5.4 Hauptachsentransformation
|
|
|
- Dorothea Hummel
- vor 8 Jahren
- Abrufe
Transkript
1 . Hauptachsentransformation Sie dient u.a. einer möglichst einfachen Darstellung von Kegelschnitten und entsprechenden Gebilden höherer Dimension mittels einer geeigneten Drehung des Koordinatensystems. Dabei wird sich die Eigenwertmethode als besonders nützlich erweisen. Die Hauptachsentransformation einer Quadrik in zwei Variablen liefert als Ergebnis eine Normalform eines Kegelschnittes. Wir bezeichnen im Folgenden die Variablen mit x und y statt mit x und x und benutzen die Matrizendarstellung [ x y ] α α α α x y x + [ a a ] + α 0. y Zunächst bestimmen wir für die symmetrische Matrix A α α. α α das charakteristische Polynom die Eigenwerte p A ( x α ) ( x α ) α ( α + α ) x + α α α, x λ ( α + α + ( α α ) + λ ( α + α ( α α ) + und die zugehörigen Eigenvektoren v j α ) α ) λ j α α oder v α j, j,, λ j α bzw. falls A eine Diagonalmatrix (d.h. α 0) ist, v j e j (kanonische Einheitsvektoren). Die entsprechenden normierten Eigenvektoren bilden bei geeigneter Orientierung eine Drehmatrix R φ (Vorzeichen so setzen, daß die Determinante wird), welche den Kegelschnitt so dreht, daß seine Symmetrieachsen (Hauptachsen) danach parallel zu den Koordinatenachsen sind. Es gibt (durch Wahl der Reihenfolge der Eigenwerte bzw. der Koordinaten) mehrere Möglichkeiten, zu drehen - je nach Symmetrie! Die linearen Glieder muss man gegebenenfalls mit transformieren, also [ a, a ] durch [ a, a ] R φ ersetzen. Abschließend kann man durch quadratische Ergänzung die Koeffizienten der linearen Glieder zum Verschwinden bringen und gelangt schließlich nach Division durch eine geeignete Konstante zu einer (verschobenen) Normalform des Kegelschnitts. Um den ursprünglichen Kegelschnitt zu zeichnen, erstellt man erst eine Skizze der Normalform, verschiebt diese gegebenenfalls (sofern die linearen Glieder nicht verschwinden) und dreht dann das Bild um den Winkel φ (gegen den Uhrzeigersinn).
2 Beispiel : Eine gedrehte Ellipse 6 x + 9 y + y x 80 0 Symmetrische Matrix: Charakteristisches Polynom: Eigenwerte: Eigenvektoren: v Drehmatrizen aus normierten Eigenvektoren: R φ - Drehwinkel: φ arccos arcsin Achsenparallele Ellipsen: Normalformen: A 6 9 p A ( x ) x 6 x λ 0, λ, -, v R ψ ~ 0, ψ φ + 0 x + y 80 0 bzw. x + 0 y 80 0 x y + x y bzw. + π ~ 0
3 Alternative Berechnung der Hauptachsentransformation Der Drehwinkel φ und die gesuchte Drehmatrix R φ cos( φ) sin( φ) sin( φ ) cos( φ) c s s c läßt sich auch direkt ohne Eigenwertberechnung finden: In der transformierten Matrix β R φ A Rφ β β β c s sα α c α c α s s c α c + α s c + α s ( α α ) s c + α ( c s ) ( α α ) s c + α ( c s ) α s α s c + α c lautet der nicht auf der Diagonale stehende Koeffizient β ( α α ) sin( φ ) cos( φ) + α ( cos( φ) sin( φ) ) ( α ) + α sin( φ) α cos( φ ). (rigonometrische Summenformeln!) Um β 0, also eine Diagonalmatrix zu erreichen, setzt man cos( φ) α α α cot( φ ) bzw. φ α arccot sin( φ) α. α Weitere Lösungswinkel erhält man durch Addition ganzzahliger Vielfacher von π/ (Vierteldrehungen). Der Sonderfall α 0 ist hier unproblematisch, da A dann ja bereits eine Diagonalmatrix ist und man für R φ die Einheitsmatrix, d.h. φ 0 nehmen kann, was auch mit der Formel arccot( ) arccot( ) 0 zusammenpaßt. Beispiel : Eine gedrehte Hyperbel x + y x y 0
4 Symmetrische Matrix: Drehwinkel: cot( φ ) α α 0, α A - - π φ, cos( φ), sin( φ), bzw. ψ π (allgemein φ + Drehmatrizen: k π ). R φ, R ψ Achsenparallele Hyperbeln: - 0 R φ A Rφ 0 0 R ψ A Rψ 0 - x + y 0 bzw. x y 0. Normalformen: x y + x y bzw.. Die ursprüngliche Hyperbel entsteht aus derjenigen mit den "waagerechten" Ästen durch Drehung um π/ (Vierteldrehung gegen den Uhrzeigersinn), hingegen aus derjenigen mit den "senkrechten" Ästen durch Drehung um π/ (Vierteldrehung im Uhrzeigersinn).
5 Verschiebung durch linearen Anteil Drehen wir den allgemeinen Kegelschnitt x A x + a x + α 0 ( x [ x, x ] ) um den Winkel φ, so ist x durch R φ x zu ersetzen, und nach dieser Koordinatentransformation haben wir die neue Gleichung x B x + b x + α 0 mit B R φ A Rφ und b a R φ. Ist nun R φ eine Drehmatrix aus Eigenvektoren, so wird B die Diagonalmatrix der entsprechenden Eigenwerte λ und λ. In Koordinatenschreibweise ergibt sich eine Kegelschnittgleichung der Form λ x + λ x + b x + b x + α 0, und durch quadratische Ergänzung gewinnt man eine verschobene Normalform des Kegelschnitts. Sinde beide Eigenwerte ungleich 0, so ergibt sich meist eine Ellipse oder Hyperbel, in Ausnahmefällen ein Punkt, ein Geradenpaar oder die leere Menge. Ist ein Eigenwert gleich 0, so kommt meist eine Parabel heraus; auch hier gibt es Ausnahmefälle, in denen man eine oder zwei (parallele) Geraden oder die leere Menge erhält. Beispiel : Eine verschobene Ellipse Betrachten wir statt der Ellipse in Beispiel den Kegelschnitt 6 x + 9 y + x y x 08 y 0, der offensichtlich durch den Ursprung verläuft. Die symmetrische Matrix A und die Drehmatrix R φ sind die gleichen wie in Beispiel. Wegen [, 08 ] R φ [ 0, 80 ] gelangen wir zu dem gedrehten Kegelschnitt 0 x + y 80 y 0 mit der verschobenen Normalform x y +. Wir zeichnen diese Ellipse und das um φ gedrehte Bild:
6 Beispiel : Eine verschobene Hyperbel Hätten wir statt des Kegeschnitts in Beispiel die Quadrik x + y y x + x + y 0 zu untersuchen, so wäre noch der lineare Anteil zu transformieren, also [, ] R φ [, 0 ] zu bilden. Die transformierte Quadrik lautete dann x + y + x 0 bzw. ( x ) + y 0, und die ursprüngliche Hyperbel wäre um verschoben. auf der Hauptdiagonalen nach rechts oben Beispiel : Eine schiefe Parabel x + y + x y x + y + 0 Symmetrische Matrix: Charakteristisches Polynom: Eigenwerte: A p A ( x ) x x λ 0, λ
7 Eigenvektoren: Drehmatrix aus normierten Eigenvektoren: v -, v π k π Drehwinkel: φ + 6. ransformation des linearen Anteils: Achsenparallele Parabeln: R φ - R φ - 0 y x + 0, y + x + 0, x y + 0, x + y + 0, x y +, x y, y x +, y x Invarianz des charakteristischen Polynoms Wegen der Produktregel für Determinanten gilt für ransformationen mit invertierbarer Matrix B det( B ( ) A B ) det ( B ) ( ) det( A ) det( B ) det( A ). Durch Anwendung auf x E A statt A sieht man: Das charakteristische Polynom bleibt bei ransformation unverändert: p A ( x ) ( x ). pb ( ) A B Insbesondere hat die transformierte Matrix B ( ) A B genau die gleichen Eigenwerte (inklusive Vielfachheit), die gleiche Spur und die gleiche Determinante wie A.
8 Klassifikation der Kegelschnitte Wie erkennt man bei einer ebenen Quadrik a, x + a, x + a, x x + a, x + a, x + a, 0 den yp des dargestellten Kegelschnitts? Mit Hilfe der Eigenwerte bzw. der Determinante d det a, a, a, a, a, a, a, kann man sofort eine grobe Einteilung der Kegelschnitte vornehmen: Ellipse, Punkt oder leere Menge bei gleichem Vorzeichen der Eigenwerte (d > 0) Hyperbel oder Geradenpaar bei verschiedenem Vorzeichen der Eigenwerte (d < 0) Parabel, Parallelenpaar, Gerade oder leere Menge, falls 0 ein Eigenwert ist (d 0). Die Achsenabschnitte bei Ellipsen findet man als reziproke Quadratwurzeln aus den Eigenwertbeträgen. Zur feineren Unterscheidung braucht man außer d auch noch die Determinante der entsprechenden räumlichen Quadrik: Mit d det s + a, a, a, a, a, a, a, a,. a, a, a, hat man dann folgende Kriterien und (mit a b multiplizierten) Normalformen: d > 0, s d < 0 : Ellipse b x + a y a b d < 0, d 0, s d > 0 : leer b x + a y a b d 0 : Punkt b x + a y 0 d 0 : Hyperbel b x a y a b d 0 : sich schneidende Geraden b x a y 0 d 0 : Parabel x a y 0 d 0 : Parallele Geraden oder leer x a 0 Im letzten Fall handelt es sich nur um eine Gerade, falls die x-matrix den Rang hat.
9 Satz über die Hauptachsentransformation symmetrischer Matrizen Jede symmetrische Matrix A aus R ( n x n ) hat nur reelle Eigenwerte, und sie besitzt eine Orthonormalbasis (b,...,b n ) aus reellen Eigenvektoren. Spaltenweise zusammengesetzt bilden diese also eine orthogonale Matrix B, so daß B A B Λ eine Diagonalmatrix wird, deren Diagonalelemente die Eigenwerte von A sind. Wir begründen diese wichtigen atsachen im Einzelnen.. Zunächst betrachten wir einen Eigenwert λ aus C und dazu einen Eigenvektor v. Es gilt also A v λ v und folglich wegen A A A : λ v v ( λ v ) v ( A v ) v v A v v A v λ v v. Da v nicht der Nullvektor ist, also v v v 0 gilt, muß λ λ reell sein.. Eigenvektoren zu verschiedenen Eigenwerten stehen aufeinander senkrecht: Ist A v λ v und A w µ w, so folgt und für v ( λ µ ) w v λ w v µ w v A w v A w 0, λ µ erzwingt das v w 0.. Jeder Eigenraum besitzt eine Orthonormalbasis. Wie man eine solche aus einer beliebigen Basis gewinnt, beschreiben wir weiter unten.. Man muß sich nun noch überlegen, daß algebraische und geometrische Vielfachheit der Eigenwerte im Falle einer symmetrischen Matrix übereinstimmen (was wir hier übergehen wollen). Dann kann man die in. gewonnenen Orthonormalbasen der Eigenräume zu einer Orthonormalbasis des Gesamtraumes R n zusammensetzen und bekommt mit der daraus gebauten ransformation die gewünschte Diagonalgestalt. Bei x-matrizen geht das einfach: - Entweder sind alle drei Eigenwerte verschieden, dann stehen die zugehörigen Eigenvektoren automatisch aufeinander senkrecht und müssen nur noch normiert werden, - oder alle drei Eigenvektoren sind gleich; dann ist A ein Vielfaches der Einheitsmatrix, und man kann irgendeine Orthonormalbasis des R (z.b. die kanonische) nehmen, - oder A hat einen einfachen und einen doppelten Eigenwert; dann nimmt man je einen normierten Eigenvektor zu diesen beiden Eigenwerten und ergänzt diese (orthogonalen!) Vektoren durch deren Kreuzprodukt zu einer Orthonormalbasis. Zusammenfassung: Hauptachsentransformation. Bestimmung aller Eigenwerte (notfalls näherungsweise).. Berechnung von Basen der Eigenräume mittels Elimination nach Gauß-Jordan.. Umformung in Orthonormalbasen.. Zusammensetzen zur ransformationsmatrix. Es bleibt zu klären, wie man aus einer gegebenen Basis eine Orthonormalbasis macht.
10 Orthonormierung nach Gram-Schmidt Ist c,...,c k eine Orthonormalbasis eines Unterraumes U des R n und b ein nicht in U liegender Vektor aus R n, so erhält man eine Orthonormalbasis c,...,c k + des von U und b zusammen erzeugten Raumes, indem man die Projektion von b auf U bildet: b U : b c +...+b ck, wobei b cj β j c j die Projektion von b auf c j mit β j c j b ist, und den Lotvektor b b U normiert, also c k + ( b b U )* setzt (wobei der normierte Vektor u* aus u entsteht, indem man durch den Betrag u dividiert). Wir verifizieren mit Hilfe des Skalarprodukts, daß b b U und damit auch c k + tatsächlich senkrecht auf jedem der Vektoren c j steht ( j,...,k): c j b k i β i c i c j b wegen c j cj und c j ci 0 für i j. k i β i c j ci β j β j 0 Durch Iteration dieses Verfahrens erhält man aus einer beliebigen Basis b,...,b r sukzessive eine Orthonormalbasis c : b *, c : ( b c b c )*, c : ( b c b c c b c )*... In der Praxis empfiehlt es sich meist, die Normierung erst ganz am Schluß vorzunehmen, um in den Zwischenschritten Wurzeln zu vermeiden: c : b, c : b α, c, c : b α, c α, c usw. mit α i, j Dann wird c *, c *, c *... eine Orthonormalbasis. Beispiel 6: Orthonormalbasis eines Kerns Für das Gleichungssystem A x 6 A : mit der symmetrischen Matrix berechnet man mit dem Gauß-Jordan-Verfahren z.b. folgende Basisvektoren: c i bj. c i ci b [,,, 0, 0 ], b [,, 0,, 0 ], b [,, 0, 0, ]. Zur Vereinfachung lassen wir jetzt die ranspositionszeichen weg. Durch die folgenden Schritte des Gram-Schmidt-Verfahrens bekommt man zuerst eine Orthogonalbasis:
11 c [,,, 0, 0 ], c c 6, c b [,,, 0, 0 ] [,, 0,, 0 ] 8, α,, c b α, c [,, 0,, 0 ] [,,, 0, 0 ] [,,,, 0 ], c c c b [,,, 0, 0 ] [,, 0, 0, ], 6, c b [,,,, 0 ] [,,,, ], α,, α, c b α, c α, c [,, 0, 0, ] 6 [,,, 0, 0 ] [,,,, 0 ] c [, 0,,, ], c. Probe: c c 0, c c 0, c c 0. Durch Normieren der Vektoren c j ergibt sich nun eine Orthonormalbasis des Kerns von A: c * 6 [,,, 0, 0 ], c * 0 [,,,, 0 ], c * 0 [, 0,,, ]. MAPLE berechnet mit dem Befehl nullspace eine Basis des Lösungsraums von A x 0... {[, -, 0, 0, ], [, -,, 0, 0 ], [, -, 0,, 0 ] } und daraus mit dem Befehl GramSchmidt eine Orthogonalbasis: {,,,,,, } , - -,,, [, -,, 0, 0 ] 7 Mit dem Befehl normalize wird schließlich noch normiert: c : c : c : 6 6 6,,, 0, ,, 0 0,, 0 0 0, 0,,, 0 0 Jetzt können wir die Matrix A diagonalisieren. Wir wissen schon, dass 0 ein Eigenwert ist. In der at findet man das charakteristische Polynom x x 0 x mit den Eigenwerten 0 (dreifach), + und. Die zugehörigen normierten Eigenvektoren sehen ziemlich chaotisch aus. Als Spalten geschrieben bilden sie die ransformationsmatrix, mit der A auf Diagonalgestalt gebracht wird. 0,
Einige Beispiele zu Drehmatrizen Dr. W. Tenten fürs Forum "Abenteuer-Universum" zusammengestellt
Einige Beispiele zu Drehmatrizen Dr. W. Tenten fürs Forum "Abenteuer-Universum" zusammengestellt Nov. 008 Die Hauptachsentransformation einer Quadrik in zwei Variablen liefert als Ergebnis eine Normalform
++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1
Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +
6.3 Hauptachsentransformation
Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die
6 Symmetrische Matrizen und quadratische Formen
Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation
4.4. Rang und Inversion einer Matrix
44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert
6 Symmetrische Matrizen und quadratische Formen
Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn
2.3.4 Drehungen in drei Dimensionen
2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1
7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?
Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist
Musterlösungen zur Linearen Algebra II Übungsklausur
Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,
Anwendung v. symmetrischen Matrizen: Hauptachsentransformation
Zusammenfassung: Eigenwerte, Eigenvektoren, Diagonalisieren Eigenwertgleichung: Bedingung an EW: Eigenwert Eigenvektor charakteristisches Polynom Für ist ein Polynom v. Grad, Nullstellen. Wenn EW bekannt
5.2 Charakteristisches Polynom und Eigenräume
5 Charakteristisches Polynom und Eigenräume Wie bestimmt man die Eigenwerte und Eigenräume einer Matrix? Den ersten Schritt beschreibt der folgende einfache Satz : Die Eigenwerte einer Matrix A aus K (
Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops
15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den
Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.
Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich
4.1. Vektorräume und lineare Abbildungen
4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt
Proseminar Lineare Algebra II, SS 11. Blatt
Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2
3 Matrizenrechnung. 3. November
3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige
6 Eigenwerte und Eigenvektoren
6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,
Eigenwerte und Diagonalisierung
Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende
10.2 Linearkombinationen
147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014
Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................
3.3. Drehungen und Spiegelungen
3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ
3. Übungsblatt Aufgaben mit Lösungen
. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen
Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht
Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben
Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010
Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und
Bonusmaterial Euklidische und unitäre Vektorräume Geometrie in höheren Dimensionen
Bonusmaterial Euklidische und unitäre Vektorräume Geometrie in höheren Dimensionen Orthogonale und unitäre Endomorphismen Wir untersuchen nun lineare Abbildungen in euklidischen und unitären Vektorräumen
MC-Serie 11: Eigenwerte
D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung
46 Eigenwerte und Eigenvektoren symmetrischer Matrizen
46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über
6 Hauptachsentransformation
6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten
Lineare Algebra II 8. Übungsblatt
Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.
Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte
Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,
4 Lineare Abbildungen Basisdarstellungen
4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w
1.9 Eigenwerte und Eigenvektoren
.9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2
45 Eigenwerte und Eigenvektoren
45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.
Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)
Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein
Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,
Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren
Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung
Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra 2 (SS ) Blatt : Musterlösung Aufgabe. Es sei C (R) der R-Vektorraum der unendlich oft differenzierbaren Funktionen auf R und : C (R) C (R), f f die Abbildung,
Lineare Algebra: Determinanten und Eigenwerte
: und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b
Aufgaben zu Kapitel 20
Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
4 Lineare Abbildungen und Matrizen
Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt
Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).
Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =
Lösungsskizzen zur Klausur
sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie
3.6 Eigenwerte und Eigenvektoren
3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse
1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema
1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und
Erweiterte Koordinaten
Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In
Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)
Lineare Abbildungen Teschl/Teschl.3,. Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:
Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =
Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Mathematische Erfrischungen III - Vektoren und Matrizen
Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen
Inhaltsverzeichnis INHALTSVERZEICHNIS 1
INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4
6 Symmetrische Matrizen und quadratische Formen
Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische
Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik
Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum
13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01
. Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:
Kapitel 18. Aufgaben. Verständnisfragen
Kapitel 8 Aufgaben Verständnisfragen Aufgabe 8 Gegeben ist ein Eigenvektor v zum Eigenwert λ einer Matrix A (a) Ist v auch Eigenvektor von A? Zu welchem Eigenwert? (b) Wenn A zudem invertierbar ist, ist
6 Symmetrische und hermitesche Matrizen
$Id: quadrat.tex,v.0 0/06/9 :47:4 hk Exp $ $Id: orthogonal.tex,v.4 0/06/9 3:46:46 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6.3 Quadratische Funktionen und die Hauptachsentransformation Wir sind
Rückblick auf die letzte Vorlesung
Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform
8 Lineare Abbildungen und Matrizen
8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume
Leitfaden 34. , dies ist eine reelle symmetrische Matrix, also diagonalisierbar.
Leitfaden 34 5. Euklidsche und unitäre Räume (und selbstadjungierte, orthogonale, unitäre, normale Endomorphismen). 5.1. Reelle symmetrische Matrizen sind diagonalisierbar. Satz: Reelle symmetrische Matrizen
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7
Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3
3.3 Klassifikation quadratischer Formen auf R n
3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen
Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)
Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
Musterlösungen zur Linearen Algebra II Weihnachtszettel
Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu
Skalarprodukte (Teschl/Teschl Kap. 13)
Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +
Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik
Aufgabe Punkte Geben Sie die Matrixbeschreibung der Quadrik {x R 3x 3x 8x x +x +4x +7 = 0} an Berechnen Sie die euklidische Normalform der Quadrik und ermitteln Sie die zugehörige Koordinatentransformation
Lineare Algebra II 12. Übungsblatt
Lineare Algebra II 12. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 13. / 14. Juli 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Probeklausur) Sprechen Sie über die Probeklausur
Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31
Scheinklausur Höhere Mathematik 0 0 0 Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 Summe Punkte / / /4 / /9 /7 / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten
Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1
Lineare Algebra II Inhalt und Begriffe Lineare Algebra II p. 1 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Lineare Algebra II p. 2 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen
44 Orthogonale Matrizen
44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
Prüfung Lineare Algebra 2
1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,
2.3. Vektorprodukt und Spatprodukt
.3. Vektorprodukt und Spatprodukt Das Vektorprodukt In sehr vielen mathematischen und physikalisch-technischen Problemstellungen geht es darum, zu einer gegebenen Fläche deren Inhalt und auf ihr senkrecht
Klausur Lineare Algebra I & II
Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte
Klausur HM I H 2005 HM I : 1
Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k
(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2
Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit
Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015
Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt
Kapitel 3 Quadratische Formen und symmetrische Matrizen
Kapitel 3 Quadratische Formen und symmetrische Matrizen 3.1 Skalarprodukte und Normen Das übliche Skalarprodukt für Vektoren aus dem R ist folgendermassen erklärt: ( ) ( ) x1 x v w = := x 1 x +y 1 y. y
Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom
Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse
Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE
Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse
Orthonormalbasis. Orthogonalentwicklung
Orthonormalbasis Eine Orthogonal- oder Orthonormalbasis des R n (oder eines Teilraums) ist eine Basis {v,..., v n } mit v i = und v i, v j = für i j, d. h. alle Basisvektoren haben Norm und stehen senkrecht
Vektoren, Vektorräume
Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010
Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1.
Matrizen Aufgabe Sei f R R 3 definiert durch ( x 3y x f x + y y x Berechnen Sie die Matrix Darstellung von f Lösung von Aufgabe ( f ( f 3 Die Matrix Darstellung von f ist somit A 3 Aufgabe Eine lineare
Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen
Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).
4.4 Eigenwerte und Eigenvektoren
4.4-1 4.4 Eigenwerte und Eigenvektoren 4.4.1 Die Eulersche Gleichung Der Drehimpulsvektor kann folgendermaßen geschrieben werden, (1) worin die e i o Einheitsvektoren in Richtung der Hauptachsen sind,
Grundlagen der Vektorrechnung
Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt
5. Übung zur Linearen Algebra II -
5. Übung zur Linearen Algebra II - en Kommentare an [email protected] FU Berlin. SS 2. Aufgabe 7 5 A := 2. 3 2 (i) Berechne die Eigenwerte und Eigenvektoren von A. (ii) Ist A diagonalisierbar?
Technische Universität München
Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder
Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)
Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen
5 Lineare Algebra (Teil 3): Skalarprodukt
5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale
8. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus
Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger
Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit
Eigenwerte und Eigenvektoren
Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische
Lineare Algebra und Numerische Mathematik für D-BAUG
P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen
