Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr

Größe: px
Ab Seite anzeigen:

Download "Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr"

Transkript

1 Technische Universität München Fakultät für Mathematik Klausur Geometriekalküle Modul MA März 2018, 16:00 17:00 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Musterlösung

2 Aufgabe 1. Kegelschnitt mit Parameter Gegeben sei folgende Kegelschnittmatrix M(α) RP 2, abhängig vom Parameter α R: 1 α 1 M(α) := α Bestimmen Sie die Werte für α, so dass M(α) jeweils: (a) degeneriert ist, (b) nicht degeneriert ist, und geben Sie jeweils die Werte für α an, so dass der Kegelschnitt eine Parabel, eine Hyperbel, eine Ellipse ist. Begründen Sie Ihre Antworten. Lösung: (a) Es gilt: det(m(α)) = 2a (0.5 Punkte). Diese Polynom hat die Nullstellen ± 1 2 (= ± 2 2 ). Also ist der Kegelschnitt für ± 1 2 degeneriert (0.5 Punkte). (b) Um den Typ des Kegelschnitts zu bestimmen bestimmen wir die Schnittpunkte mit l (0.5 Punkte). Da wir in den Geometriekalkülen noch nicht gelernt haben Geraden mit Kegelschnitten zu schneiden müssen wird dies zu Fuß, also algebraisch, lösen. Sei p = (x, y, 0) T ein beliebiger Fernpunkt des RP 2 (0.5 Punkte). Dann gilt: p T M(α)p = 2αxy + x 2 + y 2. (0.5 Punkte) Wenn man x festhält ist dies eine quadratische Gleichung in y. Die Lösung solch einer Gleichung lässt sich geschlossen hinschreiben (Mitternachtsformel, abc-formel, pq-formel,... ): ( y 1 = x α + ) ( (α 1) (α + 1), y 2 = x α ) (α 1) (α + 1) (0.5 Punkte) Das Signum der Diskriminante d := (α 1)(α +1) = α 2 1 ergibt die Anzahl der (reelen) Lösungen und damit die Anzahl der Schnittpunkte (0.5 Punkte): α = ±1 (d = 0): eine Lösung Parabel. (0.5 Punkte) α < 1 oder α > 1 (d > 0): zwei reele Lösungen Hyperbel. (0.5 Punkte) α ( 1, 1) (d < 0): zwei komplexe Lösungen Ellipse. (0.5 Punkte) 2

3 Aufgabe 2. Doppelverhältnis am Kreis Gegeben sei ein Kreis im CP 1 definiert durch die Punkte A, B und C CP 1 (siehe Skizze) und einen weiterer Punkt D CP 1. Betrachten Sie das Doppelverhältnis d := (A, B; C, D). B A C Wir bezeichnen mit Im(z) den Imaginärteil einer komplexen Zahl z. (a) Markieren Sie die Punkte D für die das Doppelverhältnis d jeweils folgende reelle Werte annimmt: d < 0, d (0, 1), d > 1, d = 0, d = 1 und d =. Begründen Sie Ihre Antworten. (b) Wir definieren die positive Seite S A,B,C eines (orientierten) Kreises durch A, B, C CP 1 als: S A,B,C := {p CP 1 Im((A, B; C, p)) > 0}. Zeigen Sie: eine projektive Transformation bildet die positive Seite eines Kreises auf die positive Seite des transformierten Kreises ab. (c) Betrachten Sie wieder das Doppelverhältnis d = (A, B; C, D). Markieren Sie je alle Punkte D, für die gilt, dass Im(d) > 0, Im(d) < 0. Begründen Sie Ihre Antworten. 3

4 Lösung: (a) Wann (A, B; C, D) die Werte 0, 1 oder annimmt wurde in der Vorlesung angegeben oder lässt sich sehr einfach aus der Definition ableiten. D = A d =, D = B d = 0, D = C d = 1. (1 Punkt, 0.5 Punkte bei 2/3 korrekten Antworten) Aus Stetigkeitsgründen ergibt sich somit für die Kreisbogenabschnitte: D AB d < 0, D BC d (0, 1), D CA d > 1. (1 Punkt, 0.5 Punkte bei 2/3 korrekten Antworten) (b) Doppelverhältnisse sind invariant unter projektiven Transformationen, also inbesondere auch das Signum des Imaginärteils des DV. (c) Wir wählen folgende projektive Transformation im CP 1 : ( ) ( ( A A 1 :=, B B i :=, C C 1 1) 1 := 1) Diese ist eindeutig (CP 1 reichen drei Punkte). Desweiteren erhält die gewählte Transformation die Orientierung des Kreises und somit wird das Innere des Kreises auf das Innere des transformierten Kreises abgebildet. Wir wählen nun D innerhalb und ˆD außerhalb des transformierten Kreises: ( ) ( ) 0 D =, 1 ˆD 2 =. 1 Berechnen wir nun die Doppelverhältnisse: (A, B ; C, D) = 1 i, (A, B ; C, ˆD) = 1 + i 3 Somit hat das Doppelverhältnis mit D einen negativen und das mit ˆD einen positiven Imaginärteil. Da nur auf dem transformierten Kreis selbst der Imaginärteil verschwindet und das Doppelverhältnis stetig ist folgt, dass alle Punkte innerhalb des transformierten Kreises einen negativen und außerhalb einen positiven Imaginärteil haben. Laut Aufgabenteil (b) bleibt diese Eigenschaft unter projektiven Transformationen erhalten und somit gilt das gleiche für den nicht-transformierten Kreis. 4

5 Aufgabe 3. Fixpunkte und Fixgeraden Gegeben sei folgende projektive Transformation im RP 2 : M = (a) Interpretieren Sie die Transformation, bezüglich der Standardeinbettung, geometrisch. (b) Bestimmen Sie alle (auch möglicherweise komplexe) Fixpunkte von M und begründen Sie Ihre Wahl. (c) Zeigen Sie, dass M T M Id 3 gilt, d.h. [M T M] = [Id 3 ]. (d) Bestimmen Sie alle (auch möglicherweise komplexe) Fixgeraden von M und begründen Sie Ihre Wahl. Lösung: (a) Es gilt cos π 4 sin π 4 0 M sin π 4 cos π Es handelt sich also um eine Drehung um den Ursprung (0.5 Punkte) um π 4 = 45 (0.5 Punkte). (b) Da M eine Rotation um (0, 0, 1) T darstellt ist dieser Punkt auch ein Fixpunkt (0.5 Punkte). Desweiteren ist eine Rotation einen orientierungserhaltende Ähnlichkeitstransformation, daher sind I (0.5 Punkte) und J (0.5 Punkte) weitere Fixpunkte. (c) Laut Vorlesung ist die gegebene Matrix eine Drehmatrix und als solche hat sie die gleiche Äquivalenzklasse wie eine orthogonalen Matrix. Alternativ: einfaches Nachrechnen. (d) Da M eine Drehung ist gilt insbesondere M 1 M T (0.5 Punkte), dies wurde im vorherigen Aufgabenteil auch nochmal explizit gezeigt: denn wenn M T M = Id 3 M T = M 1. Daher gilt, dass die Eigenvektoren von (M 1 ) T die gleichen sind wie von M und diese bestimmen die Fixgeraden. Daher haben die Fixgeraden die Äquivalenzklasse wie die Fixpunkte von M, nur interpretiert als Geraden. Alternativ auch die Angabe der Geraden: jeweils 0.5 Punkte. 5

6 Aufgabe 4. Mittelpunkt (a) Gegeben seien folgende Punkte des RP 1 : ( x X =, Y = 1) ( y 1), M = ( ) ( x + y 1, =. 2 0) Zeigen Sie, dass {X, Y } und {M, } in harmonischer Lage liegen. (b) Betrachten Sie nun allgemeine Punkte X, Y RP 2 in homogenen Koordinaten. Die Ferngerade l sei gegeben. Leiten Sie mit Hilfe eines geeigneten Doppelverhältnisses und Plückers µ eine Berechnungsvorschrift zur Bestimmung des Mittelpunktes M von X und Y her. Gehen Sie dazu wie folgt vor: Benutzen Sie folgenden Ansatz: M = λx + µy (λ, µ R). Wählen Sie einen geeigneten Fernpunkt P und betrachten Sie das Doppelverhältnis der Punkte {X, Y }, {M, P }. Bestimmen Sie λ und µ. Hinweis: Gehen Sie nicht von der Standardeinbettung aus! (c) Welche Spezialfälle deckt die in (b) hergeleitete Berechnungsvorschrift zur Bestimmung von M nicht ab? Lösung: (a) Wir berechnen das Doppelverhältnis (X, Y ; M, ): [ ] [ ] x x + y y 1 [ ] [ ] x y y 1 Nachvollziehbare Rechnung: 1 Punkt (X, Y ; M, ) = [ ] [ ] = x 1 y x + y [ ] [ ] = 1 x 1 y x (b) Wähle als Fernpunkt den Fernpunkt der Verbindungsgerade von X und Y : P = (X Y ) l (0.5 Punkte). Mit Teil (a) gilt dann: (X, Y ; M, P ) = 1 (0.5 Punkte). Mit dem Ansatz über Plückers µ gilt dann (für ein geeignetes L nicht inzident zu X Y ): Wir benutzen eine Schreibweise für A, B gesehen von L (A, B, L RP 2 ): [A, B] L := [L, A, B]. (X, Y ; M, P ) L = 1 [X, M] L[Y, P ] L [X, P ] L [Y, M] L = 1 [X, M] L [Y, P ] L = [X, P ] L [Y, M] L µ[x, Y ] L [Y, P ] L = λ[x, P ] L [Y, X] L [X, Y ] L (µ[y, P ] L λ[x, P ] L ) = 0 Damit der Ausdruck µ[y, P ] L λ[x, P ] L verschwindet ist λ = [Y, P ] L und µ = [X, P ] L eine passende Wahl (Rechnung und Wahl 2 Punkte). Also gilt für M M = [Y, P ] L X + [X, P ] L Y. (c) Der Ansatz funktioniert nicht wenn X = Y (die Verbindungsgerade von X und Y ist undefiniert) oder wenn beide Punkte auf der Ferngeraden liegen (P ist undefiniert). (Jeweils 0.5 Punkte) 6

7 Aufgabe 5. Dualisieren und Doppelverhältnis Gegeben sei der folgende Satz: Gegeben seien zwei verschiedenen Geraden g und h in der rellen projektiven Ebene RP 2 und ein Punkt Z, der weder auf g noch auf h liege. Vier paarweise verschiedene Geraden z 1, z 2, z 3, z 4 durch den Punkt Z schneiden die beiden Geraden g bzw. h in je vier Punkten G 1, G 2, G 3, G 4 bzw. H 1, H 2, H 3, H 4, und für die beiden Doppelverhältnisse (G 1, G 2 ; G 3, G 4 ) und (H 1, H 2 ; H 3, H 4 ) gilt: (G 1, G 2 ; G 3, G 4 ) = (H 1, H 2 ; H 3, H 4 ) (a) Fertigen Sie eine Skizze zu diesem Satz an. (b) Formulieren Sie den dualen Satz und skizzieren Sie diesen. (c) Beweisen Sie den (primalen) Satz. Hinweis: Wenn Sie einen Satz der Vorlesung oder Übung benutzen möchten, dann geben Sie diesen explizit an. Alleiniger Verweis auf die Vorlesung oder Übung ist nicht ausreichend. Lösung: (a) z 2 z 3 z 4 h z 1 H 1 G 1 H 2 H 3 H 4 G 2 G 3 G 4 g Z (b) Gegeben seien zwei verschiedene Punkte G und H in der reellen projektiven Ebene RP 2 und eine Gerade z, die weder durch G noch durch H gehe. Dann gilt: paarweise verschiedene Punkte Z 1, Z 2, Z 3, Z 4 auf der Geraden z haben je vier Verbindungsgeraden g 1, g 2, g 3, g 4 bzw. h 1, h 2, h 3, h 4 zu den beiden Punkten G bzw. H, und für die Doppelverhältnisse der Geraden (g 1, g 2 ; g 3, g 4 ) und (h 1, h 2 ; h 3, h 4 ) gilt: Skizze: (g 1, g 2 ; g 3, g 4 ) = (h 1, h 2 ; h 3, h 4 ) 7

8 h 3 h 2 h 1 h 4 H g 4 g 3 g 2 g 1 G z Z 4 Z 3 Z 2 Z 1 (c) Die Punkte H 1, H 2, H 3, H 4 gehen aus den Punkten G 1, G 2, G 3, G 4 durch Zentralprojektion der Geraden g auf die Gerade h mit Zentrum Z hervor. Die Zentralprojektion einer Geraden auf eine andere Gerade ist eine projektive Abbildung. Das Doppelverhältnis ist invariant unter projektiven Abbildungen. 8

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Michael Strobel Geometriekalküle WS 217/18 http://www-m1.ma.tum.de/geometriekalkuelews1718 Lösungen zu Aufgabenblatt 7 (29. Februar 217) Aufgabe 1. Abstand

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK Projektive Geometrie (Sommersemester 2005) Lösungen zu Aufgabenblatt 4 (25. Mai 2005) Präsenzaufgaben

Mehr

Projektive Geometrie 2

Projektive Geometrie 2 Technische Universität München Fakultät für Mathematik Klausur Projektive Geometrie 2 Modul M3204 7. ugust 2017, 11 12 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Musterlösung ufgabe 1. Diagramme mit Kegelschnitten

Mehr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2017, 08:30 09:30 Uhr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2017, 08:30 09:30 Uhr Technische Universität München Fakultät für Mathematik Klausur Geometriekalküle Modul MA2203 2. März 207, 08:30 09:30 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Musterlösung Aufgabe. Wahr oder Falsch Entscheiden

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Aufgabe 50. Projektivspiegelung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Projektive Geometrie WS 2010/11 Lösungen zu Aufgabenblatt 12 (24.

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Aufgabe. Objekte im Raum Technische Universität München Zentrum Mathematik rof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner rojective Geometry (SS 07) www-m0.ma.tum.de/rojectivegeometryss7 Lösungen

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Lineare Algebra und analytische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Aufgabe : Fixgerade Technische Universität München Zentrum Mathematik Bernhard Werner Geometriekalküle WS 5/6 www-m.ma.tum.de/geometriekalkuelews56 Aufgabenblatt zum Ferienkurs (. Februar 6) Bestimmen

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projektive Geometrie SS 2016 www-m10.ma.tum.de/projektivegeometriess16 Lösungen zu Aufgabenblatt 11

Mehr

Projektive Geometrie

Projektive Geometrie Technische Universität München Fakultät für Mathematik Klausur Projektive Geometrie Modul MA3203 8. August 203, 3:00 4:30 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Martin von Gagern Musterlösung Aufgabe.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TEHNISHE UNIVERSITÄT MÜNHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Geometriekalküle WS 00/ Lösungen zu Aufgabenblatt 5 (5. Dezember 00) Präsenzaufgaben Aufgabe 6. Kegelschnitte

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Michael Strobel Geometriekalküle WS 07/8 http://www-m0.ma.tum.de/geometriekalkuelews78 Lösungen zu Aufgabenblatt 6 (5. Januar 08) Aufgabe. Euklidischer

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projektive Geometrie SS 6 www-m.ma.tum.de/projektivegeometriess6 Lösungen zu Aufgabenblatt (6-6-3

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Einige Lösungsvorschläge für die Klausur zur Vorlesung

Einige Lösungsvorschläge für die Klausur zur Vorlesung Prof Klaus Mohnke Institut für Mathematik Einige Lösungsvorschläge für die Klausur zur Vorlesung Lineare Algebra und analtische Geometrie II* - SS 7 Aufgabe Im R mit dem Standardskalarprodukt ist die folgende

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatseamen (SS 205): Lineare Algebra und analtische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I. Matrikelnummer:

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I. Matrikelnummer: Matrikelnummer: RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung Höhere Mathematik I Prüfer: Prof. Dr. E. Triesch Termin:

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 3 Der Axiator Eigenschaften des Axiators Bestimmung des Kegelschnitts Geometrische Betrachtungen Dualer Kegelschnitt Pol-Polare

Mehr

Geometriekalküle. Rechnen mit projektiver Geometrie. Michael Schmid. 3. März Berufliche Oberschule Rosenheim

Geometriekalküle. Rechnen mit projektiver Geometrie. Michael Schmid. 3. März Berufliche Oberschule Rosenheim Geometriekalküle Rechnen mit projektiver Geometrie Michael Schmid Berufliche Oberschule Rosenheim 3. März 2016 Michael Schmid (BOS Rosenheim) Geometriekalküle 3. März 2016 1 / 34 1 Axiomatische Grundlagen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

Musterlösung 7 Lineare Algebra für die Naturwissenschaften

Musterlösung 7 Lineare Algebra für die Naturwissenschaften Musterlösung 7 Lineare Algebra für die Naturwissenschaften Aufgabe Entscheiden Sie, ob folgende Abbildungen linear sind, und geben sie für die linearen Abbildungen eine Matrixdarstellung (in einer Basis

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Gliederung 4 Invarianten Isometrien (Kongruenzen) Ähnlichkeitsabbildungen Affine Transformationen Projektive Transformationen 2 von

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analysis Prof Dr Holger Rauhut Aachen, den 373 Wiederholungsklausur zur Höheren Mathematik I SoSe 3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Tehnishe Universität Münhen Zentrum Mathematik Mihael Stroel Geometriekalküle WS 7/8 http://www-m.ma.tum.de/geometriekalkuelews78 Lösungen zu Aufgaenlatt 5 (8. Dezemer 7 Aufgae. Dualisieren und Doppelverhältnis.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern PROJEKTIVE GEOMETRIE Lösungen zur Semestral-Klausur (5. Februar 22, : 2:3 Uhr) Musterlösung Aufgabe.

Mehr

Hans Delfs. Übungen zu Mathematik III für Medieninformatik

Hans Delfs. Übungen zu Mathematik III für Medieninformatik Hans Delfs Übungen zu Mathematik III für Medieninformatik 1 RÄUMLICHE DARSTELLUNGEN VON OBJEKTEN 1 1 Räumliche Darstellungen von Objekten Der Einheitswürfel ist der achsenparallele Würfel in A 3, der von

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Musterlösung zu Übungsblatt 12

Musterlösung zu Übungsblatt 12 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 8. Dezember 17 HS 17 Musterlösung zu Übungsblatt 1 Die folgenden Aufgabe entwickelt Techniken, um mit Möbiustransformationen (auch gebrochen-lineare

Mehr

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1 Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Lineare Abbildungen, Eigenwerte Lösungen Lösungshinweise: a nicht linear, denn zb fα α, αy +, α + αz T α, αy +, α + z

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Flächen zweiter Ordnung

Flächen zweiter Ordnung 1 Flächen zweiter Ordnung Definition: Eine Fläche zweiter Ordnung ist die Gesamtheit aller Punkte, deren Ortsvektoren x der Gleichung x T A x + p T x + f = 0 genügen, wobei x 1 x = x x 3, A = Ausführliche

Mehr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr Technische Universität München SS 2005 Zentrum Mathematik Blatt 7 apl. Prof. Dr. J. Hartl Angewandte Geometrie Semestralprüfung am 5. Juli 2005, 12.00-1.0 Uhr 1. In einem dreidimensionalen euklidischen

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 5 Quadriken Polarität Transformationen Klassifikation von Quadriken Geraden in Regelquadriken Die kubische Wendelinie (twisted

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Höhere Mathematik I. Variante A Musterlösung

Höhere Mathematik I. Variante A Musterlösung Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I SoSe Variante A Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 1.1 (Herbst 2005, Thema 1, Aufgabe 1) Bestimmen Sie alle reellen Lösungen des folgenden linearen

Mehr

Klausur HM I F 2004 HM I : 1

Klausur HM I F 2004 HM I : 1 Klausur HM I F 004 HM I : Aufgabe (5 Punkte): Für welche n gilt die folgende Aussage? ( n ) det n! n 0 (n )! () Führen Sie den Beweis mit Hilfe der vollständigen Induktion. Lösung: Beweis per Induktion

Mehr

Proseminar HS Ebene algebraische Kurven Vortrag I.6. Duale Kurven. David Bürge 4. November 2010

Proseminar HS Ebene algebraische Kurven Vortrag I.6. Duale Kurven. David Bürge 4. November 2010 Proseminar HS 010 - Ebene algebraische Kurven Vortrag I.6 Duale Kurven David Bürge 4. November 010 1 1 1 1 Eine nierenförmige Kleinsche Quartik und ihre duale Kurve in R INHALTSVERZEICHNIS Inhaltsverzeichnis

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

Über die Schmiegtangentenkongruenz der Cayley-Fläche

Über die Schmiegtangentenkongruenz der Cayley-Fläche Über die Schmiegtangentenkongruenz der Cayley-Fläche gemeinsam mit Rolf Riesinger (Wien) HANS HAVLICEK FORSCHUNGSGRUPPE DIFFERENTIALGEOMETRIE UND GEOMETRISCHE STRUKTUREN INSTITUT FÜR DISKRETE MATHEMATIK

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe / Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/ Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 206/207 20.03.207 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern PROJEKTIVE GEOMETRIE Lösungen zur Nachhol-Klausur (0. April 202, 9:00 0:30 Uhr) Musterlösung Aufgabe.

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden! Bachelor Bauingenieurwesen Reto Spöhel Repetitionsblatt BMS-Stoff Mathematik Alle Aufgaben sind ohne Taschenrechner zu lösen! Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht:

Mehr

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Beweisen Sie aus den Axiomen für komplexe Zahlen, dass für alle z, w C gilt: zw = z w; b) Schreiben

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

WS 2012/2013. Hinweise

WS 2012/2013. Hinweise Lehrstuhl C für Mathematik (Analysis Prof. Dr. Y. Guo Aachen, den.. Trainingsklausur zur Höheren Mathematik I WS / Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen

Mehr

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/ Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Übungsaufgaben zu Kapitel 1 und 2

Übungsaufgaben zu Kapitel 1 und 2 Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel und Aufgabe : Vereinfachen Sie die folgenden komplexen Ausdrücke

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Name, Vorname: Studiengang: Matrikelnummer: 2 4 5 6 Z Punkte Note Klausur zum Grundkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 22. Februar 2007, 8.00 -.00 Uhr Zugelassene

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Lehrstuhl II für Mathematik

Lehrstuhl II für Mathematik Matrikelnummer: RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung Höhere Mathematik I Prüfer: Prof. Dr. E. Triesch Termin:

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Prof Dr O Sander Höhere Mathematik I WiSe / 4 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder-

Mehr

Höhere Mathematik I. Variante D

Höhere Mathematik I. Variante D Lehrstuhl II für Mathematik Prof Dr E Triesch Prof Dr O Sander Höhere Mathematik I WiSe / 4 Variante D Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder-

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Projektive Geometrie

Projektive Geometrie Projektive Geometrie Einleitung Was ist projektive Geometrie? eine alternative algebraische Repräsentation von geometrischen Objekten (Punkt, Gerade,...) und Transformationen (Translation, Rotation,...)

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof Dr Dr Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 7 www-mmatumde/projectivegeometryss7 Lösungen zu Aufgabenblatt 5 Juli 7 Aufgabe

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

Musterlösungen Klausur Geometrie

Musterlösungen Klausur Geometrie Musterlösungen Klausur Geometrie Aufgabe 1 (Total: 8 Punkte). Seien A, B, C die Eckpunkte eines nichtentarteten Dreiecks in der euklidischen Ebene. Seien D, E, F derart gewählt, dass folgende Teilverhältnisse

Mehr

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i TU Dresden Fakultät Mathematik Institut für Numerische Mathematik Lösung zur Aufgabe (b des Übungsblattes Ermitteln Sie on der folgenden Matrix alle (komplexen Eigenwerte und zu jedem Eigenwert einen zugehörigen

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

a, b, c bezeichnen nicht mehr Halbachsen von Ellipsen oder Hyperbeln. Für Hyperbeln und Ellipsen wurden spezielle Koordinatensysteme benutzt!

a, b, c bezeichnen nicht mehr Halbachsen von Ellipsen oder Hyperbeln. Für Hyperbeln und Ellipsen wurden spezielle Koordinatensysteme benutzt! 5 Kegelschnitte und Hauptachsentransformation 5.1 Allgemeine Kegelschnittgleichung ax + by + cxy + dx + ey + f = 0 ) Die Buchstaben a, b, c sind relle Zahlen, die nicht gleichzeitig Null sind: a, b, c)

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

Drehachse und Drehwinkel

Drehachse und Drehwinkel Drehachse und Drehwinkel Jede Drehung Q im R 3 besitzt eine Drehachse, d.h. lässt einen Einheitsvektor u invariant, und entspricht einer ebenen Drehung um einen Winkel ϕ in der zu u orthogonalen Ebene.

Mehr

Stroppel Musterlösung , 180min

Stroppel Musterlösung , 180min Stroppel Musterlösung 040907, 80min Aufgabe (8 Punkte) (a) Seien A, D, T R d d für ein d N Weiter sei T invertierbar und es gelte T AT D Zeigen Sie durch vollständige Induktion, dass A n T D n T gilt für

Mehr