Lösungsvorschläge für die Geometrie-Klausur vom 28.7.

Größe: px
Ab Seite anzeigen:

Download "Lösungsvorschläge für die Geometrie-Klausur vom 28.7."

Transkript

1 Lösungsvorschläge für die Geometrie-Klausur vom Aufgabe 1: (a) Die beiden Punkte liegen offensichtlich auf der hyperbolischen Geraden g = {z H R(z) = 1}. Die beiden idealen Punkte sind a = 1, b =. (b) Es gilt und daher [z 1, z 2, a, b] = [z 1, z 2, 1, ] = (z 1 1)(z 2 ) (z 1 )(z 2 1) = z 1 1 z 2 1 = i 2i = 1 2, d(z 1, z 2 ) = log([z 1, z 2, a, b]) = log(1/2) = log(2). (c) Ein φ M(H) mit φ(z 1 ) = z 2 und φ(z 2 ) = z 1 muss die hyperbolische Gerade g auf sich selbst abbilden und dabei die idealen Punkte 1, vertauschen. Eine solche Möbius-Transformation hat die Form φ(z) = z c z 1, mit einem geeigneten c R. Die Bedingung φ(z 1 ) = z 2 führt durch Einsetzen zu c = 3. Zum Test überprüft man, dass φ(z) = z 3 z 1 auch die Bedingung φ(z 2 ) = z 1 erfüllt. (d) Die Möbius-Transformation φ(z) = iz + 1 bildet die Punkte 0, 1, auf 1, 1 + i, und damit die reelle Achse auf den verallgemeinerten Kreis K = {z R(z) = 1} (der g enthält) ab. Wir setzen ψ(z) := φ ( φ 1 (z) ) = i ( iz + i ) + 1 = i ( i z i ) + 1 = z + 2.

2 Aufgabe 2: (a) Die Matrix S ist eine orthogonale Matrix mit Determinante 1 und S E 2. Daher ist φ eine Drehung (siehe im Skript). (Genauer gilt S = R(π/2), d.h. S entspricht einer Drehung um den Ursprung mit Drehwinkel π/2 = 90, gegen den Uhrzeigersinn.) Nach Proposition 3.21 im Skript besitzt φ genau einen Fixpunkt y. Zur Bestimmung von y löst man das lineare Gleichungssystem (S E 2 ) y = v. Dieses Gleichungssystem besitzt die eindeutige Lösung (b) Die Translation hat die geforderte Eigenschaft. y = ( , ). 2 ψ(x) = x y (c) An einer Skizze sieht man, dass ABC und A B C gleichseitige Dreiecke sind, die in einem Einheitskreis eingeschrieben sind. Insbesondere sind die Dreiecke kongruent. Zur Bestätigung rechnet man entweder nach, dass alle Seitenlängen die Länge 3 haben, oder man schließt dies a posteriori aus der Existenz hinreichend vieler Kongruenzabbildungen. Da die Symmetriegruppe eines gleichseitigen Dreiecks 6 Elemente besitzt (zwei Drehungen, drei Spiegelungen und die Identität), so gibt es genau sechs Kongruenzen zwischen ABC und A B C. Zwei von Ihnen kann am man sehr leicht aus der Skizze erraten und dann explizit hinschreiben: erstens die Drehung um 180 mit Fixpunkt (0, 1), φ 1 (x) = , zweitens die Gleitspiegelung an der x 2 -Achse mit Verschiebung um den Vektor (0, 2): φ 2 (x) =

3 Aufgabe 3: Die richtigen Antworten in tabellarischer Übersicht: Im Einzelnen: (A) (B) (C) (a) ja ja ja (b) nein nein nein (c) nein ja nein (d) nein nein ja (e) nein nein nein (a) Dies ist Satz 2.34 (ii) im Skript (elementares Stetigkeitsprinzip). Der Satz gilt bereits in der neutralen Geometrie. (b) Die Aussage gilt nicht, wenn man die Punkte in der Reihenfolge A, C, B, D auf dem Kreis anordnet (sodass ACBD ein Viereck ist). Für die Konstruktion eines Gegenbeispiels benötigt man keine Aussage über die Gültigkeit des Parallelenaxioms. Die Aussage ist also bereits in der neutralen Geometrie falsch. (c) Dies ist der klassische Wechselwinkelsatz, der äquivalent ist zum Parallelenaxiom (Satz 2.52 und Bemerkung 2.53). Die Aussage gilt also in der euklidischen, nicht aber in der hyperbolischen Geometrie. (d) Nach dem Winkelsummensatz (enthalten im Satz 2.52) ist die Aussage in der euklidischen Geometrie falsch, aber nach Satz 4.4 in der hyperbolischen Geometrie wahr. (e) Diese Aussage (das,,wss-kriterium ) ist bereits in der neutralen Geometrie falsch. Für die Konstruktion eines Gegenbeispiels betrachtet man einen Kreis K mit Mittelpunkt C und zwei verschiedene Punkte B, B auf K, so dass C nicht auf der Geraden g durch B und B liegt. Wähle einen Punkt A auf g, der nicht auf der Strecke BB liegt. Dann sind die Dreiecke ABC und AB C nicht kongruent und liefern ein Gegenbeispiel.

4 Aufgabe 4: (a) (b) Es gilt γ (t) = sin 2 (t) + cos 2 (t) = 2 für alle t, also ist die Länge des Bogens γ([0, 1]) gleich 1 γ (t) dt = dt = 2. Aufgabe 5: (a) Durch den Koordinatenwechsel x 1 = y 1 +1, x 2 = y 2 +1 und Division durch 2 wird die Gleichung in die Normalform y 2 1/2 + y 2 2 = 1

5 gebracht. Dies ist die Gleichung einer Ellipse mit a = 2, b = 1 und e = 1. (b) Die Brennpunkte in den y-koordinaten sind (±e, 0) = (1, 0), ( 1, 0). Umrechnen in die x-koordinaten liefert die Brennpunkte F = (2, 1), F = (0, 1). (c) Anhand der Skizze ist bereits klar, dass die Tangente die Gleichung x 2 = 0 hat. Zur formalen Überprüfung kann man z.b. den Gradienten der Funktion F (x) = x x 2 2 2x 1 4x 2 +1 im Punkt P bestimmen, der orthogonal zur Tangente in P ist: F (1, 0) = 2x 1 2 (P ) = 0. 4x Aufgabe 6: Diese Aussage ist ein Teil von Satz 2.48 im Skript (Existenzaussage im Fall P g). Den Beweis finden Sie also im Skript.

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Klausurenkurs zum Staatsexamen (WS 2012/13): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2012/13): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS /3): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 a)

Mehr

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Beweisen Sie aus den Axiomen für komplexe Zahlen, dass für alle z, w C gilt: zw = z w; b) Schreiben

Mehr

Übersicht zur Vorlesung

Übersicht zur Vorlesung Stand: 19.1.2012 Übersicht zur Vorlesung Ausgewählte Kapitel der Geometrie Definitionen/Axiome Anordnungsaxiome Archimedisches Axiom Definition von größer in den reellen Zahlen Intervalle Punkte, Geraden

Mehr

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 Sei f : R n R n eine Bewegung Sie kann beschrieben werden in der Form Dabei ist T (f)(x) = A x f(x) = Ax + b mit A O(n) und b R n Definition:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE FB 3: Mathematik/Naturwissenschaften Prof. Dr. P. Ullrich/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 06.04.2016 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE FB 3: Mathematik/Naturwissenschaften Prof. Dr. P. Ullrich/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 10.02.2016 Name: Vorname:

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

Plan für Heute/Morgen

Plan für Heute/Morgen Plan für Heute/Morgen Kongruenzsätze: aus der Schule wissen wir die SSS, SWS, und SSW Kongruenzsätze für Dreiecke: Wir wollen diese Sätze im Rahmen unseres Modells (wenn Punkte die 2 Tupel von reellen

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 12.04.2012

Mehr

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015 Lineare Algebra und Geometrie I SS 05 Woche Aussagenlogik Aufgabenpool Aufgabe #.5 Die Aussage A sei 5 > 9, die Aussage B sei Gerhard Schröder ist eine Frau. Vervollständigen Sie die folgende Wahrheitstabelle.

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 11.02.2015 Name: Vorname:

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 06.02.2013 Name: Vorname:

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner SS 0 Blatt 9 9060 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach Lösungsvorschlag a Die gegebene Matrix

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 11.02.2015 Name: Vorname:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNSCHE UNVERSTÄT MÜNCHEN Zentrum Mathematik PROF DRDR JÜRGEN RCHTER-GEBERT, VANESSA KRUMMECK, MCHAEL PRÄHOFER Höhere Mathematik für nformatiker Wintersemester 23/24 Aufgabenblatt 2 23 Januar 24 Präsenzaufgaben

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale

Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Algebra 1 www.schulmathe.npage.de Aufgaben 1. Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Lösung? x + y + mz = 0 mx y + z = 0 x + y + z = 0. Welche Punkte P z der z-achse

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

DEMO für Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

DEMO für  Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Abbildungen Verkettung von Kongruenzabbildungen Für Interessenten. Datei Nr. 11059 Stand: 3. Oktober 2013 DEMO für FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 11059 Verkettung von Kongruenzabbildungen

Mehr

1 Analytische Geometrie

1 Analytische Geometrie Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Zusammenfassung: Eigenwerte, Eigenvektoren, Diagonalisieren Eigenwertgleichung: Bedingung an EW: Eigenwert Eigenvektor charakteristisches Polynom Für ist ein Polynom v. Grad, Nullstellen. Wenn EW bekannt

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

Modulteilprüfung Geometrie (BaM-GS), Probeklausur

Modulteilprüfung Geometrie (BaM-GS), Probeklausur HRZ-Benutzername: Modulteilprüfung Geometrie (BaM-GS), Probeklausur Dr. Patrik Hubschmid // SoSe 2013, 4. Juli 2013 Kontrollieren Sie, ob Sie alle Blätter (8 einschlieÿlich zweier Deckblätter) erhalten

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

Kontrollfragen und Aufgaben zur 4. Konsultation

Kontrollfragen und Aufgaben zur 4. Konsultation 1 Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik Dr. Jens Schreyer und Prof. Dr. Michael Stiebitz Kontrollfragen und Aufgaben zur 4. Konsultation

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Gruppen, Bewegungen Stefan Witzel Gruppen Eine Menge G von Bijektionen X X ist eine Gruppe, wenn 1. die Identität id: X X in G liegt, 2. für

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 09.04.2015 Name: Vorname:

Mehr

Einige Ergebnisse der euklidischen Geometrie

Einige Ergebnisse der euklidischen Geometrie 1 Teil I Einige Ergebnisse der euklidischen Geometrie In Teil I setzen wir den euklidischen Raum als bekannt voraus (aus der Schule oder aus der Vorlesung Lineare lgebra und nalytische Geometrie). Da wir

Mehr

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung

Mehr

Thema: Das Dreieck und seine Kreise. (Kapitel IV aus: Koecher, Krieg; Ebene Geometrie Seite )

Thema: Das Dreieck und seine Kreise. (Kapitel IV aus: Koecher, Krieg; Ebene Geometrie Seite ) Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik Seminar zur Geometrie PD Dr. Martin Ekenhans Wintersemester 005/006 Thema: Das Dreieck und seine Kreise

Mehr

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Prof. Dr. Thomas Risse www.weblearn.hs-bremen.de/risse/mai www.weblearn.hs-bremen.de/risse/mai/docs Fakultät Elektrotechnik & Informatik

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern PROJEKTIVE GEOMETRIE Lösungen zur Semestral-Klausur (5. Februar 22, : 2:3 Uhr) Musterlösung Aufgabe.

Mehr

Prüfung Lineare Algebra 2

Prüfung Lineare Algebra 2 1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,

Mehr

1.1 Geradenspiegelungen

1.1 Geradenspiegelungen 1.1 Geradenspiegelungen 1.1.1 Eigenschaften Definition 1.1 Eine Abbildung der Ebene ist eine Vorschrift, die jedem Punkt P der Ebene einen Bildpunkt P zuordnet. Beispiel 1.1 Zentrische Streckung mit Zentrum

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester 9 Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und

Mehr

Geometrie Herbstsemester 2013

Geometrie Herbstsemester 2013 Geometrie Herbstsemester 203 D-MATH Prof. Felder Lösungen 3 ) (a) Wir verwenden die Zykelschreibweise für die Elemente von S n, so dass S 3 = {(), (2), (3), (23), (23), (32)} Die Gruppe besteht also aus

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 08.0.01

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

γ(p) = {(P,g) P G P g}. π(g) = {(P,g) P G P g}.

γ(p) = {(P,g) P G P g}. π(g) = {(P,g) P G P g}. Lösungsvorschläge zur Klausur Elementare Geometrie vom 02.08.2017 Aufgabe 1 Es sei P eine nicht kollineare endliche Menge von Punkten in einer affinen Ebene. Weiter sei G die Menge aller Geraden PQ mit

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof Dr Matthias Lesch, Regula Krapf Übungsblatt 7 Aufgabe 23 9 Punkte In der folgenden Aufgabe sei mit baryzentrischen Koordinaten immer die baryzentrischen Koordinaten

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

eine O fixierende Bewegung.

eine O fixierende Bewegung. 1. Bewegungen der hyperbolischen Ebene Sei nun H eine hyperbolische Ebene. Dann erhält man dieselben Klassen von Bewegungen wie im Euklidischen Fall und eine weitere Klasse. Wir haben oben nur ein einziges

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

3.3. Drehungen und Spiegelungen

3.3. Drehungen und Spiegelungen 3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 15.02.2017 Name: Vorname:

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Hyperbolische Symmetrien

Hyperbolische Symmetrien Hyperbolische Symmetrien Nina Dietsche Robert Papin 01.07.2010 1 Nina Dietsche, Robert Papin Hyperbolische Symmetrien Hyperbolische Symmetrien 2 Nina Dietsche, Robert Papin Hyperbolische Symmetrien Inhaltsverzeichnis

Mehr

2. Isometrien oder Kongruenzabbildungen

2. Isometrien oder Kongruenzabbildungen 6 2. Isometrien oder Kongruenzabbildungen 2.1 Einführende Überlegungen Kongruente Figuren sind deckungsgleiche Figuren. Eine Figur wird so bewegt, dass sie mit einer anderen Figur zur Deckung gebracht

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Gruppen, Bewegungen Stefan Witzel Drehungen und Verschiebungen vertauschen nicht Proposition. Wenn τ id eine Verschiebung ist und ρ eine Drehung,

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Bericht zur Mathematischen Eingangsprüfung im Mai 2008

Bericht zur Mathematischen Eingangsprüfung im Mai 2008 Bericht zur Mathematischen Eingangsprüfung im Mai 8 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 7. Mai 8 fand die Mathematische Eingangsprüfung nach der Prüfungsordnung 3. der DAV statt. Es waren

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

5.4 Affine Abbildungen in C 2 und R 2

5.4 Affine Abbildungen in C 2 und R 2 5.4 Affine Abbildungen in C 2 und R 2 Notation. Wir erinnern an die affine Ähnlichkeit von Matrizen (5.3.(ii)): L, L n (K). Dann: L a L 2 falls C AGL n (K) mit C L 2 C = L. Die aus 3.2.9 bekannte übliche

Mehr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr Technische Universität München Fakultät für Mathematik Klausur Geometriekalküle Modul MA2203 1. März 2018, 16:00 17:00 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Musterlösung Aufgabe 1. Kegelschnitt mit Parameter

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

13 Lineare Abbildungen

13 Lineare Abbildungen 13 Lineare Abbildungen Grob gesprochen sind lineare Abbildungen bei Vektorräumen dasselbe wie Homomorphismen bei Gruppen, nämlich strukturerhaltende Abbildungen. Auch in diesem Kapitel seien V, W Vektorräume.

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Mathematik III - Blatt 6

Mathematik III - Blatt 6 Mathematik III - Blatt Christopher Bronner, Frank Essenberger 8. November Aufgabe Wir suchen erstmal im inneren des Vierecks nach Punkten, die für einen Extremwert in Frage kommen, danach auf den Rändern

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Def. Eine Gleitspiegelung ist eine Spiegelung an einer Geraden (Spiegelachse) verknüpft mit einer Translation parallel zu dieser

Mehr

13. Lineare Algebra und Koordinatenwechsel.

13. Lineare Algebra und Koordinatenwechsel. 3. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation der lineare

Mehr

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013 Trigonometrische Funktionen: Sinus und Cosinus Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 0 4 5 4 4 Grad- und Bogenmaß Wir betrachten den Einheitskreis (Radius r = ) und einen beliebigen Winkel

Mehr

K2 MATHEMATIK KLAUSUR 1. Gesamtpunktzahl /30 Notenpunkte. (1) Bilden Sie die erste Ableitung der Funktion f mit f(x) = 1 + x ln(2x + 1).

K2 MATHEMATIK KLAUSUR 1. Gesamtpunktzahl /30 Notenpunkte. (1) Bilden Sie die erste Ableitung der Funktion f mit f(x) = 1 + x ln(2x + 1). K MATHEMATIK KLAUSUR NACHTERMIN..6 Aufgabe 3 4 6 7 8 9 Punkte (max 3 3 4 4 Punkte Gesamtpunktzahl /3 Notenpunkte ( Bilden Sie die erste Ableitung der Funktion f mit f(x = + x ln(x +. ( Bestimmen Sie das

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 7 Vektoren Aufgabe 7 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr