3 Koordinatentransformationen

Größe: px
Ab Seite anzeigen:

Download "3 Koordinatentransformationen"

Transkript

1 8 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 3 Koordinatentransformationen Für die Darstellung von dreidimensionalen Objekten wird grundsätlich eine Reihe von Transformationen ausgeführt, die von den Modellkoordinaten bis hin u den Gerätekoordinaten (. B. Bildschirm) führen. Transformations Pipeline: MC Modellkoordinaten lokale Koordinaten eines u betrachtenden Objekts,. B. Koordinatenursprung im Mittelpunkt und Achsen parallel u Begrenungsflächen WC Weltkoordinaten Anordnung des Modells (bw. mehrerer Modelle) in der Welt (Berücksichtigung der räumlichen Lage ueinander) VRC NPC DC Betrachterkoordinaten (View Reference Coordinate Sstem) Normalisierte Gerätekoordinaten (Normalied Projection Coordinate Sstem) Gerätekoordinaten (Device Coordinate Sstem) Festlegung der Lage der Bildebene in der Welt durch: VRP NRP VUP (View Reference Point) Beugspunkt,. B. Mittelpunkt der Bildschirmebene (Normal Reference Point) Punkt auf der positiven Achse, die um Betrachter eigt, Betrachterstandpunkt (View Up Vector) Orientierung der Bildebene, Achse Festlegung des Ausschnitts aus der Welt, der nach Projektion auf die Bildebene sichtbar sein soll. Dieser wird als Einheitswürfel definiert, dessen Seitenlänge einer maimal u berechnenden Bildauflösung entspricht. (. B. 3 bei Verwendung von short int Koordinaten bei einfachsten Proessoren) Abbildung der geräteunabhängigen (normalisierten) Gerätekoordinaten auf die Koordinaten des konkreten Ausgabegerätes (Bildschirm, Drucker,... ) Transformationen werden für homogene Koordinaten durch 4 4 Matrien beschrieben: bw. p T p t t 2 t 3 t 4 t 2 t 22 t 23 t 24 t 3 t 32 t 33 t 34 t 4 t 42 t 43 t 44 Die Nacheinanderausführung von Transformationen T und T 2 entspricht einer Gesamttransformation T T 2 T, die durch Matrimultiplikation u berechnen ist. Beachte: Matrimultiplikation ist nicht kommutativ. Da in der Regel darustellende Objekte aus sehr vielen Punkten bestehen, sollte grundsätlich unächst die aus allen Eineltransformationen T i entstehende Gesamttransformation T berechnet werden, so dass nur diese eine Matri mit allen Punkten u multipliieren ist. w

2 M. Pester 9 3. Objekttransformationen In einem gegebenen Koordinatensstem werden Objekte (Punkte) transformiert (bewegt). () Translation Verschiebung aller Punkte um einen Vektor v Transformation und Rücktransformation T, T Es gilt offensichtlich: T und T (2) Rotation Transformationsmatrien für die Drehung aller Punkte um eine Koordinatenachse um einen Winkel ϕ im mathematisch positiven Drehsinn: cos ϕ sin ϕ cos ϕ sin ϕ R (ϕ) R (ϕ) sin ϕ cos ϕ sin ϕ cos ϕ R (ϕ) cos ϕ sin ϕ sin ϕ cos ϕ Rücktransformationen : R R R R R R Die Rücktransformationen ergeben sich als Drehung um den Winkel ϕ um die gleiche Achse, unter Beachtung von cos( ϕ) cos ϕ und sin( ϕ) sin ϕ. Transformationsmatri für die Drehung um eine beliebige durch den Ursprung verlaufende Achse (mit: c cos ϕ, s sin ϕ): R g (ϕ) g : P O + t a, t IR, a a a a, a c + ( c)a 2 ( c)a a sa ( c)a a + sa ( c)a a + sa c + ( c)a 2 ( c)a a sa ( c)a a sa ( c)a a + sa c + ( c)a 2 Andere Darstellung bei Betrachtung der Wirkung der oberen 3 3-Matri von R g auf die Koordinaten (,, ) von p: p cp + ( c)aa p + s(a p) Rotationsmatrien sind orthogonale Matrien (R R und det (R) ).

3 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE (3) Spiegelung Wir betrachten die Spiegelung an einer durch den Ursprung verlaufenden Ebene, die durch ihren Normalenvektor n gegeben ist. Der Bildpunkt P eines Punktes P liegt auf der entgegengesetten Seite der Ebene im gleichen Abstand d von der Ebene. Der Verbindungsvektor P P verläuft senkrecht ur Spiegelungsebene, also parallel u n: P P 2 d n, d ( n OP ) n p + n p + n p d. h. p p p p 2n (n p + n p + n p ) p 2n (n p + n p + n p ) p 2n (n p + n p + n p ) 2n 2 2n n 2n n 2n n 2n 2 2n n 2n n 2n n 2n 2 p p p Spiegelungsmatri: S I 2 nn. Dies ist eine orthogonale Matri, für die gilt: S S S und det (S). (4) Skalierung Durch Änderung der Maßeinheiten der einelnen Koordinatenrichtungen werden alle Objekte entsprechend gestreckt bw. gestaucht. Der Skalierungsfaktor s bedeutet hier eine Änderung der Einheitslänge der Achse auf s. Die Verkürung der Einheit (s > ) entspricht somit einer Streckung des Objekts bei gleichbleibender Einheit, für s < wird das Objekt in Richtung gestaucht. p p p s p s p s p Dabei gilt offensichtlich. s s s p p p d. h. p M p. Für den Fall einer einheitlichen Skalierung in allen drei Koordinatenrichtungen kann auch die folgende Skalierungsmatri verwendet werden (mit s s s s): (5) Scherung M s s d. h. p p p p s s p s p s p Unter der Scherung versteht man eine Vererrung des Bildes durch die Verschiebung eines jeden Punktes in Richtung der einelnen Koordinatenachsen um einen Betrag, der vom ursprünglichen Abstand des Punktes u den jeweils anderen Achsen linear abhängt. + s + s 2 s s 4 s 5 + s 6 + s s 2 s 3 s 4 s 5 s 6

4 M. Pester In der Ebene: P ( + s, + s 3 ) w s s Transformation des Koordinatensstems Die u betrachtenden Objekte bleiben in der Welt unverändert. Lediglich das Beugssstem (das Betrachterkoordinatensstem) wird neu festgelegt. Beüglich dieses neuen Koordinatensstems entstehen für alle Objekte neue Koordinaten. Wir beeichnen mit K O das Originalkoordinatensstem und mit K B das Bild oder Betrachterkoordinatensstem: K O (O, { u, u 2, u 3 }) ( { K B O, b, b 2, }) () b 3 Beispiel: Verschiebung des Ursprungs b2 u 2 v O O P u Dabei ist b i u i, d. h. die Basisvektoren stimmen überein. Es gilt: p p v. Die Verschiebung des Ursprungs um den Vektor v entspricht somit einer (Objekt ) Verschiebung des Punktes P um den Vektor v. b Drehung (mit Zentrum im Ursprung) b2 u 2 P b ϕ O u Die Basisvektoren werden um eine durch den Ursprung verlaufende Achse um den Winkel ϕ gedreht (Basistransformation). Die Koordinaten p entsprechen denen der (Objekt ) Drehung des Punktes P mit dem Winkel ϕ. Folgerung: Die Transformation des Koordinatensstems liefert jeweils die gleichen Bildkoordinaten wie die Inverse der entsprechenden Objekttransformation. Die Basistransformation Original und Betrachterkoordinatensstem seien wie in () gegeben, jeweils mit einer Orthonormalbasis. Für einen beliebigen Vektor v gilt in K O : v v j u j in K B : v v i b i (2)

5 2 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE Damit gilt auch für die Vektoren b i der Basis von K B Basisvektoren u j von K O : eine solche Zerlegung beüglich der bi 3 a ij u j, i, 2, 3 (3) j oder in Koordinatenschreibweise: b a a 2, b 2 a 2 a 22, b 3 a 3 a 32 (4) a 3 a 23 a 33 Diese Zerlegungskoeffiienten der neuen Basis beüglich der alten Basis werden u einer Matri A usammengefasst: b a a 2 a 3 A b 2 a 2 a 22 a 23 b 3 a 3 a 32 a 33 Wegen der Orthonormalität der Basisvektoren gilt: b b A b b 2 b e, analog: A b 2 e 2, A b 3 e 3, b 3 b d. h. die Matri A bildet die Koordinaten der neuen Basisvektoren b i beüglich der Basis von K O in die Einheitsvektoren e i ab. Daraus folgt unmittelbar: A A A (b b 2 b 3 ) (e e 2 e 3 ) I also: A A Für einen beliebigen Vektor v gilt nach (2): v j v j u j und v i v i b i i v i j a ij u j ) j ( i a ij v i u j d. h. v j i a ij v i Die Anwendung der Matri A auf einen Vektor in Koordinaten von K O liefert dessen Koordinaten in K B. Ebenso liefert die Anwendung von A auf einen Vektor in Koordinaten von K B dessen Koordinaten in K O : v A v und v A v. Die Gesamttransformation T des Koordinatensstems sett sich aus der uerst ausuführenden Verschiebung des Ursprungs um den Vektor c OO und der anschließenden Basistransformation usammen: ( ) ( ) ( ) A O I c A Ac T O O O ( ) ( ) ( ) T I c A O A c O O O Hier ist c die Koordinatendarstellung des Vektors c im Koordinatensstem K O. (Ac ist derselbe Vektor in Koordinaten von K B.)

6 M. Pester Transformation auf Betrachterkoordinaten Wir betrachten hier unächst nur die Basistransformation unter der Annahme, dass der Koordinatenursprung uvor in den Mittelpunkt des u betrachtenden Ausschnittes verschoben wurde (später. B. auf den Mittelpunkt des Bildschirms abubilden). Die Basis des Betrachterkoordinatensstem K B sei im folgenden stets definiert durch die Vektoren: u: v: w: Up Vektor, der in der Bildebene liegt und nach oben eigt; Blickvektor, senkrecht aus der Bildebene um Betrachter (Normalenvektor der Bildebene); ein u u und v orthogonaler Vektor, so dass { w, u, v} ein Rechtssstem ist, d. h. w u v. u v w 3 Die Basisvektoren des Weltkoordinatensstems (K O ) sind mit,, beeichnet. Die Basisvektoren u, v, w seien in Weltkoordinaten gegeben: u u u 2 u 3, v v v 2 v 3, w w w 2 w 3 u 2 v 3 u 3 v 2 u 3 v u v 3 u v 2 u 2 v Dann lautet die Matri für die Basistransformation: w w 2 w 3 A u u 2 u 3 bw. T v v 2 v 3 w w 2 w 3 u u 2 u 3 v v 2 v 3 ( A ) Die Vektorkoordinaten von,, in der Basis des Betrachterkoordinatensstems seien mit,, beeichnet. Im Ausgangskoordinatensstem hatten diese Vektoren die Koordinaten Somit gilt: A A e, w w 2 w 3 u u 2 u 3 v v 2 v 3 w 2 u 2 e 2,, A w 3 u 3 w u v e 3. v 2 v 3

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Computergrafik Sommersemester 2004 Übungen

Computergrafik Sommersemester 2004 Übungen Sommersemester 4 Freiwillige Zusatzübung Aufgabe 6: Transformationen im zweidimensionalen aum Berechnen Sie die Transformationsmatri, die eine Szene zuerst um 3 Grad um den Ursprung dreht und anschließend

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

3.5 Transformationen im Raum

3.5 Transformationen im Raum 3.5 Transformationen im Raum Translation Die Verschiebung eines Punktes (,,) T um den Translationsvektor (t,t,t ) T ergibt den Punkt (,, ) T mit 1 t 1 t 1 t 1 + t + t = = + t 1 1 1 T(t,t,t ) Computergrafik

Mehr

Viewing Pipeline. Kapitel Die synthetische Kamera

Viewing Pipeline. Kapitel Die synthetische Kamera Kapitel 15 Viewing Pipeline Die Abbildung dreidimensionaler Objekte auf dem Bildschirm wird in eine Reihe von Elementartransformationen erlegt: Konstruktion von komplexen Senen aus elementaren Objekten

Mehr

Mathematische Grundlagen der. Computergeometrie

Mathematische Grundlagen der. Computergeometrie Mathematische Grundlagen der Computergeometrie (Vorlesung: Dr. M. Pester) Inhalt: Grundlagen der analtischen Geometrie 3. Punkte, Vektoren, Geraden, Ebenen......................... 3. Produkte von Vektoren................................

Mehr

156 KAPITEL 13. 3D-TRANSFORMATIONEN 1. Translation um (,Z ;,Z ;,Z ), 2. Skalierung um (s ;s ;s ), 3. Translation um (Z ;Z ;Z ). Die Transformationsmat

156 KAPITEL 13. 3D-TRANSFORMATIONEN 1. Translation um (,Z ;,Z ;,Z ), 2. Skalierung um (s ;s ;s ), 3. Translation um (Z ;Z ;Z ). Die Transformationsmat Kapitel 13 3D-Transformationen 13.1 Translation Mit homogenen Koordinaten lat sich der um den Translationsvektor t =(t ;t ;t )verschobene Punkt P =(; ; ) in der folgenden Form darstellen: ( 0 ; 0 ; 0 ):=(

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

1 Grundlagen der analytischen Geometrie

1 Grundlagen der analytischen Geometrie M. Pester 3 Grundlagen der analtischen Geometrie. Punkte, Vektoren, Geraden, Ebenen Einsat rechnerischer Methoden für die Behandlung geometrischer Beiehungen. Punkten werden Zahlentupel (Koordinaten) ugeordnet.

Mehr

Mathematische Grundlagen der. Computergeometrie

Mathematische Grundlagen der. Computergeometrie Technische Universität Chemnitz Fakultät für Mathematik TECHNISCHE UNIVERSITÄT C H E M N I T Z Mathematische Grundlagen der Computergeometrie (Vorlesung: Dr. M. Pester) Inhalt: Grundlagen der analtischen

Mehr

Computergrafik 1 Übung

Computergrafik 1 Übung Prof. Dr. Andreas Butz Dipl.-Medieninf. Hendrik Richter Dipl.-Medieninf. Raphael Wimmer Computergrafik Übung Wiederholung Lineare Algebra: Vektoren, Matrizen, Transformationen in D und 3D Computergrafik

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

In den vorigen Abschnitten wurden die globalen kartesischen Koordinaten der Atome eines Moleküls transformiert.

In den vorigen Abschnitten wurden die globalen kartesischen Koordinaten der Atome eines Moleküls transformiert. 4 MATRXDARSTELLUNG VON SYMMETREOPERATONEN 33 4.8 Lokale Koordinatenachsen m Gegensat um globalen Koordinatensstem, das für das gesamte Molekül gilt, sind lokale Koordinatenachsen individuell für jedes

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.1 Koordinatentransformationen 2.2 Transformationen in der Ebene 2.3 Transformationen im Raum 3 Repräsentation und Modellierung von Objekten 4 Rasterung 5 Visibilität

Mehr

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem 2.3. Rechtshändiges und linkshändiges Koordinatensstem Die Koordinatenachsen im dreidimensionalen Raum lassen sich auf wei verschieden Arten anordnen: Linkshändig und Rechtshändig (s. Abbildung 2.9). Um

Mehr

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

1 Analytische Geometrie

1 Analytische Geometrie Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

5 Kinematik der Starrkörperbewegung

5 Kinematik der Starrkörperbewegung 35 Ein starrer Körper ist eine Idealisierung eines Maschinenteils, bei der man Verformungen vernachlässigt. Verbindet man mit dem Körper in einem beliebigen Beugspunkt ein körperfestes Koordinatensstem,

Mehr

Computergrafik 2010 Oliver Vornberger

Computergrafik 2010 Oliver Vornberger Computergrafik 21 Oliver Vornberger Kapitel 15: Viewing Pipeline Vorlesung vom 31.5.1 1 Sequen von Transformationen grün rot Kamera blau Modeling View Orientation View Mapping Device Mapping 2 Die synthetische

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya Lineare Transformationen und Determinanten 10-E Ma 1 Lubov Vassilevskaya Lineare Transformation cc Definition: V und W sind zwei Vektorräume. Eine Funktion T nennt man eine lineare Transformation von V

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Transformationen im 3D-Raum

Transformationen im 3D-Raum Thomas Jung Repräsentation von 3D-Oberflächen Aufbau von Szenen Transformationen im 3D-Raum Projektionstranformationen Anwendung in OpenGL Geometrietransformationen bilden die Basis für die Computergrafik

Mehr

Projektion. Ebene geometrische Projektionen

Projektion. Ebene geometrische Projektionen Projektion - 1 - Ebene geometrische Projektionen Die ebenen geometrischen Projektionen sind dadurch charakterisiert, daß mit Projektionsstrahlen konstanter Richtung, d.h. entlang von Geraden, auf Ebenen

Mehr

Transformationen. 09-Transformationen

Transformationen. 09-Transformationen Transformationen 9-Transformationen Als Transformationen werden affine Transformationen im R n betrachtet. Alle derartigen Transformationen lassen sich darstellen als: A + b wobei A die quadratische Transformationsmatri

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

Kartografie I. Hans Walser. Koordinatensysteme und Transformationen

Kartografie I. Hans Walser. Koordinatensysteme und Transformationen Kartografie I Hans Walser Koordinatenssteme und Transformationen Hans Walser: Koordinatenssteme und Transformationen ii Inhalt Koordinatenssteme.... Kartesische Koordinaten....2 Polarkoordinaten... 2.3

Mehr

Hans Delfs. Übungen zu Mathematik III für Medieninformatik

Hans Delfs. Übungen zu Mathematik III für Medieninformatik Hans Delfs Übungen zu Mathematik III für Medieninformatik 1 RÄUMLICHE DARSTELLUNGEN VON OBJEKTEN 1 1 Räumliche Darstellungen von Objekten Der Einheitswürfel ist der achsenparallele Würfel in A 3, der von

Mehr

x y Kenner der Kegelschnitte werden hier eine Ellipse erkennen, deren Hauptachsen aber nicht mit der Richtung der Koordinatenachsen zusammenfallen.

x y Kenner der Kegelschnitte werden hier eine Ellipse erkennen, deren Hauptachsen aber nicht mit der Richtung der Koordinatenachsen zusammenfallen. Matrizen / ensoren - eil ensoren - zweidimensionales Beispiel um das Eigenwertproblem zu verdeutlichen hier als Beispiel ein zweidimensionales Problem die entsprechenden Matrizen und Determinanten haben

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester 9 Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und

Mehr

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1 Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht

Mehr

Prüfungsteil B, Aufgabengruppe 2: Geometrie

Prüfungsteil B, Aufgabengruppe 2: Geometrie Bundesabitur Mathematik: Bayern 01 Aufgabe 1 a) 1. SCHRITT: VEKTOR CH BESTIMMEN CH = ( 8 108 ) ( 10) = ( 0 ). 3. SCHRITT: LÄNGE DES VEKTORS BERECHNEN CH = ( ) + 3 =. 3. SCHRITT: BERECHNUNG DES FLÄCHENINHALTS

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 2. 3D-Koordinatensystem Weit

Mehr

Lösungsvorschlag zum zweiten Übungsblatt

Lösungsvorschlag zum zweiten Übungsblatt Lösungsvorschlag zum zweiten Übungsblatt Aufgabe Wir zeigen, daß die Drehung um den Ursprung um 9 und die Spiegelung an der x-achse nicht kommutieren. Die Matrix für die Drehmatrix lautet in diesem Fall

Mehr

2D-Punkt-Transformationen

2D-Punkt-Transformationen Zur Erinnerung Drehung eines beliebigen Punktes B um den Winkel θ um den Koordinaten-Ursprung zum Punkt B : x B r cosα y B r sin α [r, α: Hilfsgrößen ] x B r cos(α+θ) r (cosα cosθ sinα sinθ) x B cosθ y

Mehr

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen Hermann Schwarz Marko Pilop 2003-11-20 http://www.informatik.hu-berlin.de/~pilop/3d_basics.pdf {hschwarz pilop}@informatik.hu-berlin.de

Mehr

Computergrafik 1 Transformationen

Computergrafik 1 Transformationen Computergrafik 1 Transformationen Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Repräsentationen, Primitiven Transformationen in 2D Skalierung Translation Rotation Scherung

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung http://www.fersch.de Klemens Fersch. September 8 Inhaltsverzeichnis 6 6. Vektorrechung in der Ebene.............................................. 6.. Vektor - Abstand - Steigung - Mittelpunkt.................................

Mehr

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN 13. ABBILDUNGEN in EUKLIDISCHEN VEKTORRÄUMEN 1 Orthogonale Abbildungen im R 2 und R 3. Eine orthogonale Abbildung ist eine lineare Abbildung, die Längen und Orthogonalität erhält. Die zugehörige Matrix

Mehr

Merkhilfe Vektorrechnung

Merkhilfe Vektorrechnung Merkhilfe Vektorrechnung 1. Was ist ein Vektor? 2. Verbindungsvektor AB =? 3. Punkte A und B, Gerade g Punkte A, B und C, Ebene E 4. Mitte M der Strecke AB OM =? a 1 a = a 2, b 1 b = b 2 a 3 b 3 5. Betrag

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Kurze Zusammenfassung (Stand: 3 Juli 2) Prof Dr V Stahl Copyright 28 by Volker Stahl All rights reserved V Stahl Lineare Algebra und Computer Grafik Zusammenfassung

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt: 5 Zur Geometrie euklidischer Bewegungen 5.1 Bewegungen Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Mehr

Grundlagen der Spieleprogrammierung

Grundlagen der Spieleprogrammierung Grundlagen der Spieleprogrammierung Sommer 23 Grundlagen der Spieleprogrammierung Teil I: 3D-Graphik Kapitel 2: Die Mathematik Peter Sturm Universität Trier Outline. Übersicht und Motivation 2. Mathematische

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil 3 SIEGFRIED PETRY Fassung vom 5. Juni 06 I n h a l t Transformation der Komponenten eines Vektors bei Basiswechsel. Einführung einer neuen Basis. Transformation der

Mehr

Projektionen von geometrischen Objekten

Projektionen von geometrischen Objekten Inhalt: Projektionen von geometrischen Objekten Überblick Hauptrisse Aonometrische Projektionen isometrisch dimetrisch trimetrisch Schiefwinklige Projektionen Kavalierprojektion Kabinettprojektion Perspektivische

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-30 Korrektur: Kugelkoordinaten II r und θ konstant: Rand einer Kreisscheibe parallel zur xy Ebene z θ fest y θ konstant, r R : Kegel, ausgehend

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

3 Abbildungen in der Ebene

3 Abbildungen in der Ebene 18 3 Abbildungen in der Ebene Wir behandeln in diesem Kapitel Abbildungen von Punkten der Ebene auf Punkte. Ziel dieser Betrachtung ist, Funktionsgraphen mit diesen Abbildungen (punktweise) abzubilden

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

1 Abbildungen in der Ebene

1 Abbildungen in der Ebene 1 Inhalt 1 Abbildungen in der Ebene... 2 1.1 Verschiebung... 3 1.2 Spiegelung... 3 1.2.1 Achsenspiegelung... 3 1.3 Drehung... 4 1.3.1 Die Drehung... 4 1.4 Zentrische Streckung... 5 2 Funktionen... 7 2.1

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 7 Vektoren Aufgabe 7 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

(10) View Transformation

(10) View Transformation () Vie Transformation Vorlesng Comtergrahik I S. üller KOBLENZ LNDU KOBLENZ LNDU S. üller - - Wiederholng I ffine Transformationen atrienmltilikation ist assoiati, aber nicht kommtati. Transformationsmatrien

Mehr

Lineare Abbildungen. De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt

Lineare Abbildungen. De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt Lineare Abbildungen Lineare Abbildungen De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt (L. ) f ist homogen; d.h. f( ~v) = f(~v) für alle 2 R, ~v 2 V, (L. ) f ist additiv;

Mehr

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren 5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination

Mehr

44 Orthogonale Matrizen

44 Orthogonale Matrizen 44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität

Mehr

Computergrafik. Kapitel 2: Grundlagen der 2D-Grafik SS Prof. Dr. Thomas Wieland

Computergrafik. Kapitel 2: Grundlagen der 2D-Grafik SS Prof. Dr. Thomas Wieland Computergrafik Kapitel 2: Grundlagen der 2D-Grafik SS 25 Prof. Dr. Thomas Wieland Übersicht Teil 2 2. 2D-Transformationen 2.2 Koordinatentransformationen 2.3 Grafiken mit Java2D Computergrafik, Sommersemester

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011 C A R L V O N O S S I E T Z K Y Transformationen Johannes Diemke Übung im Modul OpenGL mit Java Wintersemester 2010/2011 Motivation Transformationen Sind Grundlage vieler Verfahren der Computergrafik Model-

Mehr

Affine Koordinatentransformationen

Affine Koordinatentransformationen Affine Koordinatentransformationen Medieninformatik IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Wintersemester 017/18 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen

Mehr

Anschauliche Parallelrisse und Hauptrisse

Anschauliche Parallelrisse und Hauptrisse Anschauliche Parallelrisse und Hauptrisse Seit frühester Kindheit wirst du im täglichen Leben immer wieder mit Bildern konfrontiert, sei es in Form von Bauanleitungen oder Produktinformationen. Du solltest

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14 Lineare Algebra Hauptbestandteil der Vorlesung Mathematik Literatur: Teschl/Teschl, Band, Kap. 9-4 Inhalt Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare

Mehr

4 Lineare Abbildungen

4 Lineare Abbildungen 17. November 2008 34 4 Lineare Abbildungen 4.1 Lineare Abbildung: Eine Funktion f : R n R m heißt lineare Abbildung von R n nach R m, wenn für alle x 1, x 2 und alle α R gilt f(αx 1 ) = αf(x 1 ) f(x 1

Mehr

Definition, Abbildungsmatrix, Spiegelung, Projektion

Definition, Abbildungsmatrix, Spiegelung, Projektion Bau und Gestaltung, Mathematik 2, T. Borer Aufgaben 5-2/ Aufgaben 5 Lineare Abbildungen Definition, Abbildungsmatrix, Spiegelung, Projektion Lernziele - beurteilen können, ob eine gegebene Abbildung linear

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

- Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

- Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 2.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten "Zwischenwert"

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten Zwischenwert Kreis - Übungen Wenn die "Kreisgleichung" gesucht ist, sind der Mittelpunkt und der Radius anzugeben. Es ist möglich, dass mehrere Kreise eine Aufgabenstellung erfüllen. 1) Ein Kreis berührt die y-achse

Mehr

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung

Mehr

Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben. 1 E1 Ma 1 Lubov Vassilevskaya

Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben. 1 E1 Ma 1 Lubov Vassilevskaya Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben 1 E1 Lineare Transformationen: cc Aufgaben 1, 2 Aufgabe 1: Wenden Sie die Transformation T auf den Punkt P und auf den Vektor OP an. Beschreiben

Mehr

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Stefan K. 4.Übungsblatt Algebra I Aufgabe 1 gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler von G zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Beweis: Seien

Mehr

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Leistungskurs

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Leistungskurs Q2.1 Lineare Gleichungssysteme (LGS) Einführung und Lösungsverfahren: Beispiele für LGS (auch über- und unterbestimmte), Darstellen von LGS mithilfe von Koeffizientenmatrizen, systematisches Lösen von

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Repräsentation und Transformation von geometrischen Objekten

Repräsentation und Transformation von geometrischen Objekten Repräsentation und Transformation von geometrischen Objekten Inhalt: Grundlagen Überblick Einfache Transformationen in der Ebene Homogene Koordinaten Einfache Transformationen in der Ebene mit homogenen

Mehr

Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017

Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017 Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017 Übersicht: Q2.3 im Raum Q2.4 Matrizen zur Beschreibung von Q2.6 Vertiefung der Analytischen Geometrie (nur Grundkurs) verbindlich:

Mehr

Die 3D-Parameter des Adjust-Fensters im Programm Apophysis 2.08 Beta 3D Hack

Die 3D-Parameter des Adjust-Fensters im Programm Apophysis 2.08 Beta 3D Hack Die 3D-Parameter des Adjust-Fensters im Programm Apophysis 2.08 Beta 3D Hack Perspective und Pitch Das Bild wurde mit 4 TF s, jede mit der Variation Sinusoidalxy, erstellt. Wenn Sinusoidalxy_height = 0

Mehr

Transformation - Homogene Koordinaten. y + b )

Transformation - Homogene Koordinaten. y + b ) Transformation - Homogene Koordinaten In der "üblichen" Behandlung werden für die Verschiebung (Translation) und die Drehung (Rotation) verschiedene Rechenvorschriften benutzt - einmal Addition von Vektoren

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Grundlagen der linearen Algebra und analytischen Geometrie II

Grundlagen der linearen Algebra und analytischen Geometrie II Institut für Analsis Lösung Blatt Dr S Trostor Dr F Morherr Grundlagen der linearen Algebra und analtischen Geometrie II Aufgabe: Schreibe folgende Mengen M R zunächst in der Form (x; ) R ; x x A + b x

Mehr

Lineare (affine) Abbildung

Lineare (affine) Abbildung Lineare affine Abbildung A e 2 b a e Wir überziehen die Ebene neben dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen

Mehr

Vektoren - Basiswechsel

Vektoren - Basiswechsel Vektoren - Basiswechsel Grundprinzip Für rein geometrische Anwendungen verwendet man üblicherweise die Standardbasis. Damit ergibt sich in den Zahlenangaben der Koordinaten kein Unterschied zu einem Bezug

Mehr

Teil 2. Vektorrechnung

Teil 2. Vektorrechnung Teil 2 Vektorrechnung 17 18 2.1 Koordinaten Kartesisches Koordinatensystem in der Ebene und im Raum senkrecht schneidende Zahlengeraden (Achsen), orientiert gemäß der Rechten-Hand-Regel Ü ¹ Å ØØ Ð Ò Ö

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatseamen (SS 205): Lineare Algebra und analtische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( )

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( ) 23 4 Abbildungen von Funktionsgraphen Der Graph zu einer gegebenen Funktion f ist die Menge aller ( ) sind. Für einen einzelnen Punkte, deren Koordinaten ; f () Punkt des Graphen gibt man einen Wert aus

Mehr