Serie 8: Online-Test
|
|
|
- Lieselotte Schulze
- vor 6 Jahren
- Abrufe
Transkript
1 D-MAVT Lineare Algebra I HS 018 Prof Dr N Hungerbühler Serie 8: Online-Test Schicken Sie Ihre Lösung bis spätestens Freitag, den 3 November um 14:00 Uhr ab Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung findet am 30 November in der Übungsstunde statt Bei einigen Aufgaben sind mehrere Antworten richtig Viel Erfolg! 1 Bestimmen Sie das Produkt ( 3 3 ( 1 1 ( 1 1 ( 1 1 ( 1 1 Berechnen Sie (d ( ( ( ( ( ( (e Keine der genannten Möglichkeiten 1
2 3 Bestimmen Sie die Inverse der Matrix ( ( ( Die Matrix ist nicht invertierbar 4 Gegeben sei die Matrix 3 A := 1 Aus dieser möchten wir die erste Spalte extrahieren Das heisst, das Produkt von rechts oder links mit einer weiteren Matrix ist die erste Spalte von A Für welche der folgenden Möglichkeiten ist dies gegeben? ( 1 0 Multiplikation von links mit Multiplikation von rechts mit ( 1 0 Multiplikation von links mit ( (d (e Multiplikation von links mit Multiplikation von rechts mit ( 1 0 ( 1 0 Sei A eine 4 4-Matrix Dann sind folgende Aussagen äquivalent: i Ax = b hat für jedes b höchstens eine Lösung ii Ax = b hat für jedes b mindestens eine Lösung Richtig Falsch
3 6 Für die reelle Matrix A = und den reellen Vektor b = (1,, 0 hat das lineare Gleichungssystem Ax = b (d keine Lösung eine eindeutige Lösung eine Lösungsmenge mit einem freien Parameter eine Lösungsmenge mit zwei freien Parametern 7 Sei A eine 3-Matrix Dann existiert( eine 3 -Matrix B, welche nicht die Nullmatrix ist, aber trotzdem gilt AB = Richtig Falsch 8 Für die reelle Matrix A := hat das lineare Gleichungssystem Ax = 0 (d keine Lösung eine eindeutige Lösung eine Lösungsmenge mit einem freien Parameter eine Lösungsmenge mit zwei freien Parametern 3
4 9 Für die reelle Matrix gilt: B = a a + Für a = 1 ist B nicht invertierbar Rang B 3 a R Für a = 0 ist det B = 0 10 Der Rang von beträgt 0 1 (d 3 (e 4 11 Seien A, B zwei symmetrische Matrizen Dann ist das Produkt AB auch symmetrisch Richtig Falsch 1 Gegeben sei eine orthogonale Matrix A mit Inverse A 1 Dann gilt: (d (e A 1 = A T A 1 = A A 1 = A Die Inverse existiert nicht Keine der genannten Möglichkeiten 4
5 13 Gegeben seien: Dann gilt: A 1 := ( 1/ 1/ 1/ 1/, A := ( A 1 ist nicht orthogonal A ist nicht orthogonal aber die inverse A 1 ist es 14 Gegeben seien: A 1 := ( 1 0, A := 1 ( Dann gilt: A 1 ist orthogonal A ist orthogonal Keine der genannten Möglichkeiten 1 Sei A eine m n-matrix mit m > n, so dass A A die Einheitsmatrix I n ist Dann gilt: A ist orthogonal und A x = x für alle Vektoren x R n A ist nicht orthogonal, aber trotzdem gilt A x = x für alle x R n Sei B eine n m-matrix, so dass BA orthogonal ist Dann ist auch AB orthogonal
6 16 Gegeben sei die n n Matrix A = 3 1 n 1, wobei nur die ersten beiden Spalten bekannt sind Angenommen es existiert eine LR-Zerlegung LR = A, was können Sie darüber aussagen? Die erste Spalte von L ist ( 1 3 n T Die erste Spalte von L ist ( 1 3 n T Die erste Spalte von L ist gleich der ersten Spalte von A (d Man muss die gesamte Matrix A kennen um die erste Spalte von L zu bestimmen (e Der Eintrag r der Matrix R ist 0 (f Der Eintrag r der Matrix R ist 1 (g Der Eintrag r der Matrix R ist 3 (h Man muss die gesamte Matrix A kennen um den Eintrag r der Matrix R zu bestimmen 6
Serie 8: Online-Test
D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen
Serie 8: Fakultativer Online-Test
Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung
Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung
D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen
Lineare Algebra 2013 Lösungen für Test und Zusatzfragen
Lineare Algebra 3 Lösungen für Test und Zusatzfragen Test Multiple Choice. Seien Für die Lösung x x x x 3 A, b des Systems Ax b gilt x 3 5 x 3 x 3 3 x 3 / Mit elementaren Zeilenoperationen erhalten wir
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2
D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den
D-ITET. D-MATL, RW Lineare Algebra HS 7 Dr. V. Gradinaru T. Welti Online-Test Einsendeschluss: Sonntag, den..7 : Uhr Dieser Test dient, seriös bearbeitet, als Repetition des bisherigen Vorlesungsstoffes
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2
Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler
D-MAVT Lineare Algebra II S 8 Prof. Dr. N. Hungerbühler Lösungen Serie 5. Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei B =
D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10
D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)
FREIE UNIVERSITÄT BERLIN Fachbereich Wirtschaftswissenschaft Institut für Statistik und Ökonometrie (WE 2) Prof. Dr. J. Wolters WS 07/08.
FREIE UNIVERSITÄT BERLIN Fachbereich Wirtschaftswissenschaft Institut für Statistik und Ökonometrie (WE ) Prof. Dr. J. Wolters WS 07/08 Mathematik. Aufgabenblatt Abgabe bis spätestens Freitag..007 zwischen
D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11
D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Lineare Algebra und Numerische Mathematik für D-BAUG
P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen
Übungsklausur Lineare Algebra
Übungsklausur Lineare Algebra Sommersemester 2010 Johannes Gutenberg-Universität Mainz Diese Übungsklausur ist sehr lang (gut zum Üben). In der richtigen Klausur finden Sie eine Multiple Choice aufgabe
Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya
Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)
Musterlösung zur Klausur Lineare Algebra I
Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten
A wird in diesem Fall invertierbar oder regulär genannt. Beispiel
Inverse Matrizen Definition Sei A eine quadratische Matrix vom yp (n,n) Existiert zu A eine Matrix X gleichen yps mit AX = XA = E (E: (n,n) Einheitsmatrix), so nennt man X die zu A inverse Matrix, oder
Theoretische Fragen zu ausgewählten Themen in Lineare Algebra
Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................
Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler
Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei
Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2
Fakultät Mathematik WS 27/8 Institut für Mathematische Stochastik / Institut für Analysis Dr. W. Kuhlisch, Dr. F. Morherr Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie
Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:
Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]
Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1
Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor
Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2
Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT
Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in
Matrizen und Determinanten, Aufgaben
Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen
Lösungen Test 1 - Lineare Algebra
Name: Seite: Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Test - Lineare Algebra Dozent: R. Burkhardt Büro: 4. Klasse:. Studienjahr Semester: Datum: HS 8/9 Bemerkung Alle Aufgaben
Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1
D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares
a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:
Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag
Übungen zum Ferienkurs Lineare Algebra WS 14/15
Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen
Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben
Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen
Aufgaben zu Kapitel 16
Aufgaben zu Kapitel 16 1 Aufgaben zu Kapitel 16 Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2
Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2
Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen
Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
Lösbarkeit linearer Gleichungssysteme
Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn
Dr. V. Gradinaru D-ITET, D-MATL, RW Winter Basisprüfung Lineare Algebra Total 6 P 6 P 6 P 6 P 6 P 6 P 36 P
Dr. V. Gradinaru D-ITET, D-MATL, RW Winter 2018 Basisprüfung Lineare Algebra Name Vorname Studiengang Leginummer Datum Montag, 5. Februar 2018 Note 1 2 3 4 5 6 Total 6 P 6 P 6 P 6 P 6 P 6 P 36 P Wichtige
Probeprüfung Lineare Algebra I/II für D-MAVT
Prof. N. Hungerbühler ETH Zürich, Frühling 018 Probeprüfung Lineare Algebra I/II für D-MAVT Die Prüfung dauert 10 Minuten. Sie dient der Selbstevaluation. Die Musterlösungen folgen. Die Multiple Choice
Serie 10: Inverse Matrix und Determinante
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die
2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen
Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung
Tutorium: Analysis und Lineare Algebra
Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion
Klausur zur Vorlesung Lineare Algebra I
Heinrich-Heine-Universität Düsseldorf 23.7.2 Mathematisches Institut Lehrstuhl für Algebra und Zahlentheorie Prof. Dr. Oleg Bogopolski Klausur zur Vorlesung Lineare Algebra I Bearbeitungszeit: 2 min Bitte
Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 23): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag 3. Mit Hilfe elementarer Zeilenumformungen sowie der Tatsache, daß sich die Determinante
Lineare Algebra I für Mathematiker Lösungen
Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation
Fachhochschule München Fachbereich 03 FA WS 2006/07. Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik
1 Fachhochschule München Fachbereich 03 FA WS 006/07 Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik Arbeitszeit: Hilfsmittel: Aufgabensteller: 90 Minuten Formelsammlung, Skripten, Bücher,
Klausur zur Vorlesung Lineare Algebra I
Heinrich Heine Universität Düsseldorf 31.07.2010 Mathematisches Institut Lehrstuhl für Algebra und Zahlentheorie Prof. Dr. Oleg Bogopolski Klausur zur Vorlesung Lineare Algebra I Bearbeitungszeit: 120
Klausur zur Mathematik I (Modul: Lineare Algebra I)
Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Anusch Taraz Wintersemester 2014/15 Klausur zur Mathematik I (Modul: Lineare Algebra I) 18.02.2015 Sie haben 60 Minuten Zeit zum
Blatt 10 Lösungshinweise
Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie
Prüfung Lineare Algebra , B := ( ), C := 1 1 0
1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,
Übungsblatt 5 : Lineare Algebra
Mathematik I Übungsblatt 5 WS 7/8 Prof.Dr.W. Konen Dr. A. Schmitter Bereiten Sie die Aufgaben parallel zur Vorlesung so vor dass Sie in der Lage sind Ihre Lösungen vorzutragen. Übungsblatt 5 : Lineare
3 Matrizen und Lineare Gleichungssysteme
3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A.
Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 2014 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 91 91a) Sei A eine n n-matrix Das Gleichungssystem Ax
1 Matrizenrechnung zweiter Teil
MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten
Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11
Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)
Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht
Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben
Lineare Algebra für Ingenieure
TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen
Ausgewählte Lösungen zu den Übungsblättern 4-5
Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit
Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.
Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren
ANHANG A. Matrizen. 1. Die Definition von Matrizen
ANHANG A Matrizen 1 Die Definition von Matrizen Wir haben bereits Vektoren kennen gelernt; solche Paare reeller Zahlen haben wir benutzt, um Punkte in der Ebene zu beschreiben In der Geometrie brauchen
Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT
Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
Lösungsskizze zur Hauptklausur Lineare Algebra I
Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?
Lineare Algebra und Numerische Mathematik für D-BAUG
P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist
Lineare Algebra Weihnachtszettel
Lineare Algebra Weihnachtszettel 0..08 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet
Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen.
Klausur Lineare Algebra I am 03.02.10 Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Aufgabe 1. (6 Punkte insgesamt) a.) (3P) Definieren Sie, was eine abelsche Gruppe ist. b.) (3P) Definieren
Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung
D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,
Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung.
Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil : Lineare Algebra und Optimierung Wintersemester Matrizenrechnung Aufgabe ( 3 0 Gegeben sind die Matrizen A = 2 5 2 4 D =
Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.
Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden
