Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Größe: px
Ab Seite anzeigen:

Download "Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7"

Transkript

1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U V einen Untervektorraum von V? b) Man nennt eine Teilmenge A V einen (nichtleeren) affinen Unterraum von V, falls ein Untervektorraum U von V und ein p V existiert mit A = p + U := {p + u u U}. Zeigen Sie, dass in dieser Situation auch A = x + U für jeden Punkt x A gilt. c) Seien A und B affine Unterräume von V, so dass A B gilt. Zeigen Sie, dass dann auch A B wieder ein affiner Unterraum von V ist. 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben. a) Geben Sie eine Parameterdarstellung für die Schnittgerade der beiden Ebenen an. b) Zeigen Sie, dass der Punkt P = in der Ebene E liegt. Geben Sie eine Parameterdarstellung für die Gerade g an, welche im Punkt P senkrecht auf der Ebene E steht. c) In welchem Punkt durchstößt die Gerade g die Ebene E?

2 7. (Herbst, Thema, Aufgabe ) Im euklidischen Raum R sei E die Ebene, auf der die drei Punkte P = (,, ), Q = (,, ), R = (,, ) liegen. Sei g die Gerade, die den Ursprung enthält und die auf E orthogonal ist. Man bestimme g, sowie den Schnittpunkt von g mit E und den Spiegelpunkt des Ursprungs in Bezug auf E. 7.4 (Herbst, Thema, Aufgabe ) Für α R \ {} seien durch α α E α = + R + R α und F α = α + R α α + R Ebenen in R 4 definiert. Bestimmen Sie alle α R, für die sich E α und F α schneiden. 7.5 (Frühjahr, Thema, Aufgabe 4) Betrachten Sie die Ebene E := { (x, y, z) R x + y = } R und zu gegebenem λ R die Teilmenge G λ := { (x, y, z) R x + y λz = und x y + λz = + λ } R im euklidischen Vektorraum R. a) Zeigen Sie, dass G λ für jede Wahl von λ R eine Gerade ist und geben Sie eine Gleichung dieser Geraden in Parameterform an. b) Bestimmen Sie alle λ R, so dass E und G λ einen nicht-leeren Schnitt haben und berechnen Sie diesen jeweils. 7.6 (Frühjahr 8, Thema, Aufgabe 5) Gegeben seien die Punkte A :=, B :=, C :=, D := 4 R. 5 a) Bestimmen Sie die Hessesche Normalform für die Gleichung der durch A, B, C verlaufenden Ebene. Welchen Abstand hat D von dieser Ebene? b) Geben Sie eine Parameterdarstellung für jede Gerade durch D an, welche auf der Ebene aus a) senkrecht steht. Bestimmen Sie den Schnittpunkt dieser Geraden mit der Ebene.

3 7.7 (Frühjahr 4, Thema, Aufgabe ) Gegeben seien die folgenden drei Geraden L, L, L R : x x L : y R x + y z = y R x y z = z z L : t R t R t L : Verbindungsgerade durch und. a) Zeigen Sie, dass sich die Geraden paarweise schneiden und bestimmen Sie die Schnittpunkte p, p, p. b) Sei R das Dreieck mit den Ecken p, p, p. Bestimmen Sie alle drei Innenwinkel sowie den Flächeninhalt von. 7.8 (Frühjahr 4, Thema, Aufgabe 4) Im euklidischen Raum (R, ), versehen mit dem Standardskalarprodukt, seien die Punkte 5 A =, B = und C = 5 5 gegeben. a) Man zeige, dass das Dreieck ABC gleichschenklig und rechtwinklig ist, und bestimme den Punkt D, so dass ABCD ein Quadrat ist. b) Man bestimme eine Gleichung für die Ebene E, in der das Quadrat ABCD liegt, sowie eine Parameterdarstellung für die Lotgerade l zu E durch den Mittelpunkt von ABCD. c) Man bestimme alle Punkte S auf der Geraden l, für welche die Pyramide mit der Grundfläche ABCD und der Spitze S das Volumen 6 besitzt. 7.9 (Frühjahr, Thema, Aufgabe ) Sei A = M(, R) und v = R. 4 a) Sei U das Bild von A. Bestimmen Sie eine Basis von U. b) Bestimmen Sie den Punkt u U, der v am nächsten liegt. Legen Sie dabei die euklidische Norm des R zugrunde. c) Bestimmen Sie den Abstand zwischen v und U bezüglich der euklidischen Norm des R.

4 7. (Herbst 4, Thema, Aufgabe ) Sei f die lineare Abbildung f : R R, x Ax, mit A := und sei G die durch die Gleichungen x + y z = x z = bestimmte Gerade. Berechnen Sie den Abstand des Punktes p = (5,, ) zu G und zu Bild(f). 7. (Herbst 5, Thema, Aufgabe ) Sei f t : R R : x A t x die vom Parameter t R abhängige lineare Abbildung mit darstellender Matrix t t A t = t t. t + t t + t Weiter sei a) Für welche t R ist das Urbild ein affiner Raum der Dimension? b =. F t := { x R A t x = b } b) Für welche t R ist F t eine Ebene, die parallel zur Ebene liegt? E : x + y + z = R c) Bestimmen Sie den Abstand zwischen E und F. 7. (Herbst, Thema, Aufgabe 4) a) Die Ebenen E und E sind im R gegeben als die Menge aller Vektoren (x, y, z) t, die E : x + y + z = und E : x y + z = genügen. Berechnen Sie eine Parameterform von E E. b) Es sei P die Menge aller Punkte p R, die von E und E denselben Abstand haben. Zeigen Sie, dass P die Vereinigung zweier Ebenen ist und bestimmen Sie eine Parameterform dieser beiden Ebenen.

5 7. (Herbst 7, Thema, Aufgabe 4) Im euklidischen R seien die Ebene E und die Gerade G gegeben durch x E := y x + y + z =, G := + r : r R. z a) Zeigen Sie, dass E und G parallel sind. b) Bestimmen Sie den euklidischen Abstand der Gerade G von der Ebene E. 7.4 (Frühjahr, Thema, Aufgabe 5) Gegeben seien im euklidischen R die Gerade g durch ihre Punkte A = (,, ) t und B = (,, ) t, sowie die Gerade g durch ihren Punkt C = (,, 7) t und ihren Richtungsvektor v = (,, 4) t. a) Bestimmen Sie die Gleichung der Ebene E, welche die Gerade g enthält und zur Geraden g parallel ist. b) Welchen Abstand hat die Gerade g von der Ebene E? Liegt g auf der gleichen Seite von E wie der Ursprung? 7.5 (Frühjahr 5, Thema, Aufgabe 4) a) Zeigen Sie, dass es genau eine Ebene F R gibt, welche die drei Punkte, 4, enthält und bestimmen Sie eine Gleichung von F in Normalenform. b) Gegeben sei die Ebene E : x + y + z = in R. Bestimmen Sie E F in Parameterform und den kürzesten Abstand von E F von der y Achse. 7.6 (Frühjahr, Thema, Aufgabe ) Im R seien die Geraden g := + R und h := R 5 gegeben. Finden Sie zwei verschiedene Punkte p g und q h so, dass die Gerade durch p und q auf beiden Geraden g und h senkrecht steht. 7.7 (Frühjahr 9, Thema, Aufgabe ) Im R seien die beiden Geraden 5 g = + R, g = + R gegeben. Bestimmen Sie die Fußpunkte des gemeinsamen Lotes und den Abstand beider Geraden.

6 7.8 (Frühjahr 7, Thema, Aufgabe 4) Im euklidischen R seien die Vektoren t = 4, u =, t = 4, u = 6 6 und damit die Geraden gegeben. g = t + R u sowie g = t + R u a) Zeigen Sie, dass g und g windschief sind. b) Bestimmen Sie die gemeinsame Lotgerade l von g und g. c) Berechnen Sie den Abstand zwischen g und g. 7.9 (Herbst, Thema, Aufgabe ) Im euklidischen R mit den Koordinaten x, y, z seien zwei Geraden gegeben, und zwar die Gerade L, welche die beiden Punkte P = und P = enthält, sowie der Durchschnitt M der Ebenen E : x z =, E : x + y =. Bestimmen Sie den Abstand zwischen L und M. 7. (Herbst 7, Thema, Aufgabe ) Im R seien die beiden folgenden Geraden gegeben: g := + R, g = + R. a) Geben Sie ein lineares Gleichungssystem an, dessen Lösungsmenge die Gerade g ist. b) Bestimmen Sie für das gemeinsame Lot der beiden Geraden die Fußpunkte auf g und g. 7. (Frühjahr 7, Thema, Aufgabe ) a) Geben Sie im R zwei nicht parallele Geraden g durch (,, ) und h durch (,, ) an, welche sich nicht schneiden. b) Bestimmen Sie den Abstand zwischen g und h.

7 7. (Herbst, Thema, Aufgabe 4) Gegeben seien in R die Geraden g = + λ λ R g = + λ λ R g = 7 + λ λ R a) Zeigen Sie, dass g und g ein eindeutiges gemeinsames Lot l haben. Zeigen Sie, dass l auch das eindeutige gemeinsame Lot von g und g sind. b) Folgern Sie, dass l ein gemeinsames Lot von g und g ist. Ist l das einzige gemeinsame Lot von g und g? 7. (Herbst 9, Thema, Aufgabe 4) Im euklidischen R seien die windschiefen Geraden g : R und g : + R gegeben. a) Finden Sie Punkte A g und B g so, dass die Strecke AB parallel zur x, y Ebene ist und die Länge hat. b) Wie groß ist die minimale Länge l einer Strecke, die einen Punkt auf g mit einem Punkt auf g verbindet und zur x, y Ebene parallel ist? 7.4 (Herbst, Thema, Aufgabe 4) Im euklidischen R seien die beiden folgenden Geraden gegeben: 7 g = + R und h = + R. 7 a) Zeigen Sie, dass l = + R die gemeinsame Lotgerade von g und h ist. Bestimmen Sie die beiden Lotfußpunkte und damit den Abstand von g und h. b) Berechnen Sie den Mittelpunkt einer Kugel mit kleinstem Radius, welche g und h berührt, und begründen Sie diese Rechnung.

8 7.5 (Frühjahr 8, Thema, Aufgabe 4) Der euklidische R sei mit dem Standardskalarprodukt versehen. Zeigen Sie, dass der Punkt P := R Mittelpunkt einer Kugel K R ist, die sowohl die Gerade 5 g := 7 + R 8 als auch die Ebene x E := y R x + y 6 z = 8 z berührt. Geben Sie den Radius r dieser Kugel K sowie ihre Berührpunkte mit der Geraden g und der Ebene E an. 7.6 (Frühjahr, Thema, Aufgabe 5) Sei e, e, e, e 4 die Standardbasis in R 4. Bestimmen Sie mit Hilfe des Standardskalarproduktes den Abstand des Punktes e von der Ebene U R 4, welche von den Vektoren e + e und e + e 4 aufgespannt wird. 7.7 (Herbst, Thema, Aufgabe ) In R 4 betrachten wir die Geraden g = {(4,,, 5) + λ(,,, ) λ R} und h = {(,,, ) + λ(,,, ) λ R}. Bestimmen Sie einen Punkt P g auf g und einen Punkt P h auf h, deren Verbindungsvektor P g P h sowohl auf g als auch auf h senkrecht steht. Berechnen Sie den Abstand zwischen g und h. 7.8 (Herbst, Thema, Aufgabe ) Im euklidischen R 4 mit Standardskalarprodukt und Standardnorm seien u =, u =, u = 4, v =, v = u R 4 6 U = u + R u + R u, V = v + R v, a) Berechnen Sie eine Basis von W. W = R u + R u + R v R 4. b) Berechnen Sie den Abstand von U und V.

9 7.9 (Herbst 5, Thema, Aufgabe ) Es sei X die affine Ebene in R 4, die die Punkte, und enthält x und es sei Y = x x R4 : x x = und x + x 4 = 5. x 4 a) Zeigen Sie, dass X und Y windschief sind, d.h. X Y = und X, Y sind nicht parallel. b) Berechnen Sie den euklidischen Abstand (bzgl. des Standardskalarprodukts) von X und Y. 7. (Frühjahr, Thema, Aufgabe ) Es sei a R ein Parameter. ( ) x a) Geben Sie eine Gleichung an für die Menge M a aller Punkte P = R y, ( ) ( ) a welche vom Punkt Q = und von der Geraden G = R den a gleichen Abstand haben. b) va Bestimmen Sie v a, w a R so, dass M a und M w a. a c) Zeigen Sie: Nur für a = ist M a eine Gerade. 7. (Herbst, Thema, Aufgabe ) Gegeben sei das Dreieck im R mit den Ecken A = (, ), B = (4, ), C = (, ). a) Bestimmen Sie für dieses Dreieck den Schwerpunkt S, den Umkreismittelpunkt U und den Höhenschnittpunkt H. b) Zeigen Sie, dass S, U und H zusammen auf einer Geraden liegen. 7. (Herbst 8, Thema, Aufgabe 5) In der euklidischen Ebene R werde das Dreieck mit den Ecken betrachtet. A = (, ), B = (4, ), C = (, ) a) Es sei t R und P = (t, t) R. Bestimmen Sie die Hessesche Normalform der Geradengleichung für die Gerade BC und damit den Abstand d des Punktes P von der Geraden BC als Funktion von t. b) Berechnen Sie den Inkreismittelpunkt I des Dreiecks ABC. c) Berechnen Sie die Berührpunkte A BC, B CA und C AB des Inkreises mit den Dreiecksseiten. d) Zeigen Sie: Die drei Geraden AA, BB und CC treffen sich in einem Punkt.

10 7. (Herbst 5, Thema, Aufgabe 4) In der euklidischen Ebene R mit den Koordinaten x, y sei ein Dreieck P QR gegeben durch seine Ecken P = (, ), Q = (, ), R = (, ). a) Zeigen Sie: Der Kreis K mit Mittelpunkt (, ) und Radius geht durch P und berührt die durch die Dreieckseite QR definierte Gerade in R. b) Finden Sie eine Gleichung für den Kreis K, der durch Q geht und die durch die Seite RP definierte Gerade in P berührt, sowie eine Gleichung für den Kreis K, der durch R geht und die durch die Seite P Q definierte Gerade in Q berührt. c) Bestimmen Sie die Schnittpunkte der Kreise K und K. Zeigen Sie: Es gibt einen Punkt B R, in dem sich alle drei Kreise K, K, K schneiden. 7.4 (Herbst 5, Thema, Aufgabe ) a b Es sei a = und b = zwei verschiedene Punkte im R versehen mit a dem Standardskalarprodukt. a) Leiten Sie her: Die Menge aller x = b ( x x ) R, die von a und b denselben Abstand haben, ist die Menge {( ) } x R : (b a )x + (b a )x = b a. x b) Berechnen Sie den Umkreismittelpunkt des Dreiecks (a, b, c), wobei ( ) 5 4 a =, b = und c = (Herbst 4, Thema, Aufgabe 4) Im euklidischen Raum R, versehen mit dem Standardskalarprodukt, seien die vier Punkte A =, 5 B =, 4 C = 5 und D = gegeben. a) Man zeige, dass die Menge g aller Punkte X von R, die von A, B und C denselben Abstand besitzen, eine Gerade ist, und gebe eine Parameterdarstellung von g an. b) Man bestimme den Mittelpunkt M und den Radius r der Umkugel des Tetraeders mit den Ecken A, B, C, D. Man entscheide mit Begründung, ob M im Inneren des Tetraeders liegt.

11 7.6 (Herbst 8, Thema, Aufgabe 4) In der Ebene R sei die Gerade g mit der Gleichung x + y = gegeben. Die Spiegelung an dieser Geraden sei S : R R. ( ) x a) Berechnen Sie für einen Punkt P = die Koordinaten des gespiegelten y Punktes S(P ). b) Berechnen Sie für die Gerade g mit der Gleichung x y = die Gleichung der gespiegelten Geraden g = S(g ). 7.7 (Herbst 6, Thema, Aufgabe 4) Im euklidischen Raum R sei die Ebene E gegeben durch die Gleichung x + x + x = 5. Weiter sei f : R R die Orthogonalprojektion auf die Ebene E. Bestimmen Sie die Matrix A und den Vektor t R so, dass für alle x R gilt: 7.8 (Frühjahr 7, Thema, Aufgabe 5) Im R seien die Ebenen f(x) = A x + t. H : x + y + z = und E : z = gegeben. Weiter sei π : E H die Orthogonalprojektion von E auf H, d.h. die Parallelprojektion längs der Normalenrichtung von H. Finden Sie eine Matrix A und einen Vektor v R so, dass x π y = A 7.9 (Herbst 4, Thema, Aufgabe 4) ( ) x + v für alle y Betrachten Sie die inhomogene lineare Gleichung x y + z =. a) Geben Sie die Lösungsmenge U in Parameterform an. x y E. b) Sei U der zu U parallele Untervektorraum. Bestimmen Sie die Matrix M der Spiegelung an U. c) Bestimmen Sie die Spiegelung S an der affinen Ebene U als eine affine Abbildung S : R R, x Ax + t mit A R und t R.

12 7.4 (Frühjahr 5, Thema, Aufgabe 5) Sei das Dreieck im R mit den Eckpunkten A = (, ), B = (, ) und C = (4, ). Sei das Dreieck im R mit den Eckpunkten à = (, 9), B = (, ) und C = (, 7). a) Skizzieren Sie die beiden Dreiecke und in einem rechtwinkligen Koordinatensystem b) Geben Sie explizit die affine Abbildung f : R R mit f(a) = Ã, f(b) = B und f(c) = C an, welche auf abbildet. 7.4 (Herbst 7, Thema, Aufgabe ) a) Zeigen Sie, dass die Punkte P := (,, ) t, P := (,, ) t, P := (,, ) t und P := (,, ) t R nicht in einer Ebene liegen. b) Es sei ψ : R R die bijektive affine Abbildung mit ψ(p ) = (,, ) t, ψ(p ) = (,, ) t, ψ(p ) = (,, ) t, ψ(p ) = (,, ) t. Finden Sie eine Matrix A und einen Vektor b R so, dass für alle x R gilt ψ(x) = A x + b. 7.4 (Herbst, Thema, Aufgabe ) a) Zeien Sie, dass es genau eine bijektive affine Abbildung f : R R mit (( )) ( ) (( )) ( ) (( )) ( ) f =, f = und f = gibt. b) Zeigen Sie, dass f sogar eine Bewegung (d.h. abstandserhaltend) ist und bestimmen Sie den Typ dieser Bewegung. 7.4 (Herbst 5, Thema, Aufgabe 5) Es seien A R und t R. Die affine Abbildung f : R R mit f(x) = A x + t sei eine Drehung der euklidischen Ebene R mit Drehzentrum z. a) Begründen Sie, dass für alle p R gilt: p z = f(p) z. b) In R seien die folgenden vier Punkte gegeben: ( 7 5,5 p =, q =, p = ), q = ( ),5. Zeigen Sie, dass es genau eine Drehung f um ein Drehzentrum z R gibt mit f(p) = p und f(q) = q. Berechnen Sie z, sowie die Matrix A und den Vektor t von f.

13 7.44 (Herbst, Thema, Aufgabe 4) a) Bestimmen Sie alle affinen Abbildungen f : R R mit f((, )) = (, ) und f((, )) = (, ). Gibt es unter all diesen affinen Abbildungen eine Bewegung (d.h. eine Isometrie)? x y + 5 b) Zeigen Sie, dass g : eine Bewegung (d.h. eine Isometrie) y x + des R ist. Zeigen Sie, dass g eine Gleitspiegelung ist und berechnen Sie die zugehörige Spiegelungsgerade und den zugehörigen Translationsvektor (Herbst, Thema, Aufgabe 4) Es seien A = ( ) 4, B = ( ) 4, C = ( ), A = ( ), B = ( ), C = ( ) Ortsvektoren von Punkten in R. Gegeben seien die Dreiecke mit den Ecken A, B und C sowie mit den Ecken A, B und C. a) Bestimmen Sie die Seitenlängen der beiden Dreiecke. b) Zeigen Sie, dass eine Bewegung f des R, die das Dreieck auf das Dreieck abbildet, notwendig f(a) = A, f(b) = C und f(c) = B erfüllt. c) Zeigen Sie, dass es genau eine Bewegung f des R gibt, die das Dreieck auf das Dreieck überführt, indem Sie f konkret angeben (Frühjahr, Thema, Aufgabe 4) In der euklidischen Ebene R seien das Dreieck mit den Ecken ( ) 7 a =, b = und c =, 5 5 sowie das Dreieck mit den Ecken 8 a =, b = und c = ( ) 5 gegeben. a) Skizzieren Sie die beiden Dreiecke und im kartesischen Koordinatensystem der Ebene und berechnen Sie ihre Seitenlängen. b) Zeigen Sie, dass es genau eine Drehung d : R R, d(x) = D x + t, mit einer Drehmatrix D und einem Vektor t R gibt, welche das Dreieck auf das Dreieck abbildet. Geben Sie D und t explizit an.

14 7.47 (Frühjahr 5, Thema, Aufgabe ) a) Zeigen Sie, dass es genau eine Bewegung (= abstandserhaltende affine Transformation) g im R gibt, welche die Menge { ( )} 8 4,, auf die Menge {( ), abbildet. ( ), b) Berechnen Sie das Bild des Dreiecks {, unter g (Herbst 5, Thema, Aufgabe 4), ( )} 8 ( )} Die Bewegung g : R R bilde die Punktmenge {a, b, c} auf die Punktmenge {d, e, f} (nicht notwendigerweise in dieser Reihenfolge) ab. Dabei ist a =, b =, c =, d =, e =, f =. 4 a) Zeigen Sie, dass es genau zwei Möglichkeiten für g gibt. b) Zeigen Sie, dass eine davon eine Drehung ist. Bestimmen Sie das zugehörige Drehzentrum und den Drehwinkel. c) Zeigen Sie, dass die andere Möglichkeit eine Gleitspiegelung ist. Bestimmen Sie die zugehörige Spiegelachse und den Verschiebungsvektor (Herbst, Thema, Aufgabe ) Sei ϕ s : R R definiert durch s 4 ϕ s (x) := A s x + b := x +, s = s 4 a) Bestimmen Sie alle Vektoren s R, so dass A s das Vielfache einer orthogonalen Matrix ist. ( ) b) Betrachten Sie nun ϕ s mit s =. Bestimmen Sie den Fixpunkt von ϕ s. ( ) c) Es sei weiterhin ϕ s mit s =. Weiter sei m der Fixpunkt von ϕ s. Bestimmen Sie ein α >, so dass ϕ s den Kreis K := { x R : x m = } auf den Kreis K := { x R : x m = α } abbildet. (Es bezeichne die euklidische Norm.) ( s s ).

15 7.5 (Herbst, Thema, Aufgabe 4) Es sei A die Menge der affinen Abbildungen f : R R. Beweisen oder widerlegen Sie: a) Ist b, b eine Basis von R und sind f, g A mit f(b ) = g(b ) und f(b ) = g(b ), dann folgt f = g. b) Ist f A und gilt f(λ x) = λ f(x) für jedes x R und jedes λ R, so ist f eine lineare Abbildung. 7.5 (Frühjahr 4, Thema, Aufgabe 5) a) Im reellen Vektorraum R seien p =, p =, p = ( ) 4 und p 4 = ( ) gegeben. Man zeige, dass es genau eine bijektive affine Abbildung f : R R, f(x) = M x + t, mit f(p ) = p, f(p ) = p, f(p ) = p 4 und f(p 4 ) = p gibt, und bestimme ihre Matrix M R sowie ihren Vektor t R. b) Die Affinität f : R R von Teilaufgabe a) bildet den Einheitskreis {( ) } x K = R x + x = x auf eine Ellipse E R ab. Man bestimme eine Gleichung für E.

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Klausurenkurs zum Staatsexamen (WS 2012/13): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2012/13): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS /3): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 a)

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatseamen (SS 205): Lineare Algebra und analtische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Lineare Algebra und analytische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 1.1 (Herbst 2005, Thema 1, Aufgabe 1) Bestimmen Sie alle reellen Lösungen des folgenden linearen

Mehr

43911: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 2014 Lösungsvorschlag

43911: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 2014 Lösungsvorschlag Dr. Erwin Schörner 49: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 4 Lösungsvorschlag I.. Für einen R Vektorraum V der Dimension dim V n mit n N ist die lineare Abbildung f : V V mit der Eigenschaft

Mehr

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag Dr. Erwin Schörner 49: Lineare Algebra/Geometrie Prüfungstermin Herbst 5 Lösungsvorschlag I.. a Die in Abhängigkeit vom Parameter t R für t t A t t t R und b R t + t t + t zu betrachtende Menge F t { x

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2. LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015 Lineare Algebra und Geometrie I SS 05 Woche Aussagenlogik Aufgabenpool Aufgabe #.5 Die Aussage A sei 5 > 9, die Aussage B sei Gerhard Schröder ist eine Frau. Vervollständigen Sie die folgende Wahrheitstabelle.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Abitur 2010 Mathematik GK Geometrie VI

Abitur 2010 Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.

Mehr

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

Einzelprüfungsnummer: Seite: 2. Thema Nr. 1 (Aufgabengruppe) Fi,n(f): {r e Ri : f (r): a}

Einzelprüfungsnummer: Seite: 2. Thema Nr. 1 (Aufgabengruppe) Fi,n(f): {r e Ri : f (r): a} Einzelprüfungsnummer: 439 1 Seite: 2 Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Aufgabe 1: Es sei b e IR' und A eine reelle n x n-matrix. Die affine Abbildung,f

Mehr

Abitur 2017 Mathematik Geometrie VI

Abitur 2017 Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 7 Mathematik Geometrie VI Gegeben sind die beiden bezüglich der x x 3 -Ebene symmetrisch liegenden Punkte A( 3 ) und B( 3 ) sowie der Punkt C( ). Teilaufgabe

Mehr

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 ) IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 26/7): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Grundkursabitur 2011 Analytische Geometrie Aufgabe III. In einem kartesischen Koordinatensystem sind die Punkte A 3 0 0,,

Grundkursabitur 2011 Analytische Geometrie Aufgabe III. In einem kartesischen Koordinatensystem sind die Punkte A 3 0 0,, Grundkursabitur 2011 Analytische Geometrie Aufgabe III In einem kartesischen Koordinatensystem sind die Punkte A 0 0,, B 0 0 C 0 und S 0 0 6 gegeben. 1. a) Das Dreieck ABC liegt in der x 1 x 2 -Ebene.

Mehr

Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale

Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Algebra 1 www.schulmathe.npage.de Aufgaben 1. Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Lösung? x + y + mz = 0 mx y + z = 0 x + y + z = 0. Welche Punkte P z der z-achse

Mehr

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II FOS, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung. In einem kartesischen Koordinatensystem ist die Gerade g gegeben mit der Gleichung g : x = + σ σ R (a) Die drei Punkte A( ), B(

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Algebra 4.

Algebra 4. Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Mathematik LK 12 M1, 2. Kursarbeit LA I / An. Geometrie Lösung

Mathematik LK 12 M1, 2. Kursarbeit LA I / An. Geometrie Lösung Mathematik LK M,. Kursarbeit LA I / An. Geometrie Lösung..7 Aufgabe : Rechnen mit Vektoren Berechne... und vereinfache das Ergebnis so weit wie möglich. Falls der Term keinen gültigen Ausdruck darstellt,

Mehr

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand Abituraufgaben bis 8 Baden-Württemberg Geraden, Ebenen, Abstand allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 8 Aufgabe : (Abiturprüfung 8) Gegeben sind die Ebenen E: xx x

Mehr

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben. Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte MATHEMATIK K1.06.015 Aufgabe 1 5 6 7 8 9 10 F Punkte (max 11 1 1 Punkte Gesamtpunktzahl /0 Notenpunkte Für vorbildliche Darstellung wird ein Extrapunkt vergeben. (1 Bestimmen sie die ersten beiden Ableitungen

Mehr

Zweidimensionale Vektorrechnung:

Zweidimensionale Vektorrechnung: Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Lösungsvorschläge für die Geometrie-Klausur vom 28.7.

Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Aufgabe 1: (a) Die beiden Punkte liegen offensichtlich auf der hyperbolischen Geraden g = {z H R(z) = 1}. Die beiden idealen Punkte sind a = 1, b =.

Mehr

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

Lernkarten. Analytische Geometrie. 6 Seiten

Lernkarten. Analytische Geometrie. 6 Seiten Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 22 Blatt 2.7.22 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag 4. a) Die Gerade

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 06 Lineare Algebra analytische Geometrie II Vorlesung 35 Winkeltreue Abbildungen Definition 35.. Eine lineare Abbildung ϕ: V W zwischen euklidischen Vektorräumen V W heißt

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

43911: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 2015 Lösungsvorschlag

43911: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 2015 Lösungsvorschlag Dr. Erwin Schörner 439: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 5 Lösungsvorschlag I.. Für n N mit n ist das inhomogene lineare Gleichungssystem in den n Unbekannten x,..., x n mit den n Gleichungen

Mehr

Seminar für LAGym/LAB: Analytische Geometrie

Seminar für LAGym/LAB: Analytische Geometrie Seminar für LAGym/LAB: Analytische Geometrie Ingo Runkel und Peter Stender Euklidische Vektorräume und Geometrie E1: Lineare Gleichungssysteme - Affiner Unterraum eines Vektorraumes. Lineare Gleichungssysteme

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Aufgabe 5: Analytische Geometrie (WTR)

Aufgabe 5: Analytische Geometrie (WTR) Abitur Mathematik: Nordrhein-Westfalen 203 Aufgabe 5 a) () PARALLELOGRAMMEIGENSCHAFTEN NACHWEISEN Zu zeigen ist, dass die gegenüberliegenden Seiten parallel sind, d. h. und. Zunächst ist 0 0 2 0, 3 2 0

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Aufgaben zum Wochenende (1)

Aufgaben zum Wochenende (1) Aufgaben zum Wochenende (1) 1. Schreiben Sie das Polynom (x 1) 5 geordnet nach Potenzen von x auf. (Binomialkoeffizienten!). Welche Bedingung müssen a, b, c erfüllen, damit die Lösungsmenge der Bestimmungsgleichung

Mehr

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B I

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B I FOS 994, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B(3 ) und C( ) gegeben, sowie die Punkte D a (a a a + ) mit a R..

Mehr

Modulteilprüfung Geometrie (BaM-GS), Probeklausur

Modulteilprüfung Geometrie (BaM-GS), Probeklausur HRZ-Benutzername: Modulteilprüfung Geometrie (BaM-GS), Probeklausur Dr. Patrik Hubschmid // SoSe 2013, 4. Juli 2013 Kontrollieren Sie, ob Sie alle Blätter (8 einschlieÿlich zweier Deckblätter) erhalten

Mehr

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14 Aufgabe A6/ Gegeben sind die Ebene 4 : Abituraufgaben Analytische Geometrie (Pflichtteil) ab und : 8. Bestimmen Sie eine Gleichung der Schnittgeraden. (Quelle Abitur BW Aufgabe 6) Aufgabe A7/ Gegeben sind

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

Aufgabenpool. Aufgabe 1.2 Beweisen Sie die folgende Tautologien und logischen Äquivalenzen mithilfe einer Wahrheitstabelle.

Aufgabenpool. Aufgabe 1.2 Beweisen Sie die folgende Tautologien und logischen Äquivalenzen mithilfe einer Wahrheitstabelle. Lineare Algebra und Geometrie I SS 06 Woche Aussagenlogik und Mengen Aufgabenpool Aufgabe Beweisen Sie die folgende Tautologien und logischen Äquivalenzen mithilfe einer Wahrheitstabelle e # [ (A B (C

Mehr

b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 a b = a 1 b 1 + a 2 b 2 + a 3 b 3

b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 a b = a 1 b 1 + a 2 b 2 + a 3 b 3 1. Rechnen mit Vektoren Skalarprodukt a b = a b cosα = a 1 a 2 a 3 b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 b a 1. Betrag = Länge eines Vektors: a = a a = a 2 1 + a 2 2 + a 2 3 2. Winkel zwischen 2 Vektoren:

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

FOS 1995, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II

FOS 1995, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B( 3) und C( 3) gegeben.. Die Punkte A und B bestimmen die Gerade g. Die Ebene E enthält den Punkt C und steht senkrecht auf

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung http://www.fersch.de Klemens Fersch. September 8 Inhaltsverzeichnis 6 6. Vektorrechung in der Ebene.............................................. 6.. Vektor - Abstand - Steigung - Mittelpunkt.................................

Mehr

A Vektorrechnung. B Geraden und Ebenen

A Vektorrechnung. B Geraden und Ebenen A Vektorrechnung Seite 1 Lineare Gleichungssysteme... 4 2 Gauß-Algorithmus... 6 3 Vektoren... 10 4 Vektorberechnungen und Vektorlängen... 12 5 Linearkombination und Einheitsvektor... 16 6 Lineare Abhängigkeit

Mehr

Übung (5) 4x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0

Übung (5) 4x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0 Übung (5). Lösen Sie folgendes lineare Gleichungssystem - sagen Sie zuvor, wie die Lösungsmenge aussehen sollte bzw. geometrisch zu interpretieren wäre: 4x y +u 3v = 3x u + v =0 x +3y u +v =0. Sagen Sie

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

1 + λ 0, die Geraden h : x =

1 + λ 0, die Geraden h : x = Amnalytische Geometrie. In einem kartesischen Koordinatensystem des R sind die Gerade g : x 7 + λ, die Geraden h : x 8 5 + µ, λ, µ, a R sowie die Ebene E durch die Punkte A 5, und gegeben. B 6 C 5 a) K

Mehr

Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene

Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene. Im sind die Punkte A(/-4/7), B(-/4/-), die Ebene E:x x +x 5 sowie die Geradenschar (Abitur BI) gegeben.. Die Gerade h AB schneidet die Ebene E

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Übungen zur Geometrie

Übungen zur Geometrie Aufgabe 1.1. Beweisen Sie die folgende Aussage: Die Diagonalen eines Parallelogrammes schneiden sich in ihren Mittelpunkten. Aufgabe 1.2. Beweis von: rechter Winkel = stumpfer Winkel D A E M F B C AB beliebige

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

1 lineare Gleichungssysteme

1 lineare Gleichungssysteme Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x

Mehr

Einführung in das Mathematikstudium und dessen Umfeld

Einführung in das Mathematikstudium und dessen Umfeld Einführung in das Mathematikstudium und dessen Umfeld (Unterrichtsfach LVA 457 C Fuchs, K Fuchs, C Karolus Wiederholung Schulstoff III WS 5/6 5 Vektorrechnung In diesem Kapitel sollen einige Grundlagen

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie

Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie Technische Universität Chemnitz 0. Dezember 0 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie Letzter Abgabetermin: 3. Januar 0 (in

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner SS 0 Blatt 9 9060 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach Lösungsvorschlag a Die gegebene Matrix

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Aufgabe 4: Analytische Geometrie (WTR)

Aufgabe 4: Analytische Geometrie (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 4 a) (1) SEITENLÄNGEN BERECHNEN Die Seitenlängen sind die Abstände der Eckpunkte voneinander:, 31 30 1 12 10 2 14 16 2 1 4 4 9 3, 31 32 1 12 11 1 14

Mehr

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg Pflichtteilaufgaben zu Beschreiben und Begründen Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 06 Abituraufgaben (Haupttermin) Aufgabe

Mehr