L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h.

Größe: px
Ab Seite anzeigen:

Download "L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h."

Transkript

1 L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: gleich viel Zeilen wie Spalten dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h. 'Identitätsabbildung': 'tut gar nichts' wird dargestellt durch die 'Einheitsmatrix': mit Matrixelementen: sonst (1 auf der Diagonalen) (0 überall sonst) Es gilt für jede Matrix A: denn: Die Abbildung heißt invertierbar, falls eine Abbildung existiert, so dass (1) gilt Analog: Eine quadratische Matrix heisst invertierbar, wenn eine "inverse Matrix" existiert, mit und (3) impliziert (4) [und umgekehrt]: Assoziativität Kriterien für Invertierbarkeit: später...

2 Beispiel: 2x2-Rotationsmatrix Rotation: Rotationsmatrix: [laut (j.5) sind Spalten v. R die Abbilder v. ] Inverse v. R = Rotation um : Check: Übrigens: Beispiel: Allgemeine 2x2-Matrix Sei dann Inverse existiert nur falls Check: Eigenschaften der Inversen 1) Check: 2) Check: Warnung: wie auch in

3 Wozu ist Inverse nützlich? Z.B.: bestimmt Lösung eines linearen Gleichungsystems Problemstellung: finde die Lösung für gegebene Zahlen für folgendes lineares Gleichungsystem (LGS): Kompakte Notation für (2): Schreibe Kompakte Notation für (3): Gesuchte Lösung: Bestimmung der Inversen: Rückführung auf Lösung v. n linearen Gleichungsystemen 1) Sei und n Spaltenvektoren, mit Komponenten: j-te Stelle Für jeden Wert von j = 1,..., n liefert (6) ein anderes LGS, zu lösen für den Spaltenvektor [(x.6) hat dieselbe Form wie (w.5)] Die aus diesen Spaltenvektoren gebildete Matrix (2) ist dann die gesuchte Inverse,

4 Wie löst man ein lineares Gleichungsystem (LSG)? Gauß-Algorithmus Ziel: durch geeignete Umformungen bringe man das LSG in die Form: Dann folgt sofort: Erlaubte Umformungen: - Vertauschen von Zeilen - Multiplikation einer Zeile mit einer Zahl - Addition eines Vielfachen einer Zeile zu einer anderen Ratschlag: Falls Brüche auftauchen, Zeile mit Hauptnenner durchmultiplizieren! Nützliches Hilfsmittel (um Schreiberei zu reduzieren): "Erweiterte Matrix": Start: Ziel: Gauß- Algorithmus Beispiel: finde Lösung des Systems: Erweiterte Matrix:

5 Lösung: Check durch einsetzen: konsistent mit (z.2) Falls das Gauss-Verfahren eine Zeile der Form liefert, hat das LSG keine Lösung. Falls das Gauss-Verfahren eine "Nullzeile" der Form liefert, kann eine der Variablen frei gewählt werden. Setze diese Variable gleich einem Parameter, z.b.. Lösung ist dann eine "Parameterschar". (bei m Nullzeilen, sind m der Variablen frei wählbar, m unabhängige Parameter.) Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv gesprochen: A darf nicht aus linear unabhängigen Vektoren linear abhängige machen.) (ii) aus folgt, dass. [d.h. der 'Kern' oder 'Nullraum' der Matrix, also die Menge aller Elemente, die auf Null abgebildet werden, ist 'trivial' (enthält nur den Nullvektor)] Falls Standardbasis benutzt wird, folgt aus (i) ferner: (iii) ist invertierbar, falls die Spaltenvektoren von eine Basis bilden; denn diese Spaltenvektoren sind die Bildvektoren der Standardbasis: [Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1]

6 Begründung für (i): surjektiv: injektiv: bijektiv: Begründung für (i) : Annahme: ist eine Basis. Dann ist surjektiv [das ganze V liegt im Bild v. A, ], denn sein Bild,, enthält eine Basis v. V, nämlich und somit das ganze V. Ferner ist auch injektiv [jeder Bildvektor entspricht maximal einem Argument]. Denn ansonsten gäbe es zwei verschiedene Vektoren und mit demselben Bild, d.h. Linearitität Letzte Gl. steht im Widerspruch zur linearen Unabhängigkeit der Basisvektoren Fazit: A ist surjektiv und injektiv, somit bijektiv, somit invertierbar. Begründung für (i) : Annahme: ist bijektiv. Dann ist jeder Vektor das Bild eines Vektors : ist vollständig. Ferner: sind linear unabhängig. Ansonsten würde eine nicht-triviale Linearkombination existieren, die Null liefert, Linearitität also im Widerspruch zur Injektivität, denn es gilt auch Fazit: ist vollständig und linear unabhängig, somit eine Basis. Begründung für (ii): analoge Argumente, Selbststudium!

7 L5.3 Basistransformation [vergleiche Seite L2.3g-h] seien zwei Basen für mit Gegeben, ein Vektor in der Wie lautet derselbe Vektor in der -Basis? Fazit: Matrixnotation: Neue Koordinaten lassen sich durch Matrixmultiplikation von T mit den Alten berechnen! Rücktransformation mittels Inverser Matrix: Beispiel: Der Vektor hat zwei Darstellungen: Einerseits, in Andrerseits, in (5) & (6) sind konsistent mit (ee.7):

8 Inverse Transformation: Hier: Betrachte z.b. den Basisvektor Einerseits, in Andrerseits, in (3) & (4) sind konsistent mit (ee.8): Transformation einer Matrix-Darstellung von einer Basis in eine andere sei eine lineare Abbildung, mit. In -Basis sei [(b.4), mit v'=v] In -Basis sei [(b.4), mit v'=v] dann hat F die Darstellung: dann hat F die Darstellung: [siehe (e.5)] [siehe (e.5)] Konkret: falls Konkret: falls dann gilt: dann gilt: mit mit

9 Der Bezug zwischen den beiden Basen sei: Frage: wie lautet Bezug zwischen und? Transformiere (hh.2) in die Laut (ee.6): (hh.2): [vergleiche mit (hh.2)] umgekehrt: Beispiel: Streckung in horizontale Richtung um Faktor 2 Finde Darstellung v. F in der (hh.1): Berechne nun Darstellung v. F in der Wie wirkt F auf den Basis-Vektor

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V.

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V. L2.3 Basis und Dimension Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat Formaler: was ist die 'Dimension' von Sei Definition: 'Span' 'lineare Hülle' = alle möglichen Linearkombination der

Mehr

Blatt 06.3: Matrizen

Blatt 06.3: Matrizen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt 06.3:

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

L5 Matrizen I. Matrix: (Plural: Matrizen)

L5 Matrizen I. Matrix: (Plural: Matrizen) L5 Matrizen I Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen (spezielle

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Kapitel 16. Invertierbare Matrizen

Kapitel 16. Invertierbare Matrizen Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

L5 Matrizen I: Allgemeine Theorie

L5 Matrizen I: Allgemeine Theorie L5 Matrizen I: Allgemeine Theorie Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

= { } Absolutes Komplement Universe Relatives Komplement von

= { } Absolutes Komplement Universe Relatives Komplement von Allgemeines ist Teiler von Mengen Mächtigkeit Anzahl Elemente in der Menge Potenzmenge Menge aller Teilmengen von { } { { } { } { }} Beziehungen bzw. ist in enthalten ist Teilmenge von ist Obermenge von

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Klausur zur Linearen Algebra I HS 01, 1.1.01 Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Name: Sitzplatznummer: Die Bearbeitungszeit für diese Klausur beträgt 90 Minuten. Die Klausur umfaßt

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

2.3 Lineare Abbildungen und Matrizen

2.3 Lineare Abbildungen und Matrizen 2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele:

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele: L2. Vektorräume Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer Beispiele: 2) Vektoren: vollständig bestimmt durch Angabe einer und einer Beispiele: Übliche

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen Lineare Algebra 3 Lösungen für Test und Zusatzfragen Test Multiple Choice. Seien Für die Lösung x x x x 3 A, b des Systems Ax b gilt x 3 5 x 3 x 3 3 x 3 / Mit elementaren Zeilenoperationen erhalten wir

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Anwendungen in der Physik: Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors - Normalmoden

Mehr

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele:

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele: L2. Vektorräume Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer Beispiele: Masse, Volumen, Energie, Arbeit, Druck, Temperatur 2) Vektoren: vollständig

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 27/28 Lineare Algebra Skript zum Ferienkurs Tag 2-2.3.28 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper vielmals für seine Unterstützung bei

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

Kapitel 15 Lineare Gleichungssysteme

Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem

Mehr

Kapitel 14 Lineare Gleichungssysteme

Kapitel 14 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 83 / 246 Kapitel 4 Lineare Gleichungssysteme Definition 4. (Lineares Gleichungssystem LGS)

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( ) Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Technische Universität München Christoph Niehoff Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 009/00 Die beiden Hauptthemen von diesem Teil des Ferienkurses sind Lineare Gleichungssysteme

Mehr

1.) Matrix einer linearen Abbildung

1.) Matrix einer linearen Abbildung 1.) Matrix einer linearen Abbildung Aufgaben: 7 restart; with(linearalgebra): Definitionen MATH: Seien und Vektorräume über dem Körper mit Basen und. Wir wollen eine bequeme Art finden, eine lineare Abbildung

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme 3 Lineare Gleichungssysteme 3 Fortsetzung des Matrizenkalküls Als erstes beweisen wir einen einfachen Satz über den Rang von Matrizenprodukten Satz 3 (a) Für Matrizen A : Ã l m, B : Ã m n gilt rang AB

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Kapitel 14. Matrizenrechnung

Kapitel 14. Matrizenrechnung Kapitel 14 Matrizenrechnung Lineare Abbildungen und Matrizen Matrizenrechnung Ansatzpunkt der Matrizenrechnung sind die beiden mittlerweile wohlbekannten Sätze, welche die Korrespondenz zwischen linearen

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2 II. Basis und Dimension ================================================================= 2.1 Linearkombination und Basis -----------------------------------------------------------------------------------------------------------------

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen 1 Lineare Abhängigkeit 1.1 Für welche t sind die folgenden Vektoren aus 3 linear abhängig? (1, 3, 4), (3, t, 11), ( 1, 4, 0). Das zur Aufgabe gehörige LGS führt auf die Matrix 1 3 4 3 t 11. 1 4 0 Diese

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrixgleichungen Eine lineare Gleichung mit einer Variablen x hat bei Zahlen a, b, x die Form ax = b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0, kann eindeutig

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

1 Definitionen: 6 Punkte gesamt

1 Definitionen: 6 Punkte gesamt ANTWORTEN zum KOLLOQIUM zur Einführung in die Lineare Algebra Hans G. Feichtinger Sommersemester 2014 Fr., 25. Juli 2014, 10:00, Fakultät f. Mathematik Punktezahl: (1) 6 (2) 9 (3) 5 (4) 10 TOTAL (von 30):

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1.

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1. Matrizen Aufgabe Sei f R R 3 definiert durch ( x 3y x f x + y y x Berechnen Sie die Matrix Darstellung von f Lösung von Aufgabe ( f ( f 3 Die Matrix Darstellung von f ist somit A 3 Aufgabe Eine lineare

Mehr

Wiederhole die obigen Themen! Wir stellen Fragen im Testat!

Wiederhole die obigen Themen! Wir stellen Fragen im Testat! 1.) Wiederholung: Stetigkeit: Definition und elementare Eigenschaften, Anwendungen von Stetigkeit: Zwischenwertsatz, Intervallschachtelung, Extrema, Grenzwerte und Stetigkeit, Beispiele und erste Theorie

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8 D-INFK Lineare Algebra HS 27 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 8. Kern von A: Die Spalten der Matrix A sind Vielfache voneinander, also sind sie linear abhängig und A hat Rang. Somit hat

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4 Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte

Mehr

Chr.Nelius : Lineare Algebra II (SS 2005) 1. Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog. Elementarmatrizen vornehmen.

Chr.Nelius : Lineare Algebra II (SS 2005) 1. Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog. Elementarmatrizen vornehmen. ChrNelius : Lineare Algebra II (SS 2005) 1 Einschub A) Elementarmatrizen Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog Elementarmatrizen vornehmen (A1) DEF: Seien r, s IN mit

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Zeilenstufenform. Wir beweisen nun den schon früher angekündigten Satz.

Zeilenstufenform. Wir beweisen nun den schon früher angekündigten Satz. Zeilenstufenform Wir beweisen nun den schon früher angekündigten Satz. Satz. Jede m n-matrix A lässt sich durch elementare Zeilenumformungen auf Zeilenstufenform und analog durch elementare Spaltenumformungen

Mehr