag Gmnasium Birkenfeld 5. Maschinentisch 5 U-Profile Welle 6 Stützen Lager I-Profile 7

18 Vortrag Gmnasium Birkenfeld 8

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

2.2 Eigenwerte und Eigenvektoren

2.2 Eigenwerte und Eigenvektoren 2.2. Eigenwerte und Eigenvektoren 39 2.2 Eigenwerte und Eigenvektoren Lineare Abbildungen werden je nach Basiswahl durch unterschiedliche Matrizen beschrieben. Besonders einfach ist die Diagonalform. Wir

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Betrachtet wird eine (n,n)-matrix A. Eine Zahl λ heißt Eigenwert von A, wenn ein Vektor v existiert, der nicht der Nullvektor ist und für den gilt: A v = λ v.

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner SS 0 Blatt 9 9060 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach Lösungsvorschlag a Die gegebene Matrix

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

Übungsaufgaben zur Vektorrechnung

Übungsaufgaben zur Vektorrechnung Übungsaufgaben zur Vektorrechnung W. Kippels 9. Januar Inhaltsverzeichnis Aufgaben. Aufgabe..................................... Aufgabe a................................ Aufgabe b................................

Mehr

5.1 Eigenwerte und Eigenvektoren

5.1 Eigenwerte und Eigenvektoren 5 Eigenwerte und Eigenvektoren Die Eigenwerttheorie ist ein besonders wirkungsvolles Werkzeug der linearen Algebra Sie liefert zb Lösungsethoden zur Auffindung von - Fixgeraden linearer Abbildungen, insbesondere

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D) VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

20. und 21. Vorlesung Sommersemester

20. und 21. Vorlesung Sommersemester 2. und 21. Vorlesung Sommersemester 1 Der Spezialfall fester Drehachse Aus dem Trägheitstensor sollte der früher behandelte Spezialfall fester Drehachse wieder hervorgehen. Wenn man ω = ω n mit einem Einheitsvektor

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 [email protected] Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung

Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung Zurück Stand 4.. 6 Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung Im Allgemeinen werden Vektoren durch Multiplikation mit einer Matrix gestreckt und um einen bestimmten Winkel gedreht. Es gibt jedoch

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester 9 Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren KAPITEL Eigenwerte und Eigenvektoren Eigenwerte 4 2 Algebraische Vielfachheit 5 3 Eigenvektoren 6 4 Invarianten 4 5 Diagonalisierung 5 6 Positiv definite Matrizen 2 In der folgenden Übersicht sind einige

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Computergrafik Sommersemester 2004 Übungen

Computergrafik Sommersemester 2004 Übungen Sommersemester 4 Freiwillige Zusatzübung Aufgabe 6: Transformationen im zweidimensionalen aum Berechnen Sie die Transformationsmatri, die eine Szene zuerst um 3 Grad um den Ursprung dreht und anschließend

Mehr

KOMPLEXE ZAHLEN UND LINEARE GLEICHUNGSSYSTEME

KOMPLEXE ZAHLEN UND LINEARE GLEICHUNGSSYSTEME KOMPLEXE ZHLEN UND LINERE GLEICHUNGSSYSTEME Vektoren Definition: Parallelverschiebung, Pfeil(e) mit Länge und Richtung. Darstellung Eigenschaften Komponenten Graphisch Länge, Betrag Zwischenwinkel Vektorarten

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Die Erweiterung vom Satz des Pythagoras anhand der resultierenden Kraft FR

Die Erweiterung vom Satz des Pythagoras anhand der resultierenden Kraft FR Michael B. H. Middendorf 1 Die Erweiterung vom Satz des Pthagoras anhand der resultierenden Kraft FR Bei meinen Überlegungen als Maschinenbauer bzgl. eines Impulsantriebes, stieß ich auf das Problem, ständig

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

4 Lineare Abbildungen

4 Lineare Abbildungen 17. November 2008 34 4 Lineare Abbildungen 4.1 Lineare Abbildung: Eine Funktion f : R n R m heißt lineare Abbildung von R n nach R m, wenn für alle x 1, x 2 und alle α R gilt f(αx 1 ) = αf(x 1 ) f(x 1

Mehr

11 Eigenwerte und Eigenvektoren

11 Eigenwerte und Eigenvektoren 11 Eigenwerte und Eigenvektoren Wir wissen bereits, dass man jede lineare Abbildung ϕ : K n K n durch eine n n-matri A beschreiben kann, d.h. es ist ϕ() = A für alle K n. Die Matri A hängt dabei von der

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

k = 1, 2,..., n (4.44) J k ϕ

k = 1, 2,..., n (4.44) J k ϕ 236 4 Torsionsschwinger und Längsschwinger ( J1 J2) M J M J2/ J1= 02, 10 0,5 8 1 + 6 2 max 4 5 2 10 2 bezogenes Moment 0 Bild 45 1 2 5 10 relatives Spiel ctϕ S/ M10 Maximales Moment infolge Spiel im Antrieb

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

Lineare Algebra. Teil III. Inhaltsangabe

Lineare Algebra. Teil III. Inhaltsangabe Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Orthonormalbasis. Orthogonalentwicklung

Orthonormalbasis. Orthogonalentwicklung Orthonormalbasis Eine Orthogonal- oder Orthonormalbasis des R n (oder eines Teilraums) ist eine Basis {v,..., v n } mit v i = und v i, v j = für i j, d. h. alle Basisvektoren haben Norm und stehen senkrecht

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr