Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Größe: px
Ab Seite anzeigen:

Download "Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:"

Transkript

1 5 Zur Geometrie euklidischer Bewegungen 5.1 Bewegungen Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt: d(α(x), α(y )) = d(x, Y ). Behauptung: Liegt einem euklidischen Raum R n ein kartesisches KS zugrunde, so ist eine Affinität α : X X mit x = U x + w, n n Matrix U, w R n eine Bewegung, wenn U orthogonal ist, wenn also gilt: U T U = E (Einheitsmatrix E). Für U=E ist α eine Translation x = x+ w. det(u) > 0... gleichsinnige Bewegung det(u) < 0... ungleichsinnige Bewegung, Umlegung 1

2 Beweis: Betrachte α ohne Translation, d.h. w = o d.h. Ursprung O ist ein Fixpunkt O =O. Für die Bilder E i ( e i ) der Einheitspunkte E i ( e i ) auf den Koordinatenachsen muss mit dem Skalarprodukt x y = x T y gelten: δ ij = e T i e j = e i T e j = et i U T U e j = e T i A e j = a ij für alle i, j, 1 i, j n d.h. A := U T U = E. Folgerungen: U T U = E Die Spalten von U sind orthonormiert. U T U = E U T = U 1 UU T = E Die Zeilen von U sind orthonormiert. U T U = E det(u T U) = det(e) = 1. Mit dem Determinantenmultiplikationssatz folgt: det(u T ) det(u) = 1. Folglich gilt: U T U = E det(u) = ±1. Die Umkehrung gilt nicht! Beispiel: Im R 3 : U =

3 5.2 Euklidische Bewegungen in der Dimension n = 1 und n = 2 n = 1 U = (1) oder U = ( 1). n = 2 : U = ( u11 u 12 u 21 u 22 ) ; U T U = E u u2 21 = 1 1 u 11 1 Wähle u 11 = cos φ, 0 φ 2π u 21 = ± sin φ. Tafelskizze: Graph von sin und von cos Da im Fall u 21 = sin φ für ψ := 2π φ cos ψ = cos φ = u gilt: 11, sin ψ = sin φ = u 21 kann man φ so wählen, dass gilt: u 11 = cos φ, u 21 = sin φ. Weiter: U T U = E u 11 u 12 + u 21 u 22 = 0 u 12 cos φ + u 22 sin φ = 0 ( ) ( ) u12 sin φ = t cos φ u 22 mit t = ±1 (da u u2 22 = 1). 3

4 ( ) cos φ sin φ Für t = 1 U = ( ) sin φ cos φ... Drehmatrix Eigenvektoren/Eigenwerte? ( ) cos φ λ sin φ det(u λe) = det sin φ cos φ λ = cos 2 φ 2λ cos φ + λ 2 + sin 2 φ = = λ 2 2λ cos φ + 1 = 0 λ 1,2 = 2 cos φ ± 4 cos 2 φ 4 = 2 = cos φ ± sin 2 φ = cos φ ± i sin φ = = e ±iφ Formel von Euler Satz: ±φ im EW e iφ einer Drehmatrix (*) ist der zugehörige Drehwinkel. Einziger Fixpunkt der Drehung x = U x ist der Ursprung O (Gleichsinnige Bewegung). ( ) cos φ sin φ Für t = 1 U = ( ) sin φ cos φ... Spiegelungsmatrix Eigenvektoren/Eigenwerte? ( ) cos φ λ sin φ det(u λe) = det sin φ cos φ λ = cos 2 φ + λ 2 sin 2 φ = λ 2 1 = 0 λ 1,2 = ±1. 4

5 Den Eigenvektor (EV) x o zum Eigenwert (EW) λ 1 = +1 erhält man aus: U x = x (U E) x = o (cos φ 1) x 1 + sin φ x 2 = 0 sin φ x 1 (cos φ + 1) x 2 = 0 Zweite Zeile: x 1 = cos φ + 1, x 2 = sin φ ist eine Lösung. Erste Zeile: ist erfüllt (nachrechnen). Da die ( Abbildung ) x = U x Vielfache von cos φ + 1 r = auf sich abbildet folgt: sin φ Satz: Bei einer Spiegelung der Ebene mit der Abbildungsmatrix (**) hat die Spiegelungsachse (Fixpunktgerade) ( ) den Richtungsvektor r =. cos φ + 1 sin φ ( ) sin φ Der Vektor s = r (EV cos φ + 1 zum EW λ 2 = 1) gibt die Richtung der (zueinander parallelen) Verbindungsgeraden (Fixgeraden) von Punkten zu ihren Bildpunkten an (Gegensinnige Bewegung). Welchen Winkel schließt die Spiegelungsachse mit der x 1 -Achse ein? 5

6 Das kann man rechnen, wenn man trigonometrische Formeln kennt. Besser. Geometrische Überlegung: Wohin kommt (z.b.) die x 1 -Achse? ( ) ( ) ( cos φ sin φ cos φ sin φ 1 0 = sin φ cos φ sin φ cos φ 0 1 ) Spiegelung an der x 1 -Achse, anschließend Drehung um O durch den Winkel φ. Insgesamt gilt für die x 1 -Achse: Drehung um O durch den Winkel φ. Dies bewirkt eine Spiegelung an einer Geraden, die mit der x 1 -Achse den Winkel φ 2 einschließt. Satz: Bei einer Spiegelung der Ebene mit der Abbildungsmatrix (**) schließt ein Richtungsvektor der Spiegelungsachse mit der positiven x 1 -Achse einen Winkel φ 2 ein. Anmerkung: Kombination einer Drehung oder einer Spiegelung mit einer Translation, verschiebt den Ursprung. Es kommen noch die Gleitspiegelungen als ungleichsinnige Bewegungen hinzu. 6

7 5.3 Euklidische Bewegungen in der Dimension n = 3 Für orthogonale Matrizen U mit U T U = E folgt über C aus U x = λ x mit x o: (U x) T U x = (λ x) T λ x x T U T U x = λλ x T x U=U x T x = λλ x T x x o λλ = 1 λ = 1 λ = ±1 oder λ = e ±iφ = cos φ ± i sin φ. mit φ [0, 2π] und p U (λ) = 0 = p U (λ). Für n = 3 hat U mindestens einen reellen EW o.e. λ 3 = ±1 und r sei ein EV zu λ 3. Da ein Basiswechsel die EW nicht ändert, wähle r als dritten Basisvektor eines KS. Dann ist die neue x 3 Achse Fixgerade, für λ 3 = 1 sogar Fixpunktgerade, kurz Achse a genannt. In diesem KS gilt: U = mit einer Bewegungsmatrix λ 1,2 = e ±iφ, u 11 u 12 0 u 21 u λ 3 ( u11 u 12 u 21 u 22 φ [0, 2π]. ) mit den EW 7

8 Nach 5.2. ergibt sich die Bewegungsmatrix U = cos φ sin φ 0 sin φ cos φ λ 3 mit φ [0, 2π]. Für λ 3 = 1 det(u) = 1, d.h. x = U x ist gleichsinnige Bewegung, speziell für: 1) φ = 0 die Identität U = E im R 3. (Fall: λ 1 = λ 2 = λ 3 = 1) 2) 0 < φ < 2π eine Drehung um die Drehachse a durch O mit Richtung r und Drehwinkel φ. 3) Speziell für φ = π eine 180 Drehung um a = Achsenspiegelung an a. (Fall: λ 1 = λ 2 = 1, λ 3 = 1) Für λ 3 = 1 det(u) = 1, d.h. x = U x ist ungleichsinnige Bewegung, speziell für: 1) φ = 0 eine Ebenenspiegelung an einer Ebene a durch O. (Fall: λ 1 = λ 2 = 1, λ 3 = 1) 2) 0 < φ < 2π eine Drehspiegelung um die Drehachse a mit Winkel φ und Spiegelung an einer Ebene a durch O. 3) Speziell für φ = π eine Punktspiegelung an O. (Fall: λ 1 = λ 2 = λ 3 = 1) 8

9 Anmerkung: Kombination einer dieser Bewegungen mit einer Translation, verschiebt den Ursprung und es kommen noch weitere Bewegungen hinzu, z.b. Schraubungen um die Achse a und die Gleitspiegelungen bzgl. Spiegelebenen. 5.4 Bestimmung des orientierten Drehwinkels zu einer Drehmatrix U x = U x mit U T U = E, det(u) = 1 nicht orientiert: EWe und Spur (Summe der Diagonalelemente) von U sind basisunabhängig. Damit erhält man φ aus cos φ sin φ 0 sin φ cos φ =: Ũ über spur(ũ) = cos φ cos φ = spur(ũ) 1 2 und, da die Spur basisunabhngig ist, allgemein: cos φ = spur(u) 1. ( ) 2 Damit ist φ [0, 2π) bzw. φ [ π, π) aber nicht eindeutig bestimmt, (Im R 2 liefert sin φ den Winkel φ [0, 2π) eindeutig.) 9

10 Andererseits ist im R 3 die Richtung r eines EV von U zum EW 1 mit r = 1 nur bis auf ein Vorzeichen (Orientierung) bestimmt. Bei einer Drehung o.e. um die x 3 Achse 1 x = Ũ x bilden s = 0 x 3 Achse, 0 Ũ s = cos φ sin φ 0 und r := s Ũ s = nach Satz aus für φ 0, π ein 0 0 sin φ Rechtssystem (det( r, s, Ũ s) = sin 2 φ > 0) und r weist für φ { (0, π) nach oben. (π, 2π) nach unten. Deutet man eine Drehung um die positive x 3 Achse mit dem Winkel φ (π, 2π) als 0 Drehung um r = 0 mit dem Winkel sin φ φ = 2π φ (0, π), siehe 3D-Figur, gilt allgemein: 10

11 Rechtsdrehung um die orientierte Achse a durch den Winkel δ Wählt man das Vorzeichen des EV r von U zum EW λ = 1 mit r = 1 so, dass bzgl. eines beliebig gewählten Vektors o s r ( s r = 0 ) ( r, s, U s) ein Rechtssystem ist ( det( r, s, U s) > 0), dann liefert δ = arccos spur(u) 1 ( ) 2 den orientierten Drehwinkel δ (0, π). Umorientierung der Drehachse ( r r) bewirkt Änderung des Drehsinns (δ δ). Das Rechtssystem bleibt ein Rechtssystem. Ändert man nur die Richtung der Achse oder den Drehsinn, wird aus dem Rechtssystem ein Linkssystem. 11

12 5.5 Anmerkung zu Drehspiegelungen x = U x mit U T U = E, det(u) = 1 Für φ = φ ± π gilt: cos φ = cos( φ ± π) = cos φ sin φ = sin( φ ± π) = sin φ Ũ = cos φ sin φ 0 sin φ cos φ = cos φ sin φ 0 sin φ cos φ Jede Drehspiegelung ist eine Drehung um eine Achse a (Richtung r EV von U zum EW λ = 1) durch O mit dem (nicht orientierten) Drehwinkel φ ( π, π) und anschließende Punktspiegelung an O : cos φ = spur(u) + 1. ( ) 2 Für spur(u) = 1 liegt eine Ebenenspiegelung vor an einer Ebene a durch O mit Normalenvektor r. Für spur(u) = 3 eine Punktspiegelung an O. Überlegungen zur Orientierung analog zu Drehmatrizen. 12

5 Zur Geometrie euklidischer Bewegungen. Eine Bewegung eines euklidischen Raumes wird bezüglich eines kartesischen Koordinatensystems

5 Zur Geometrie euklidischer Bewegungen. Eine Bewegung eines euklidischen Raumes wird bezüglich eines kartesischen Koordinatensystems 5 Zur Geometrie euklidischer Bewegungen 5.1 Erinnerung an 3.3.3 Eine Bewegung eines euklidischen Raumes wird bezüglich eines kartesischen Koordinatensystems beschrieben durch x = U x + w (U T U = E) mit

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner SS 0 Blatt 9 9060 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach Lösungsvorschlag a Die gegebene Matrix

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

4 Lineare Abbildungen

4 Lineare Abbildungen 17. November 2008 34 4 Lineare Abbildungen 4.1 Lineare Abbildung: Eine Funktion f : R n R m heißt lineare Abbildung von R n nach R m, wenn für alle x 1, x 2 und alle α R gilt f(αx 1 ) = αf(x 1 ) f(x 1

Mehr

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 Sei f : R n R n eine Bewegung Sie kann beschrieben werden in der Form Dabei ist T (f)(x) = A x f(x) = Ax + b mit A O(n) und b R n Definition:

Mehr

2.1 Voraussetzungen aus der Analytischen Geometrie

2.1 Voraussetzungen aus der Analytischen Geometrie 2 Kinematik im E n 2.1 Voraussetzungen aus der Analytischen Geometrie (AG) 2.1.1 Bewegungen E n... n-dimensionaler euklidischer Raum Bewegung: Abbildung so dass σ : E n E n, σ(p ) =: P, d(p, Q ) = d(p,

Mehr

Drehachse und Drehwinkel

Drehachse und Drehwinkel Drehachse und Drehwinkel Jede Drehung Q im R 3 besitzt eine Drehachse, d.h. lässt einen Einheitsvektor u invariant, und entspricht einer ebenen Drehung um einen Winkel ϕ in der zu u orthogonalen Ebene.

Mehr

Kapitel V. Räumliche Geometrie. 1. Drehungen

Kapitel V. Räumliche Geometrie. 1. Drehungen Kapitel V Räumliche Geometrie 1. Drehungen Punkte in R 3 sind durch 3 Koordinaten (x 1,x 2,x 3 ) bestimmt. Wir benützen die Matrix-Schreibweise x 1 x = x 2 x 3 Eine Drehung um die Koordinatenachse x 3

Mehr

3.1.1 Anes Koordinatensystem im Raum

3.1.1 Anes Koordinatensystem im Raum 3 Einführung von Koordinaten 3. Ane Koordinaten 3.. Anes Koordinatensystem im Raum Tafelskizze Im dreidimensionalen euklidischen Anschauungsraum E 3 wählen wir einen Punkt O, den Koordinatenursprung und

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN 13. ABBILDUNGEN in EUKLIDISCHEN VEKTORRÄUMEN 1 Orthogonale Abbildungen im R 2 und R 3. Eine orthogonale Abbildung ist eine lineare Abbildung, die Längen und Orthogonalität erhält. Die zugehörige Matrix

Mehr

Exkurs: Klassifikation orthogonaler 2 2-Matrizen.

Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Aussage: Es gilt: (a) Jede orthogonale 2 2 Matrix A mit det(a) = 1 hat das Aussehen cos(α) sin(α) D(α) = sin(α) cos(α), wobei α [0,2π[. Ist sin(α) 0, so

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.24 2017/05/18 11:18:04 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe In diesem Abschnitt wollen wir die Automorphismengruppe der euklidischen

Mehr

Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag

Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 08 Blatt 9.06.08 Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag 33. a Es ist cos ϕ sin ϕ cos

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen Mathematische Probleme, SS 28 Dienstag 29.5 $Id: vektor.tex,v.46 28/5/29 6:4: hk Exp $ Analytische Geometrie und Grundlagen.6 Bewegungen und Kongruenzbegriffe Am Ende der letzten Sitzung hatten wir bereits

Mehr

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c Drehung Die orthogonale n n-matrix Q i,j... Zeile i c s... Zeile j s c... mit c = cos ϕ und s = sin ϕ beschreibt eine Drehung um den Winkel ϕ in der x i x j -Ebene des R n. Drehung - Drehung Die orthogonale

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Prüfung Lineare Algebra 2

Prüfung Lineare Algebra 2 1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,

Mehr

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen $Id: quadrat.tex,v 1.26 215/6/3 1:3:3 hk Exp $ $Id: orthogonal.tex,v 1.13 215/7/1 1:57:5 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6.4 Definite Matrizen Wir hatten eine symmetrische reelle beziehungsweise

Mehr

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der 7 Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Folgerung: Drehmatrizen haben die Determinante. Folgerung: Drehmatrizen sind orthogonale Matrizen, das heißt D = D

Mehr

Klassifikation ebener affiner Abbildungen

Klassifikation ebener affiner Abbildungen Klassifikation ebener affiner Abbildungen Die Analyse und Klassifikation der affinen Abbildungen der Ebene ist ein hervorragendes Beispiel für das, was Freudenthal lokales Ordnen nennt. Die affinen Abbildungen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

4 Orthogonale Endormorphismen

4 Orthogonale Endormorphismen 4 Orthogonale Endormorphismen Frage: Bei welchen Abbildungen R R bzw. R 3 R 3 bleibt der Abstand zwischen zwei Punkten erhalten? Für α R setzen wir cosα sin α D(α) = und S(α) := sin α cosα ( cos α sin

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

3.3. Drehungen und Spiegelungen

3.3. Drehungen und Spiegelungen 3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen Teschl/Teschl.3,. Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester 9 Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b Vektorprodukt Der Vektor c = a b ist zu a und b orthogonal, gemäß der Rechten-Hand-Regel orientiert und hat die Länge c = a b sin( ( a, b)), die dem Flächeninhalt des von den Vektoren a und b aufgespannten

Mehr

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1 Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Lineare Abbildungen, Eigenwerte Lösungen Lösungshinweise: a nicht linear, denn zb fα α, αy +, α + αz T α, αy +, α + z

Mehr

1 Analytische Geometrie

1 Analytische Geometrie Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet

Mehr

Kapitel II Lineare Algebra und analytische Geometrie Stand 9. Januar 2011

Kapitel II Lineare Algebra und analytische Geometrie Stand 9. Januar 2011 Kapitel II Lineare Algebra und analytische Geometrie Stand 9 Januar 011 7 Bewegungen Wir betrachten jetzt Affinitäten in n unter Einbeziehung der Abstandsmessung Die Abstandsmessung in n beruht auf einem

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Gliederung 4 Invarianten Isometrien (Kongruenzen) Ähnlichkeitsabbildungen Affine Transformationen Projektive Transformationen 2 von

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 10 Bewegungen Wir haben schon mehrfach die Würfelgruppe betrachtet, also die Gruppe der eigentlichen Symmetrien an einem Würfel.

Mehr

Kinematik (2+1 SWS, 4 ECTS) Technische Universität München. Fakultät für Mathematik. Johann Hartl

Kinematik (2+1 SWS, 4 ECTS) Technische Universität München. Fakultät für Mathematik. Johann Hartl Kinematik (2+1 SWS, 4 ECTS) Technische Universität München Fakultät für Mathematik Johann Hartl 1 Einleitung 1.1 Was ist Kinematik 1.1.1 "... das Paradies der Geometer" 1.1.2 Kinematik = Bewegungslehre

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Einige Ergebnisse der euklidischen Geometrie

Einige Ergebnisse der euklidischen Geometrie 1 Teil I Einige Ergebnisse der euklidischen Geometrie In Teil I setzen wir den euklidischen Raum als bekannt voraus (aus der Schule oder aus der Vorlesung Lineare lgebra und nalytische Geometrie). Da wir

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Modulteilprüfung Geometrie (BaM-GS), Probeklausur

Modulteilprüfung Geometrie (BaM-GS), Probeklausur HRZ-Benutzername: Modulteilprüfung Geometrie (BaM-GS), Probeklausur Dr. Patrik Hubschmid // SoSe 2013, 4. Juli 2013 Kontrollieren Sie, ob Sie alle Blätter (8 einschlieÿlich zweier Deckblätter) erhalten

Mehr

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & &

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & & Vektorprodukt Institut für Mathematik Humboldt-Universität zu Berlin 18.02.2004 & 17.02.2005 & 11.07.2005 zu den Vorlesungen Lineare Algebra und analytische Geometrie I (L) im WS 2003/2004, Mathematik

Mehr

Herbstsemester ist es.

Herbstsemester ist es. Dr V Gradinaru K Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 4 Aufgabe 4 Multiple Choice: Online abzugeben 4a) Gegeben seien: Dann gilt: (i)

Mehr

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum Vektorrechnung Wir werden den Vektorbegriff anschaulich einführen und beschränken uns zunächst auf den zweidimensionalen euklidischen Raum. Die Elemente dieses Raumes sind Punkte P, Q, R, S,.... Geordnete

Mehr

13 Lineare Abbildungen

13 Lineare Abbildungen 13 Lineare Abbildungen Grob gesprochen sind lineare Abbildungen bei Vektorräumen dasselbe wie Homomorphismen bei Gruppen, nämlich strukturerhaltende Abbildungen. Auch in diesem Kapitel seien V, W Vektorräume.

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Einige Lösungsvorschläge für die Klausur zur Vorlesung

Einige Lösungsvorschläge für die Klausur zur Vorlesung Prof Klaus Mohnke Institut für Mathematik Einige Lösungsvorschläge für die Klausur zur Vorlesung Lineare Algebra und analtische Geometrie II* - SS 7 Aufgabe Im R mit dem Standardskalarprodukt ist die folgende

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.21 2017/05/13 16:28:55 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 7 Vektoren Aufgabe 7 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

5.4 Hauptachsentransformation

5.4 Hauptachsentransformation . Hauptachsentransformation Sie dient u.a. einer möglichst einfachen Darstellung von Kegelschnitten und entsprechenden Gebilden höherer Dimension mittels einer geeigneten Drehung des Koordinatensystems.

Mehr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr Technische Universität München SS 2005 Zentrum Mathematik Blatt 7 apl. Prof. Dr. J. Hartl Angewandte Geometrie Semestralprüfung am 5. Juli 2005, 12.00-1.0 Uhr 1. In einem dreidimensionalen euklidischen

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul Lineare Abbildungen. Eigenwerte Lernumgebung. Teil Hans Walser: Modul, Lineare Abbildungen. Eigenwerte. Lernumgebung. Teil ii Inhalt Lineare Abbildung

Mehr

Lineare Abbildungen. Heinrich Voss. Hamburg University of Technology Department of Mathematics. Lineare Abbildungen p.

Lineare Abbildungen. Heinrich Voss. Hamburg University of Technology Department of Mathematics. Lineare Abbildungen p. Lineare Abbildungen Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Department of Mathematics Lineare Abbildungen p. /95 Basiswechsel Es seien V, W endlichdimensionale Vektorräume und

Mehr

Kartografie I. Hans Walser Koordinatensysteme und Transformationen Lernumgebung

Kartografie I. Hans Walser Koordinatensysteme und Transformationen Lernumgebung Kartografie I Hans Walser Koordinatensysteme und Transformationen Lernumgebung Hans Walser: Koordinatensysteme und Transformationen ii Inhalt 1 Rechts- oder Linkssystem?... 1 Rechtssystem... 3 Polarwinkel...

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik I+II Frühlingsemester 219 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 46 8. Lineare Algebra: 5. Eigenwerte und

Mehr

Determinante und Inverse

Determinante und Inverse Vorzeigeaufgaben: Determinante und Inverse Bestimmen Sie für welche a R die folgende Matrix invertierbar ist und berechnen Sie deren Inverse: A = a cos(x) sin(x) a sin(x) cos(x) Bestimmen Sie ob folgende

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

7 Orthogonale und unitäre Matrizen

7 Orthogonale und unitäre Matrizen $Id: orthogonal.tex,v.6 2/7/ 4::3 hk Exp $ $Id: mdiffb.tex,v.3 2/7/ 4::5 hk Exp hk $ 7 Orthogonale und unitäre Matrizen 7.2 Drehungen Wir wollen uns jetzt mit Drehungen im dreidimensionalen Raum beschäftigen.

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr