4.4. Rang und Inversion einer Matrix
|
|
|
- Lorenz Dominic Schmidt
- vor 9 Jahren
- Abrufe
Transkript
1 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert ist klar (denn es bleibt ja sogar der Zeilenraum der selbe) Schwerer zu zeigen ist daß der Rang auch bei elementaren Spaltenumformungen erhalten bleibt (wir glauben das an dieser Stelle den Mathematikern) Der Rang ist nichts anderes als die Zeilenzahl der umgeformten Matrix nach Schritt des Gauß-Jordan-Verfahrens und kann daher auf diesem Weg bestimmt werden Nach Konstruktion ist der Rang auch die Zahl der positiven Diagonalemente nach Schritt 4 Andererseits ist die Zahl der negativen Diagonalelemente die Dimension des Lösungsraumes für das homogene Gleichungssystem A x 0 Der Kern einer Matrix (bzw der durch sie dargestellten linearen Abbildung) ist der Lösungsraum des zugehörigen homogenen Gleichunsgsystems Wir haben damit folgende wichtigen Gleichungen: (R) Rang A Dimension des Zeilenraumes Dimension des Spaltenraumes Rang A T (R) Rang A + dim Kern A Spaltenzahl von A Kennt man also den Rang so auch die Dimension des Lösungsraumes und die des Bildraumes Die Summe der beiden Dimensionen ist die Spaltenzahl Das Ergebnis des Gauß-Jordan-Verfahrens bis einschließlich Schritt (und damit die Bestimmung einer Basis des Zeilenraumes und insbesondere des Ranges) liefert MAPLE in einem Schritt nach Eingabe des Befehls gaussjord(a) Beispiel : Eine Basis des Zeilenraums der x5-matrix Nach Schritt des Gauß-Jordan-Verfahrens gelangt man zu folgender Zeilenbasis: Offenbar ist der Rang einer mxn-matrix höchstens so groß wie das Minimum von m und n Die Wahrscheinlichkeit daß er echt kleiner als dieses Minimum wird ist Null - aber es passiert eben doch in Spezialfällen Zum Beispiel hat jede Matrix der Form a T a für einen beliebigen von 0 verschiedenen Zeilenvektor den Rang (denn alle Spalten sind Vielfache von a T )
2 Die Rang-Ungleichung Rang( AB ) min ( Rang( A ) Rang( B) ) gilt für beliebige Matrizen A und B deren Produkt definiert ist Der Test zufälliger Matrizen zeigt dass die Rang-Ungleichung fast immer eine Gleichung ist! Beispiel : Rang von Produktmatrizen A B AB BA Rang( A ) Rang( B) Rang( AB) Rang( BA) Wenn für zwei Matrizen A und B sowohl das Produkt AB als auch BA definiert ist (wann ist das der Fall?) so braucht der Rang von AB dennoch nicht mit dem Rang von BA übereinzustimmen Beispiel : Produkte mit verschiedenen Rängen A 0 0 B AB BA Rang( A ) Rang( B) Rang( AB) Rang( BA) Ohne die Lösungen zu berechnen testet man mit Hilfe des Ranges die Lösbarkeit eines linearen Gleichungssystems Das Gleichungssystem A x b ist genau dann lösbar wenn der Rang der geränderten Matrix (Ab) mit dem Rang von A übereinstimmt Denn das bedeutet gerade daß der Spaltenraum von A die gleiche Dimension wie der Spaltenraum von (Ab) hat also mit diesem bereits zusammenfällt - und das passiert dann und nur dann wenn b eine Linearkombination der Spalten von A also in der Form A x b darstellbar ist Beispiel 4: Ein unlösbares Gleichungssystem A -9 9 b 66 Rang( A) Rang ( A b ) Ein Gleichungssystem mit einer x-matrix A ist nur sehr selten lösbar weil A höchstens Rang haben kann die geränderte Matrix aber fast immer den Rang hat!
3 Invertierbare Matrizen Eine quadratische Matrix A heißt invertierbar falls es eine Matrix B mit A B B A E gibt Im nächsten Satz stellen wir eine ganze Reihe von Kriterien für die Invertierbarkeit einer Matrix zusammen Invertierbarkeitskriterien Die folgenden Aussagen über eine Matrix A aus K ( n x n ) sind äquivalent: (a) A ist invertierbar (a) Es gibt eine Matrix B mit A B E (a) Es gibt eine Matrix C mit C A E (b) Die durch A dargestellte lineare Abbildung ist bijektiv (b) Die durch A dargestellte lineare Abbildung ist surjektiv (b) Die durch A dargestellte lineare Abbildung ist injektiv (c) A x (c) A x (c) A x b hat für jedes b aus K n genau eine Lösung b hat für jedes b aus K n mindestens eine Lösung b hat für jedes b aus K n höchstens eine Lösung (d) Die Spalten von A bilden eine Basis des K n (d) Die Spalten von A bilden ein Erzeugendensystem des K n (d) Die Spalten von A sind linear unabhängig (e) A x 0 hat nur die Lösung x 0 (e) A läßt sich durch elementare Zeilenumformungen in die Einheitsmatrix umformen (e) Rang A n In jeder dieser Aussagen kann man A durch A T ersetzen Beweisschema: Die nachfolgenden Implikationen sind sämtlich ohne Mühe nachzuprüfen (a) ---> (b) ---> (c) ---> (d) ---> (e) / / / / / (a) ---> (b) ---> (c) ---> (d) ---> (e) \ \ \ \ \ (a) ---> (b) ---> (c) ---> (d) ---> (e) Auch von (e) bzw (e) zurück nach (a) kommt man relativ leicht Etwas trickreich ist der Schritt von (a) nach (a) Daß eine linksinverse Matrix mit einer rechtsinversen übereinstimmen muß sieht man so: A B E C A > B E B C A B C E C
4 Aufgrund des obigen Satzes gibt es zu einer invertierbaren Matrix A genau eine Matrix deren Multiplikation mit A (von links oder rechts) die Einheitsmatrix ergibt Man nennt diese Matrix die Inverse von A und bezeichnet sie mit A ( ) Sind A und B invertierbare nxn-matrizen so auch AB und es gilt ( A B ) ( ) B ( ) A ( ) Denn aufgrund des Assoziativgesetzes haben wir A B B ( ) A ( ) A E A ( ) A A ( ) E Beispiel 5: Diagonalmatrizen Jede Diagonalmatrix mit von Null verschiedenen Diagonalelementen ist invertierbar und die Inverse ist wieder eine Diagonalmatrix: Ist A von der Form und gilt a j b j so hat B A ( ) die Gestalt a a a b b b Orthogonale Matrizen sind dadurch charakterisiert daß ihre Spalten (oder Zeilen) eine Orthonormalbasis bilden Jede orthogonale Matrix A ist wegen A T A E A A T invertierbar und die Inverse ist die Transponierte Die orthogonalen x-matrizen bzw die durch sie dargestellten linearen Abbildungen werden vollständig durch den Hauptsatz am Ende von Kapitel charakterisiert: Drehmatrizen und Spiegelmatrizen Eine orthogonale x-matrix A beschreibt genau dann eine Drehung oder Spiegelung wenn es einen Einheitsvektor u gibt mit A u u Ist A dabei symmetrisch so handelt es sich um eine Spiegelung und u liegt in der Spiegelebene Ansonsten handelt es sich um eine Drehung und u erzeugt die Drehachse Alle anderen orthogonalen Matrizen beschreiben Drehspiegelungen sind also Produkte von Drehund Spiegelmatrizen
5 Spur und Drehwinkel Die Spur einer quadratischen Matrix ist die Summe ihrer Diagonalelemente: Spur( A) n a j j j Bei einer Drehmatrix A berechnet sich der Cosinus des Drehwinkels φ nach der Formel Spur( A ) + cos( φ ) Denn wie wir früher gesehen haben gilt mit s sin( φ ) und c cos( φ ): A c + ( c) u ( c ) u u u s ( c) u u + u s ( c ) u u + u s c + ( c ) u ( c) u u u s ( c ) u u u s ( c ) u u + u s c + ( c ) u also Spur( A ) c + ( c ) ( + + ) u u u + c Beispiel 6: Achse und Drehwinkel einer Drehmatrix Die folgende Matrix ist orthogonal: - A : - - Probe: 0 0 A A T Die Transponierte ist also die Inverse: A T Für den Einheitsvektor u ( ) T /
6 ergibt sich A u u (Wenn man diesen "Eigenvektor" nicht errät kann man ihn durch Lösen des Gleichungssystems A u u finden; davon später mehr) Da A nicht symmetrisch ist muß es eine Drehmatrix sein In der Tat beschreibt A eine Drehung um die Achse R u und einen Winkel von 60 0 bzw π/ Denn die Spurformel liefert cos( φ) Spiegelmatrizen sind stets zu sich selbst invers Das ist klar aufgrund der geometrischen Bedeutung von Spiegelungen (zweimal spiegeln ergibt die Ausgangsfigur) Folglich gilt für jede Spiegelmatrix S: S S ( ) S T Beispiel 7: Vom Drehen zum Spiegeln In der Drehmatrix aus Beispiel 6 vertauscht man zweite und dritte Spalte und bekommt eine Spiegelung: S : Berechnung der Inversen Die Inverse einer Matrix A kann man mit Hilfe des Gauß-Jordan-Algorithmus bestimmen (aber in der Praxis geht das nur für kleine Matrizen): Man wendet elementare Zeilenumformungen simultan auf A und E an Am Ende hat man A in E umgeformt und dann ist aus E die Inverse zu A geworden Das liegt daran daß jede elementare Zeilenumformung durch Multiplikation mit einer invertierbaren Matrix von links bewirkt wird Das Produkt all dieser Matrizen sei B Dann ist B A E also B A ( ) Es passiert relativ selten dass die Inverse einer ganzzahligen Matrix wieder ganzzahlig ist Beispiel 9: Eine ganzzahlige Matrix mit ganzzahliger Inverser Subtraktion der dreifachen ersten Zeile von der zweiten Zeile:
7 Addition der dreifachen dritten Zeile zur zweiten Zeile: Subtraktion der dritten Zeile von der ersten Zeile: Subtraktion der zweifachen zweiten Zeile von der dritten Zeile: Die rechts unten stehende Matrix ist also die Inverse von A Invertiert man sie nochmals kommt natürlich die ursprüngliche Matrix A heraus Probe: Transponieren und Invertieren Die Transponierte einer invertierbaren Matrix A ist wieder invertierbar und die Inverse von A T ist die Transponierte von A ( ) Potenzen von Matrizen Man kann nun beliebige ganzzahlige Potenzen einer invertierbaren Matrix definieren Für positive Exponenten k und jede quadratische Matrix A ist A k natürlich das k-fache Produkt von A mit sich selbst und für negative Exponenten setzt man k A k ( ) A ( k ) : ( A ( ) ) ( ) sofern A invertiebar ist Es gelten dann die üblichen Potenzregeln wie zb A ( + ) k l A k A l und k l ( A k ) l A ( )
8 Beispiel 0: Potenzen einer Drehmatrix A cos( φ) sin( φ) sin( φ ) cos( φ) beschreibt die ebene Drehung um den Winkel φ also A k cos( k φ) sin( k φ) sin( k φ ) cos( k φ) die Drehung um den k-fachen Winkel Speziell ist beispielsweise A cos( φ) sin( φ) sin( φ ) cos( φ) A A cos( φ) sin( φ) cos( φ ) sin( φ) cos( φ ) sin( φ ) cos( φ) sin( φ) woraus man sofort die Additonstheoreme für den doppelten Winkel ablesen kann Beispiel : Potenzen einer Bandmatrix bei der in der Hauptdiagonalen und in der ersten Diagonalen darüber Einsen stehen B B B B B In den Zeilen wie in den Spalten dieser Matrizen stehen die Binomialkoeffizienten n! B ( n k) k! ( n k )! Sie ergeben sich bei der Entwicklung des Polynoms n ( + x) n B ( n k ) x k k 0 Pascalsches Dreieck Jede Zahl in diesem Dreieck außer den Einsen ist die Summe der zwei darüber stehenden Zahlen
9
Lösbarkeit linearer Gleichungssysteme
Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn
Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen
Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können
Kapitel 16. Invertierbare Matrizen
Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,
Matrizen und Determinanten, Aufgaben
Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen
3 Matrizenrechnung. 3. November
3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige
Serie 8: Online-Test
D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Ökonometrische Analyse
Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +
9 Eigenwerte und Eigenvektoren
92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl
9 Eigenwerte und Eigenvektoren
92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl
Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n
Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine
10.2 Linearkombinationen
147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition
Lineare Algebra I für Mathematiker Lösungen
Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation
5.4 Basis, Lineare Abhängigkeit
die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)
Lineare Algebra und Numerische Mathematik für D-BAUG
P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist
Eigenwerte (Teschl/Teschl 14.2)
Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =
Serie 8: Fakultativer Online-Test
Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung
a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:
Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag
Lineare Gleichungssysteme
Lineare Gleichungssysteme Wir befassen uns anschließend mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren einmal den begrifflichen Aspekt, d.h.
Hilfsblätter Lineare Algebra
Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,
1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.
Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.
154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =
Zeilenstufenform. Wir beweisen nun den schon früher angekündigten Satz.
Zeilenstufenform Wir beweisen nun den schon früher angekündigten Satz. Satz. Jede m n-matrix A lässt sich durch elementare Zeilenumformungen auf Zeilenstufenform und analog durch elementare Spaltenumformungen
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Lineare Algebra 1. Roger Burkhardt
Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit
Lineare Algebra und analytische Geometrie I
Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014
Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................
Zusammenfassung und Beispiellösungen. zur Linearen Algebra
Zusammenfassung und Beispiellösungen zur Linearen Algebra Inhaltsverzeichnis TI Taschenrechner Funktionen für Matrizen... n*m Matrix... Diagonal und Dreiecksmatrix... Transponierte der Matrix A (AT)...
5.4 Hauptachsentransformation
. Hauptachsentransformation Sie dient u.a. einer möglichst einfachen Darstellung von Kegelschnitten und entsprechenden Gebilden höherer Dimension mittels einer geeigneten Drehung des Koordinatensystems.
Serie 10: Inverse Matrix und Determinante
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n
Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler
Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41
Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und
Übungen zur Vorlesung Lineare Algebra
Übungen zur Vorlesung Lineare Algebra Institut für Reine Mathematik WS 2009/10 & SS 2010 Kapitel 1. Vektorräume Was ist ein Vektorraum? Sei X und K ein Körper. Wie macht man Abb (X, K) zu einem K -Vektorraum?
Das inhomogene System. A x = b
Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist
Mathematik I für MB und ME
Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden
5 Die Allgemeine Lineare Gruppe
5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche
5 Zur Geometrie euklidischer Bewegungen. Eine Bewegung eines euklidischen Raumes wird bezüglich eines kartesischen Koordinatensystems
5 Zur Geometrie euklidischer Bewegungen 5.1 Erinnerung an 3.3.3 Eine Bewegung eines euklidischen Raumes wird bezüglich eines kartesischen Koordinatensystems beschrieben durch x = U x + w (U T U = E) mit
Kapitel 3 Lineare Algebra
Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND
BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2
Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete
8 Lineare Abbildungen und Matrizen
8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume
Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover
Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung
35 Matrixschreibweise für lineare Abbildungen
35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir
Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte
Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung
9. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)
Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung
Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei
Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:
5 Zur Geometrie euklidischer Bewegungen 5.1 Bewegungen Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:
Diagonalisierbarkeit symmetrischer Matrizen
¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren
IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen
Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit
β 1 x :=., und b :=. K n β m
44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Tutorium: Analysis und Lineare Algebra
Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218
Basiswissen Matrizen
Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)
Lineare Algebra und analytische Geometrie I
Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir
$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $
Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit
Tutorium: Diskrete Mathematik. Matrizen
Tutorium: Diskrete Mathematik Matrizen Steven Köhler [email protected] mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter
5.2 Rechnen mit Matrizen
52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij
Lineare Gleichungssysteme und Matrizen
Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x
Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11
Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)
2.3.4 Drehungen in drei Dimensionen
2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1
4 Lineare Abbildungen und Matrizen
Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt
Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix
Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das
Lösung Serie 10: Elementare Zeilenumformungen & Elementarmatrizen, Rang & Inverse einer Matrix
D-MATH/D-PHYS Lineare Algebra I HS 26 Dr. Meike Akveld Lösung Serie : Elementare Zeilenumformungen & Elementarmatrizen, Rang & Inverse einer Matrix. a) Sei w ImT + T 2 ), dann existiert ein v V, so dass
Lineare Algebra II 8. Übungsblatt
Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.
(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.
() In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht
Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik
HM II Tutorium 5. Lucas Kunz. 22. Mai 2018
HM II Tutorium 5 Lucas Kunz 22. Mai 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Wiederholung Lineare Gleichungsysteme................... 2 1.2 Wiederholung: Kern einer Abbildung..................... 3 1.3
Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri
Lineare Algebra Gymnasium Immensee SPF PAM Bettina Bieri 6. Oktober 2011 Inhaltsverzeichnis 1 Matrizen 1 1.1 Einleitung............................. 1 1.2 Der Begriff Matrix........................ 1 1.2.1
Prüfung Lineare Algebra 2
1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,
Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom
Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse
3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit
3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53
8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten
Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A
4. Übungsblatt zur Mathematik II für Inf, WInf
Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare
Probeklausur zu Mathematik 2 für Informatik
Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die
9 Lineare Gleichungssysteme
9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der
