Computergrafik 1 Transformationen

Größe: px
Ab Seite anzeigen:

Download "Computergrafik 1 Transformationen"

Transkript

1 Computergrafik 1 Transformationen Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin

2 Überblick Repräsentationen, Primitiven Transformationen in 2D Skalierung Translation Rotation Scherung Koordinaten in 3D Transformationen in 3D

3 Repräsentationen Primitiven Punkte Linien Dreiecke Körper Positionierung Koordinaten Orientierung

4 Punkt-Wolke Primitiven

5 Flächen-Modell Primitiven

6 Kurven-Modell Primitiven

7 Slice-Modell Primitiven

8 Facetten-Modell Primitiven

9 Überblick Repräsentationen, Primitiven Transformationen in 2D Skalierung Translation Rotation Scherung Koordinaten in 3D Transformationen in 3D

10 Transformationen Skalierung y (x', y') = (s x x, s y y) 1 1 x

11 Transformationen Translation y P' = P + T P2' P2 P1' t y P1 t x x

12 Transformation Rotation y L = x 2 + y 2 sin(α) = y/l cos(α) = x/l Winkelsummensatz sin(α+δ) = y' / L = cos(δ) sin(α) + sin(δ) cos(α) (x', y') cos(α+δ) = x' / L = cos(δ) cos(α) - sin(δ) sin(α) L δ α L (x, y) y' = L cos(δ) y/l + L sin(δ) x/l = y cos(δ) + x sin(δ) x' = L cos(δ) x/l - L sin(δ) y/l = x cos(δ) - y sin(δ) (0, 0) x

13 Transformation Scherung y x' = (x + Sch x y) mit Sch x = 2 1 (2,1) (3,1) x

14 Koordinaten Verbindet Zeichenebene oder Raum mit R 2 bzw. R 3 Koordinatenursprung und achsen sind problemabhängig Bsp. Rechtwinklige Koordinaten in der unteren Ecke eines Zimmers Affine Räume haben keinen festen Ursprung und keine festen Achsen (im Gegensatz zu linearen Räumen)

15 Koordinaten Der affine Raum Eine Teilmenge X eines Vektorraumes V heißt affiner Unterraum von V falls es ein v V und einen Untervektorraum W V gibt, so dass X= v+w={u V es gibt ein w W mit Eindimensionale Unterräume des R3 sind Geraden, zweidimensionale Unterräume sind Ebenen. u= v+w}.

16 Affine Abbildungen als lineare Abbildung Eine Abbildung Φ: R n R m ist genau dann affin, wenn Φ in der Form Φ(v)=A(v)+b darstellbar ist, wobei A eine lineare Abbildung und b R m ist. Affine Abbildungen setzen sich aus einer linearen Abbildung (dem multiplikativen Teil) und einer Translation (dem additiven Teil) zusammen. Lineare Abbildung Translation

17 Affine Abbildungen Matrizenschreibweise Affine Abbildungen werden durch homogene (erweiterte) 4 x 4 -Matrizen beschrieben Einheitliche Darstellung => einfache Implementierung Hintereinanderausführung verschiedener Transformationen => nur Multiplikation der Matrizen

18 Translation Translationen sind affine Abbildungen Der lineare Teil einer Translation T ist die Identität Die 4x4-Matrix zur Beschreibung einer Translation um den Vektor (x0,y0,z0) t

19 Skalierung, Scherung und Rotation Die affinen Abbildungen Skalierung, Scherung, Rotation lassen den Ursprung invariant Sie besitzen keinen Translationsanteil Es sind genau die linearen Transformationen 3x3-Matritzen wären ausreichend

20 Skalierung, Scherung und Rotation Homogene Form Dabei bestimmen die Bilder der Basisvektoren (1,0,0) t, (0, 1, 0) t, (0, 0, 1) t eine lineare Abbildung Zur Vereinfachung beim Schreiben werden Vektoren im Text transponiert

21 Skalierung, Scherung und Rotation Multipliziert man die Ortsvektoren der Punkte von rechts, so stehen die Bilder der Basisvektoren der linearen Abbildung A in den Spalten der A beschreibenden Matrix.

22 Skalierung Eine Skalierung S ergibt für die affinen Basisvektoren folgende Beziehung: S((1,0,0,) t ) = (s1, 0, 0) t S((0, 1, 0) t ) = (0, s2, 0) t S((0, 0, 1)t ) = (0, 0, s3) t.

23 Skalierung Matrix mit homogenen Koordinaten ergibt sich daher zu

24 Skalierung Der Sonderfall sx= sy= sz= s bedeutet die gleiche Skalierung für alle Koordinaten Die zugehörige homogene Matrix hat dann die Form

25 Scherung Eine Scherung SH ergibt für die affinen Basisvektoren folgende Beziehung SH((1, 0, 0) t ) = (1, s1, s3) t SH((0, 1, 0) t ) = (s2, 1, s4) t SH((0, 0, 1)t ) = (s5, s6, 1) t

26 Scherung Matrix mit homogenen Koordinaten

27 Rotation Eine Rotation Rα um den Winkel α um die z- Achse in mathematisch positive Richtung ergibt für die affinen Basisvektoren folgende Beziehung: Rα((1, 0, 0) t ) = ( cos α, sin α, 0) Rα((0, 1, 0) t ) = (-sin α, cos α, 0) Rα((0, 0, 1) t ) = (0, 0, 1)

28 Rotation Matrix mit homogenen Koordinaten für die Rotation Rα um die z-achse

29 Rotation Bei Rotation Rα um die x- bzw. y-achse ergeben sich analog folgende homogene Darstellungen. x-achse y-achse

30 ENDE Vielen Dank für Ihre Aufmerksamkeit

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel [email protected] Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Repräsentation und Transformation von geometrischen Objekten

Repräsentation und Transformation von geometrischen Objekten Repräsentation und Transformation von geometrischen Objekten Inhalt: Grundlagen Überblick Einfache Transformationen in der Ebene Homogene Koordinaten Einfache Transformationen in der Ebene mit homogenen

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel [email protected] Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Koordinaten, Transformationen und Roboter

Koordinaten, Transformationen und Roboter Koordinaten, Transformationen und Roboter Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 48 Einleitung Seit Anbeginn der

Mehr

Basen von Schnitt und Summe berechnen

Basen von Schnitt und Summe berechnen Basen von Schnitt und Summe berechnen 1 / 8 Voraussetzung Es seien U 1, U 2 Untervektorräume von K n. Wir wollen Basen des Schnittes U 1 U 2 und der Summe bestimmen. U 1 + U 2 2 / 8 Bezeichnung Der Einfachheit

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 7 Einführung Definition lineare Abbildung

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Symmetrien. Transformationen. Affine und euklidische Räume

Symmetrien. Transformationen. Affine und euklidische Räume Symmetrien Transformationen Der Gruppenbegriff entwickelte sich aus dem Begriff der Transformationsgruppe. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie,

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

1 Analytische Geometrie

1 Analytische Geometrie Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Lineare (affine) Abbildung

Lineare (affine) Abbildung Lineare affine Aildung A e 2 a e Wir üerziehen die Eene neen dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen Maschen

Mehr

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen Hermann Schwarz Marko Pilop 2003-11-20 http://www.informatik.hu-berlin.de/~pilop/3d_basics.pdf {hschwarz pilop}@informatik.hu-berlin.de

Mehr

Skalarprodukte (Teschl/Teschl Kap. 13)

Skalarprodukte (Teschl/Teschl Kap. 13) Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +

Mehr

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen) Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar Workshop: Einführung in die 3D-Computergrafik Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar 1 Organisatorisches Tagesablauf: Vormittags: Theoretische Grundlagen Nachmittags: Bearbeitung

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

Lineare Algebra I: Eine Landkarte

Lineare Algebra I: Eine Landkarte Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren

Mehr

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Was sind Vektoren? Wozu braucht man sie?

Was sind Vektoren? Wozu braucht man sie? Was sind Vektoren? Wozu braucht man sie? Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. [email protected] 30. März 2005 1 Einleitung Dieser

Mehr

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung Kapitel 6 2D-Transformationen Mit Hilfe von Transformationen ist es möglich, die Position, die Orientierung, die Form und die Größe der grafischen Objekte zu manipulieren. Transformationen eines Objekts

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

2. Aufgabe Vereinfachen Sie die folgenden Ausdrücke so, dass möglichst wenige Multiplikationen ausgeführt werden müssen!

2. Aufgabe Vereinfachen Sie die folgenden Ausdrücke so, dass möglichst wenige Multiplikationen ausgeführt werden müssen! Studiengang: PT/LOT/PVHT Semester: WS 9/ lgebra Serie: 2 Thema: Matrizen, Determinanten. ufgabe Gegeben sind die Matrizen = µ 2 3 2 µ 3 2 4, B = 2 Berechnen Sie: a) 2 + 3B b) B 2 c) B T d) B T e) T B f)

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Mathematische Formeln für das Studium an Fachhochschulen

Mathematische Formeln für das Studium an Fachhochschulen Mathematische Formeln für das Studium an Fachhochschulen von Richard Mohr. Auflage Hanser München 0 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 446 455 4 Zu Inhaltsverzeichnis schnell und portofrei

Mehr

Vorlesung: Klassische Theoretische Physik I

Vorlesung: Klassische Theoretische Physik I Vorlesung: Klassische Theoretische Physik I M. Zirnbauer Institut für Theoretische Physik Universität zu Köln Sommersemester 2015 Contents 1 Newtonsche Mechanik 3 1.1 Affine und Euklidische Räume.............................

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

1 Rechnen mit 2 2 Matrizen

1 Rechnen mit 2 2 Matrizen 1 Rechnen mit 2 2 Matrizen 11 Produkt Wir berechnen das allgemeine Produkt von A = Für das Produkt gilt AB = a11 a 12 a 21 a 22 a11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12

Mehr

Computer-Graphik I Transformationen & Viewing

Computer-Graphik I Transformationen & Viewing lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany [email protected]. Zachmann

Mehr

Aufgaben zu Kapitel 15

Aufgaben zu Kapitel 15 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 5. Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

VU Einführung in Visual Computing 1. Test Gruppe A

VU Einführung in Visual Computing 1. Test Gruppe A 09.04.2014 186.822 VU Einführung in Visual Computing 1. Test Gruppe A Matrikelnummer: Nachname: Punkte: Studienkennzahl: Vorname: Bitte tragen sie Ihre Matrikelnummer, Studienkennzahl sowie Vor- und Nachname

Mehr

4 Grundlagen zu SVG-Karten und -Diagrammen...33

4 Grundlagen zu SVG-Karten und -Diagrammen...33 48 4 Grundlagen zu SVG-Karten und -Diagrammen 4 Grundlagen zu SVG-Karten und -Diagrammen...33 4.1 Bildschirmdarstellung vs. Papierkartendruck...33 4.1.1 Mehr Farben...33 4.1.2 Probleme beim Einsatz von

Mehr

2 Geometrie und Vektoren

2 Geometrie und Vektoren Geometrie und Vektoren Vorbemerkung: Begriffe wie die folgenden werden hier als bekannt vorausgesetzt: Punkt, Strecke, Strahl, Gerade, Ebene, Kreis, Winkel, rechter Winkel, etc..1 Grundlegende Sätze Satz

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Einige Ergebnisse der euklidischen Geometrie

Einige Ergebnisse der euklidischen Geometrie 1 Teil I Einige Ergebnisse der euklidischen Geometrie In Teil I setzen wir den euklidischen Raum als bekannt voraus (aus der Schule oder aus der Vorlesung Lineare lgebra und nalytische Geometrie). Da wir

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

Affine und projektive Räume

Affine und projektive Räume Affine und projektive Räume W. Kühnel Literatur hierzu: G.Fischer, Analytische Geometrie, 7. Aufl., Vieweg 2001 Zur Motivation: Wenn man in einem Vektorraum die Elemente nicht als Vektoren, sondern als

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 6 Vektorräume Die Addition von zwei Pfeilen a und b, ein typisches Beispiel für Vektoren. Der zentrale

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1.

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1. Matrizen Aufgabe Sei f R R 3 definiert durch ( x 3y x f x + y y x Berechnen Sie die Matrix Darstellung von f Lösung von Aufgabe ( f ( f 3 Die Matrix Darstellung von f ist somit A 3 Aufgabe Eine lineare

Mehr

1.2 Das kartesische Koordinatensystem

1.2 Das kartesische Koordinatensystem Kapitel 1 Vektoralgebra 1.1 Einführung Am ersten Kapitel widmen wir uns den Grundlagen der Vektoralgebra, wobei wir speziell auf die Definitionen von Skalaren und Vektoren eingehen und Produkte zwischen

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Lineare Abbildungen und Gleichungssysteme

Lineare Abbildungen und Gleichungssysteme Lineare Abbildungen und Gleichungssysteme Klaus-R Loeffler Lineare Abbildungen Definition: Lineare Abbildung Es wird vorausgesetzt, dass V und W Vektorräume sind Eine Abbildung f von V in W heißt dann

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen IV. Koordinatensysteme und geometrische Transformationen Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Skalare Punkte und Vektoren 2.

Mehr

Kapitel 6. Metrik, Norm und Skalarproduktl. 6.1 Metrik (Abstand)

Kapitel 6. Metrik, Norm und Skalarproduktl. 6.1 Metrik (Abstand) Kapitel 6 Metrik, Norm und Skalarproduktl Aus Ihrer täglichen Praxis sind Ihnen die Begriffe Abstand und Länge, möglicherweise gar Winkel wohlvertraut. 6.1 Metrik (Abstand) Definition Metrik : Sei M eine

Mehr

Vektorgeometrie Ebenen 1

Vektorgeometrie Ebenen 1 Vektorgeometrie Ebenen 1 Parametergleichung von Ebenen Punkte und Geraden in Ebenen. Spezielle Lagen von Punkten in Bezug auf ein Parallelogramm oder Dreieck. Datei Nr. 63021 Stand 1. Juli 2009 INTERNETBIBLIOTHEK

Mehr

3.8. Lineare Abbildungen.

3.8. Lineare Abbildungen. 38 Lineare Abbildungen 38 Lineare Abbildungen 38 Definition Es seien V und W Vektorräume über K Eine Abbildung α : V W heißt linear, wenn für alle Vektoren u, v V und alle Skalare k K gilt: α(u + v α(u

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

(geometrische) Anschauung

(geometrische) Anschauung (geometrische) Anschauung Marcus Page Juni 28 In dieser Lerneinheit widmen wir uns dem schon oft angesprochenen Zusammenhang zwischen Matrizen und linearen Abbildungen. Außerdem untersuchen wir Funktionen,

Mehr

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -

Mehr