Lösung Serie 10: Elementare Zeilenumformungen & Elementarmatrizen, Rang & Inverse einer Matrix

Größe: px
Ab Seite anzeigen:

Download "Lösung Serie 10: Elementare Zeilenumformungen & Elementarmatrizen, Rang & Inverse einer Matrix"

Transkript

1 D-MATH/D-PHYS Lineare Algebra I HS 26 Dr. Meike Akveld Lösung Serie : Elementare Zeilenumformungen & Elementarmatrizen, Rang & Inverse einer Matrix. a) Sei w ImT + T 2 ), dann existiert ein v V, so dass w = T + T 2 )v) = T v) + T 2 v) ImT ) + ImT 2 ) Also ist ImT + T 2 ) ImT ) + ImT 2 ) und folglich RangT + T 2 ) = dim ImT + T 2 ) dim ImT ) + dim ImT 2 ) =RangT ) + RangT 2 ) b) Wir bemerken zuerst, dass ImS T ) = ImS ImT ) ), wobei S ImT ) HomImT ), W ) die Abbildung v ImT ) : S ImT ) v) := Sv) sei; d.h. S ImT ) ist die Restriktion von S auf den Unterraum ImT ) V. : Sei w ImS T ), dann ist w = S T )u) = ST u)) für ein u U und folglich w ImS ImT ) ). : Sei w ImS ImT ) ), dann gilt w = Sv) für ein v ImT ). Wegen v ImT ), existiert ein u U mit v = T u) und folglich w = ST u)) = S T )u) ImS T ) Aus der Diskussion folgt RangS T ) RangS), da ImS ImT ) ) ImS). Aus der Dimensionsformel erhalten wir dim ImT ) = RangS ImT ) ) + nullitys ImT ) ) RangS T ) und folglich RangS T ) RangT ). Beides zusammen liefert RangS T ) min{rangt ), RangS) Bitte wenden!

2 2. Aus der Dimensionsformel folgt, dass n = dim K n = RangL A ) + KerL A ) RangL A ) Da ImL A ) ein Unterraum von K m ist, ist RangL A ) = dim ImL A ) dim K m = m und beides zusammen liefert RangA) = RangL A ) min{m, n Für die zweite Aussage machen wir eine Induktion nach m, der Anzahl Zeilen von A. m = : Falls A =, dann ist RangL A ) =, da L A v) = für alle v K n und folglich ist nichts zu zeigen. Sei also A, dann existiert ein j n mit A j. Da L A e j ) = A j, ist RangL A ) und wegen L A : K n K ist RangL A ) =. Falls j >, vertauschen wir die Spalten A ) und A j), so dass wir im Folgenden annehmen können, dass A eine n-matrix mit A ist. Wir multiplizieren nun die erste Spalte von A mit A, so dass wir im Folgenden annehmen können, dass A eine n-matrix mit A = ist. Falls n =, dann sind wir fertig. Andernfalls addieren wir für j 2 n das A j -fache der ersten Spalte zur j-ten Spalte, so dass danach A j = für j 2 und folglich A = e T, wie gewünscht. m > : Wir schreiben A = ) B C B M m n K), C M n K) Sei r B := RangB). Nach Induktionsannahme existieren elementare Zeilen- und Spaltenumformungen, die A in A überführen, so dass ) A DB = C D B M m n K), C M n K) mit D B eine Diagonalmatrix für B wie in der Aufgabenstellung. Wir addieren nun das C j-fache der j-ten Zeile zur m-ten Zeile für j r B und können also annehmen, dass C j = für j r B. Das heisst, wir haben mit elementaren Zeilen- und Spaltenumformungen A in eine Matrix I rb rb A n r B ) = m rb ) r B m rb ) n r B ) rb C Siehe nächstes Blatt!

3 überführt, wobei C M n rb )K). Da elementare Zeilen- und Spaltenumformungen den Rang erhalten, gilt RangA) = RangA ). Da die Spalten A ) j) für j r B linear unabhängig sind, gilt RangA ) r B. Andererseits sind die Spalten A ) j) für r B+ j n sicherlich linear abhängig, da sie allesamt Vielfache des Vektors e m E m sind. Also ist RangA) {r B, r B +. Angenommen RangA) = r B, dann ist dim ImL A ) = r B und folglich ist C = n rb ) und A hat die gewünschte Form. Falls RangA) = r B +, dann existiert ein r B < j n, so dass C j. Nach vertauschen der j-ten und der r B + )-ten Spalten von A können wir annehmen, dass C r B +). Wir multiplizieren die r B + )-te Spalte von A mit C r B +) ) und können im Folgenden annehmen, dass C r B +) =. Nun addieren wir für < j r B n das C r B +j) -fache der r B + )-ten Spalte von A zur r B + j)-ten Spalte von A und erhalten aus A mittels elementarer Spaltenumformungen eine Matrix A von der Form I rb rb A n r B ) = m rb ) r B m rb ) n r B ) e E n rb ) rb e T Nach vertauschen der r B + )-ten Zeile und der m-ten Zeile von A erhalten wir eine Matrix ) I D = rb + rb +) n r B +)) m rb +)) r B +) m rb +)) n r B +)) wie gewünscht.. Wir erinnern daran, dass L F AG = L F L A L G und dass wegen der Invertierbarkeit von F und G auch L F und L G invertierbar, und also bijektiv sind. a) Wegen der Invertierbarkeit von L F ist KerL F ) = {, und folglich v KerL F AG ) = L F AG v) = L F LA L G )v) ) = L A L G )v) = L A LG v) ) L G v) KerL A ) v L G KerLA ) ) und folglich KerL A ) = L G KerLF AG ) ). Für die Aussage über das Bild verwenden wir die Surjektivität von L G : w ImL F AG ) v K n : w = L F AG v ) Bitte wenden!

4 v 2 K n : w = L F AG L G v 2) ) = L F LA v 2 )) w L F ImLA ) ) und folglich ImL A ) = L F ImLF AG ) ) = L F ImLF AG ) ). b) Um unsere Vorgehensweise zu motivieren, bemerken wir, dass das Bild von L A gegeben ist durch die lineare Hülle der Spalten von A 2 2 ImL A ) = span,,, 2 2 Dies haben wir im Rahmen der Diskussion linearer Abbildung ausführlich besprochen. Um eine Basis von ImL A ) zu bestimmen, müssten wir eine maximale, linear Unabhängige Teilmenge des obigen Erzeugendensystem suchen, was mit probieren im Allgemeinen nicht einfach ist. Darum verwenden wir stattdessen Teilaufgabe a) und das Resultat aus Aufgabe 2, d.h. wir finden Produkte F, G von Elementarmatrizen, so dass F D G = A mit D wie in Aufgabe A = 2 2 = =:F =F =F 2 G F 2 := F F 2 ) 2 =:F 2 = F 2 G F := F 2 F ) =:F G Siehe nächstes Blatt!

5 = F G G 2 := G 2 G ) =:G 2 = F G2 F 4 := F F 4 ) =:F 4 = F 4 G 2 G := G G2 ) =:G Da es sich bei den Matrizen F, F 2, F, F 4 sowie G, G 2, G allesamt um Elementarmatrizen handelt und da die invertierbaren Matrizen für jede Dimension) eine Gruppe bilden, sind F 4 und G invertierbar und für F := F 4, G := G gilt = F AG Der Vorteil oben durchgeführter Umformungen ist, dass man aus F AG sofort eine Basis des Bildes sowie des Kernes ablesen kann. Im Folgenden ist e i E k der i-te Vektor der Standardbasis von K k k =, 4). Wir sehen, dass e, e 4 KerL F AG ) insbesondere gilt nullityl F AG ) 2 und wegen ImL F AG ) = span{f AG) j) j 4 = span{e, e 2, dass RangL F AG ) = 2. Aus der Dimensionsformel folgt nullityl F AG ) = dim K 4 RangL F AG ) = 4 2 = 2 und somit ist {e, e 4 eine Basis von KerL F AG ). Da invertierbare Abbildungen linear unabhängige Mengen auf linear unabhängige Mengen abbilden, sind nach Teilaufgabe a) die Mengen L G {e, e 4 ) = {L G e ), L G e 4 ) beziehungsweise L F {e, e 2 ) = {L F e ), L F e 2 ) Basen von KerL A ) beziehungsweise von ImL A ). Wir berechnen F = F 4 = F F 2 F F 4 Bitte wenden!

6 Folglich ist = 2 2 = G G = = G G 2 G ) = G G 2 G = 2 = 2 eine Basis von ImL A ) und eine Basis von KerL A ). 2,, 2 c). Wir berechnen A = = = 2 = 2 Siehe nächstes Blatt!

7 = 2 Somit ist A ein Produkt von Matrizen vollen Ranges nämlich ein Produkt von Elementarmatrizen) und somit die Darstellungsmatrix einer Verknüpfung bijektiver Abbildungen und als solche insbesondere die Darstellungsmatrix einer surjektiven Abbildung. Folglich hat A vollen Rang, d.h. RangA) =. 2. In F 2 gilt + =, also ist A = = = = ) Somit ist A von der Form A = F I2 2 2 G, wobei F, G Produkte von Elementarmatrizen sind. Da Elementarmatrizen den Rang erhalten, folgt ) I2 RangA) = Rang 2 = Wir bezeichen im Folgenden mit die Überführung einer Matrix in eine andere Matrix mittels elementarer Zeilen- bzw. Spaltenumformung, wobei wir indizieren mit λz i bzw. λs j ) im Falle der elementaren Umformung Multiplikation der i- ten Zeile bzw. der j-ten Spalte) mit λ R, mit Z i Z i bzw. S j S j ) im Falle der elementaren Umformung Vertauschung der i-ten und der i -ten Zeile bzw. der j-ten und der j -ten Spalte) und mit Z i +λz i bzw. S j +λs j ) im Falle der elementaren Umformung Addition des λ-fachen der i -ten Zeile zur i-ten Zeile bzw. des λ-fachen der j -ten Spalte zur j-ten Spalte). Bitte wenden!

8 Man berechnet mit elementaren Zeilenumformungen A = und ebenso 4 A 2 = Als Beispiel invertieren wir A A I 4 ) = Z 2 +Z Z 2Z Z 4 Z Z Z 4 Z 4 +Z 2 Z 2 5Z Siehe nächstes Blatt!

9 Z 2 +6Z 4 Z 2Z Z +Z 4 Z 2 Z Z Z 4 Z 4 Z 2Z 4 Z 7Z / 7/ 5/ / / / 6/ 7/ 5/ 5/ 6/ / 2 / / / 6/ 7/ 5/ Folglich ist A = Bitte wenden!

10 5. Wir berechnen 2 A = = = ) = 2 = ) = 2 5 = ) = 5 = 2 2 5/2 8 2 ) = = 2 5/2 2 8 /8 2 ) = /8 = 2 5/2 2 8 /8 2 ) = 2 5 Siehe nächstes Blatt!

11 2 7/8 = 2 /4 2 5 /8 =:R 2 ) = 2 R hat die gewünschte Form und für 2 B := 2 gilt BA = R. Man kann B berechnen, indem man das Produkt der Inversen der oben auftauchenden Elementarmatrizen in der richtigen Reihenfolge) bestimmt, oder mittels Gauss-Elimination. In der Notation zur Lösung von Aufgabe liefert dies: B I ) = Z 2 +Z Z Z Z +2Z 2 Z Z 2 2 Z 2 8 Z Z 2 2Z Z +Z /2 / /2 /2 /8 /4 /8 /4 /4 /8 /4 /8 /8 /4 /8 /4 /4 /8 /4 /8 Bitte wenden!

12 und folglich ist /8 /4 /8 B = /4 /4 /8 /4 /8

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Gegeben seien die folgenden geordneten Basen B = (v, v, v, v ) und C = (w, w,

Mehr

Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen

Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen D-MATH Lineare Algebra I HS 2017 Dr. Meike Akveld Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen 1. a) Seien v 1, v 2 V, λ K, dann sind Also ist id V linear. b) Seien v

Mehr

Lösung Lineare Algebra I Sommer 2018 Version A

Lösung Lineare Algebra I Sommer 2018 Version A Lösung Lineare Algebra I Sommer 208 Version A. (25 Punkte) Kreuzen Sie direkt auf dem Abgabeblatt an, ob die Behauptungen oder sind. Sie müssen Ihre Antworten nicht begründen! Bewertung: Punkt für jede

Mehr

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung D-MATH Lineare Algebra I/II HS 07/FS 08 Dr Meike Akveld Lösung 3: Sylvesters Trägheitssatz & Singulärwertzerlegung Wir wissen, dass eine Basis B von R n existiert, sodass p [β Q ] B I I q 0 n p q gilt

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Kapitel 16. Invertierbare Matrizen

Kapitel 16. Invertierbare Matrizen Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Lösung Serie 13: Determinanten (Teil 2)

Lösung Serie 13: Determinanten (Teil 2) D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr Meike Akveld Lösung Serie 13: Determinanten (Teil 2 1 a Wir zeigen die gewünschten Eigenschaften: 1 Es ist 2 Es ist ε(τ σ ε(id ( ε(σ id(j id(i τ(σ(j τ(σ(i ( τ(σ(j

Mehr

Lineare Algebra I Winter 2018 (Lösung)

Lineare Algebra I Winter 2018 (Lösung) Lineare Algebra I Winter 208 (Lösung). (25 Punkte) Kreuzen Sie direkt auf dem Abgabeblatt an, ob die Behauptungen WAHR oder FALSCH sind. Sie müssen Ihre Antworten nicht begründen! Bewertung: Punkt für

Mehr

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 9 1. [Aufgabe] Sei f : V W eine lineare Abbildung. Zeige: a) Die Abbildung f ist injektiv genau dann, wenn eine lineare Abbildung g :

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Chr.Nelius : Lineare Algebra II (SS 2005) 1. Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog. Elementarmatrizen vornehmen.

Chr.Nelius : Lineare Algebra II (SS 2005) 1. Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog. Elementarmatrizen vornehmen. ChrNelius : Lineare Algebra II (SS 2005) 1 Einschub A) Elementarmatrizen Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog Elementarmatrizen vornehmen (A1) DEF: Seien r, s IN mit

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

Lineare Algebra 2. Lösung zu Aufgabe 7.2:

Lineare Algebra 2. Lösung zu Aufgabe 7.2: Technische Universität Dortmund Sommersemester 2017 Fakultät für Mathematik Übungsblatt 7 Prof. Dr. Detlev Hoffmann 15. Juni 2017 Marco Sobiech/ Nico Lorenz Lineare Algebra 2 Lösung zu Aufgabe 7.1: (a)

Mehr

Lineare Algebra I. December 11, 2017

Lineare Algebra I. December 11, 2017 Lineare Algebra I December 11, 2017 1 Grundlagen 1.1 Relationen Definition. Seien X und Y Mengen. Eine Relation auf X Y ist eine Teilmenge R X Y. Für x X, y Y sagen wir x steht in Relation mit y, falls

Mehr

L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h.

L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h. L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: gleich viel Zeilen wie Spalten dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h. 'Identitätsabbildung':

Mehr

Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen

Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen D-MATH Lineare Algebra II FS 7 Dr. Meike Akveld Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen. a) Wegen der Linearität im ersten Argument gilt sicherlich w S :, w =. Somit ist S und

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld. Clicker Fragen

D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld. Clicker Fragen D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld Clicker Fragen Frage 1 Die Aussage Dieser Satz ist falsch ist wahr falsch Dies ist die einfachste Form des Lügner-Paradoxes ist der folgende selbstbezügliche

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Technische Universität München Christoph Niehoff Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 009/00 Die beiden Hauptthemen von diesem Teil des Ferienkurses sind Lineare Gleichungssysteme

Mehr

Für die Matrikelnummer M = Dann sind durch A =

Für die Matrikelnummer M = Dann sind durch A = Musterlösung zum. Blatt 9. Aufgabe: Gegeben seien m 3 + 2 m m 3 m 2 m 4 + m 7 m 3 A := m m 2 m 2 + 2 m 2 m 4 + m 5 und b := m 6 m 4 + a) Finden Sie eine Lösung x R 7 für die Gleichung Ax =. b) Finden Sie

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f).

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f). Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 204 Lineare Algebra Zwölfte Woche, 256204 8 Der Rang einer Linearen Abbildung Auch in diesem Abschnitt

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

D-Math/Phys Lineare Algebra I HS 2016 Dr. Meike Akveld. Clicker Fragen. Sei R die Menge aller Mengen, die sich nicht selbst enthalten.

D-Math/Phys Lineare Algebra I HS 2016 Dr. Meike Akveld. Clicker Fragen. Sei R die Menge aller Mengen, die sich nicht selbst enthalten. D-Math/Phys Lineare Algebra I HS 2016 Dr. Meike Akveld Clicker Fragen Frage 1 Sei R die Menge aller Mengen, die sich nicht selbst enthalten. So gilt R R R / R Dies ist bekannt als die Russelsche Antimonie

Mehr

Lineare Algebra I, Musterlösung zu Blatt 9

Lineare Algebra I, Musterlösung zu Blatt 9 Lineare Algebra I, Musterlösung zu Blatt 9 Wintersemester 2007/08 1. Untersuchen Sie, ob die folgenden Matrizen invertierbar sind und bestimmen Sie gegebenenfalls die Inverse. 8 1 3 1 a) A = 3 3 1 1 11

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

Lösungsskizze zur Hauptklausur Lineare Algebra I

Lösungsskizze zur Hauptklausur Lineare Algebra I Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 13/2 29.1.27 en zur Probeklausur Aufgabe 1 (ca. 6 Punkte) Sei

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Klausurähnliche Aufgaben

Klausurähnliche Aufgaben Sommersemester 2007/08 Lineare Algebra Klausurähnliche Aufgaben Aufgabe 1 Seien v 1, v 2, v 3, v 4, v 5, v 6 die Vektoren in R 5 mit v 1 = (1, 2, 3, 1, 2), v 2 = (2, 4, 6, 2, 4), v 3 = ( 1, 1, 3, 0, 3),

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Lineare Algebra I. Probeklausur - Lösungshinweise

Lineare Algebra I. Probeklausur - Lösungshinweise Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe

Mehr

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt.

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. 82 Kapitel III: Vektorräume und Lineare Abbildungen Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. Wir

Mehr

MafI 1 Repetitorium Übungen

MafI 1 Repetitorium Übungen MafI 1 Repetitorium Übungen M. Sc. Dawid Kopetzki KW 23 (03.06.2015) M. Sc. Dawid Kopetzki MafI 1 Repetitorium Übungen 1 / 10 Intro Themenübersicht Themen der heutigen Übung (Algebra): Wiederholung: Teilraum

Mehr

Musterlösung Serie 8

Musterlösung Serie 8 D-MATH Lineare Algebra I HS 018 Prof. Richard Pink Musterlösung Serie 8 Dimension, Direkte Summe & Komplemente 1. Zeige: Für jedes Erzeugendensystem E eines Vektorraums V und jede linear unabhängige Teilmenge

Mehr

Die Treppennormalform

Die Treppennormalform Die Treppennormalform Lineare Algebra I Kapitel 5 9 Mai 22 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: wwwmathtu-berlinde/ holtz Email: holtz@mathtu-berlinde Assistent: Sadegh

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018. Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler D-MAVT Lineare Algebra II S 8 Prof. Dr. N. Hungerbühler Lösungen Serie 5. Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei B =

Mehr

Lineare Algebra I - Prüfung Winter 2019

Lineare Algebra I - Prüfung Winter 2019 Lineare Algebra I - Prüfung Winter 209. (20 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete

Mehr

Lösung 13: Unitäre Vektorräume und normale Abbildungen

Lösung 13: Unitäre Vektorräume und normale Abbildungen D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Lösung 13: Unitäre Vektorräume und normale Abbildungen 1. a) Im Folgenden sei γ : V V C die Abbildung γ(v, w) v + w 2 v w 2 i v + iw 2 + i v iw 2. : Wir

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen 2.5. SMITH-NORMALFORM FÜR MATRIZEN ÜBER EUKLIDISCHEN RINGEN73 2.5 Smith-Normalform für Matrizen über Euklidischen Ringen Bemerkung 2.74. Sei K ein Körper und A K n m, b K n 1. Das lineare Gleichungssystem

Mehr

Klausur Lineare Algebra I

Klausur Lineare Algebra I Klausur Lineare Algebra I Fachbereich Mathematik WS / Prof. Dr. Kollross 9. März Name:.................................................. Vorname:............................................... Studiengang:...........................................

Mehr

3.9 Elementarmatrizen

3.9 Elementarmatrizen 90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 27/28 Lineare Algebra Skript zum Ferienkurs Tag 2-2.3.28 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper vielmals für seine Unterstützung bei

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen.

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Klausur Lineare Algebra I am 03.02.10 Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Aufgabe 1. (6 Punkte insgesamt) a.) (3P) Definieren Sie, was eine abelsche Gruppe ist. b.) (3P) Definieren

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14052018 (Teil 1) 7 Mai 2018 Steven Köhler mathe@stevenkoehlerde mathestevenkoehlerde 2 c 2018 Steven Köhler 7 Mai 2018 Matrizen

Mehr

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen Lineare Algebra 3 Lösungen für Test und Zusatzfragen Test Multiple Choice. Seien Für die Lösung x x x x 3 A, b des Systems Ax b gilt x 3 5 x 3 x 3 3 x 3 / Mit elementaren Zeilenoperationen erhalten wir

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

(c) x 2 + 3x 3 = 1 3x 1 + 6x 2 3x 3 = 2 6x 1 + 6x x 3 = 5

(c) x 2 + 3x 3 = 1 3x 1 + 6x 2 3x 3 = 2 6x 1 + 6x x 3 = 5 Musterlösungen zu Mathematik II (Elementare Lineare Algebra) Blatt Nathan Bowler A: Präsenzaufgaben. Zeilenstufenform und reduzierte Zeilenstufenform erkennen Welche der folgenden Matrizen sind in Zeilenstufenform?

Mehr

Lösung 8: Quadratische Formen, Sylvesters Trägheitssatz

Lösung 8: Quadratische Formen, Sylvesters Trägheitssatz D-MATH Lineare Algebra II FS 207 Dr. Meike Akveld Lösung 8: Quadratische Formen, Sylvesters Trägheitssatz. Wir erinnern an den Hauptachsensatz: Jede von 0 verschiedene quadratische Form Q auf R 3 ist bis

Mehr

Kapitel 9: Lineare Gleichungssysteme

Kapitel 9: Lineare Gleichungssysteme Kapitel 9: Lineare Gleichungssysteme Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 9: Lineare Gleichungssysteme 1 / 15 Gliederung 1 Grundbegriffe

Mehr

Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen

Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Gegeben n, m Z schreiben wir m n k Z : n = km Wir sagen m teilt n. Eine Zahl n Z ist gerade,

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) 1 Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 14: Vektorräume und lineare Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 6. Oktober 2009) Vektorräume

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 018 Prof Dr N Hungerbühler Serie 8: Online-Test Schicken Sie Ihre Lösung bis spätestens Freitag, den 3 November um 14:00 Uhr ab Diese Serie besteht nur aus Multiple-Choice-Aufgaben

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

6.2 Rechnen mit Matrizen

6.2 Rechnen mit Matrizen 62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MLAE Mathematik: Lineare Algebra für Ingenieure Herbstsemester Dr. Christoph Kirsch ZHAW Winterthur Lösung Semesterendprüfung Aufgabe : a Mit dem Distributivgesetz multiplizieren wir aus: und lösen nach

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8 D-INFK Lineare Algebra HS 27 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 8. Kern von A: Die Spalten der Matrix A sind Vielfache voneinander, also sind sie linear abhängig und A hat Rang. Somit hat

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Mathematik IT 2 (Lineare Algebra)

Mathematik IT 2 (Lineare Algebra) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Lösung der Klausur zur Linearen Algebra I

Lösung der Klausur zur Linearen Algebra I Technische Universität Dortmund Fakultät für Mathematik Platznummer: Wintersemester 16/17 17.02.2017 Lösung der Klausur zur Linearen Algebra I Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen:

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

Quadratische Matrizen

Quadratische Matrizen Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch

Mehr