Computer-Graphik I Transformationen & Viewing

Größe: px
Ab Seite anzeigen:

Download "Computer-Graphik I Transformationen & Viewing"

Transkript

1 lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany [email protected]. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 2 Motivation Die raphik-pipeline (stark vereinfacht) Transformationen werden benötigt, um Objekte, Beleuchtung und Kamera zu positionieren und animieren; alle Berechnungen im selben Koordinatensystem durchzuführen; Objekte zu projizieren OpenL verwendet 4x4-Matrizen zur Spezifikation von Transormationen Viewing = welche Transformationen muß man verwenden, um die 3D-Welt auf den 2D-Bildschirm zu projizieren Anwendung eometrie-stufe Raster-Stufe Im folgenden diese Tasks Alle Berechnungen, die 1x pro Polygon oder pro Vertex (Ecke) durchgeführt werden Z.B.: Modell- und Viewing- Transformation Projektion Beleuchtung lipping Arbeitet im 3D Kennen wir (teilweise) schon Z.B.: Scan onversion Arbeitet im 2D. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 3. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 4 1

2 Koordinatensysteme in der Pipeline Lineare und affine Abbildung Modeling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) lipping Object space - Lokal für jedes Objekte World space - alle Objekte Eye Space / amera Space Lineare Transformationen wie Rotation, Skalierung und Scherung können durch eine 3x3 Matrix dargestellt werden Affine Transformationen (z.b. Translation), können nicht als 3x3 Matrix dargestellt werden Projection (to Screen Space) Scan onversion (Rasterization) Visibility / Display lip Space (ND) [-1,-1,-1] [1,1,1] Screen Space - adressiert entsprechend der Hardware Merke die Konvention "Matrix mal Vektor". Zachmann omputer-raphik 1 - WS 07/08 Transformationen 5. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 6 Homogene Koordinaten im 3D Veranschaulichung im 2D Homogene Darstellung ist nützlich für Transformationen von Punkten und Vektoren Erweitert 3D Punkte und Vektoren zu 4D Punkte und Vektoren Homogener Punkt Homogener Vektor Erweitere Punkt P = (x,y) zu P' = (x,y,1) Assoziiere Linie w. (x,y,1) = (wx, wy, w) mit P' Homogene Koordinaten 1 w P' P'' Affine Ebene w = 1 P x y M.a.W.: ein 3D-Vektor (x, y, w) beschreibt den 2D-Punkt (x/w, y/w) für w 0 den 2D-Vektor (x, y) für w = 0. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 7. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 8 2

3 Homogenisierung im 3D Punkte und Vektoren Der homogene Punkt Punkt + Vektor = Punkt beschreibt den Punkt an der Stelle Vektor + Vektor = Vektor Punkt Punkt = Vektor. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 9. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 10 Homogene Matrizen in 3D Lineare Abb. (Matrix-Vektor-Multiplikation) Matrix 3x3-Form. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 11. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 12 3

4 Affine Abbildungen im 3D rundtransformationen im 3D 3x3-Form Translation Rotation Skalierung Scherung (kommt in der Praxis fast nie vor) Verkettung Starrkörpertransformation (rigid body transformation) ewöhnliche Transformation In homogenen Koordinaten lassen sich sogar affine Abbildungen als einfache Matrix-Vektor-Multiplikation darstellen!. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 13. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 14 Translation Rotation Eines Punktes Rotation um x-, y-, z-achse um Winkel φ X-Koord. bleibt unverändert Vorzeichentest: φ=90 y geht nach z, z geht nach -y. Eines Vektors Inverse O φ. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 15. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 16 4

5 Orthogonalität Skalierung Rotationsmatrix ist orthogonal: Kann zum Vergrößern oder Verkleinern verwendet werden Folgen: s x, s y, s z beschreiben Längenänderung in x-, y-, z-richtung Uniforme (isotrope) Skalierung: s x = s y = s z Nicht-uniforme (anisotrope) Inverse. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 17. Zachmann omputer-raphik 1 - WS 07/08 Transformationen 18 5

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal.

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal. 11/4/10 lausthal omputergraphik I Scan onversion of Lines. Zachmann lausthal University, ermany [email protected] Einordnung in die Pipeline Rasterisierung der Objekte in Pixel Ecken-Werte interpolieren

Mehr

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences Computer graphics Vektoren und Matrizen Dr. Ernst Kruijff Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences 3 Dm group Einführung Transformationen Sources Online:

Mehr

Softwareprojekt Spieleentwicklung

Softwareprojekt Spieleentwicklung Softwareprojekt Spieleentwicklung Prototyp I (2D) Prototyp II (3D) Softwareprojekt 12.04. 19.04. 26.04. 03.05. 31.05. Meilenstein I 28.06. Meilenstein II Prof. Holger Theisel, Tobias Günther, OvGU Magdeburg

Mehr

2.2 Projektionen und Kameramodelle

2.2 Projektionen und Kameramodelle Graphikprog. GRUNDLEGENDE VERFAHREN UND TECHNIKEN. Projektionen und Kameramodelle Nachdem alle Objekte einer Szenerie mittels der besprochenen Transformationen im D-Weltkoordinatensystem platziert sind,

Mehr

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung Erinnerung Arbeitsschritte der Computergraphik Modellierung Animation Generierung Ausgabemedium Graphik/-Pipeline Wandelt die Beschreibung einer Szene im dreidimensionalen Raum in eine zweidimensionale

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse

Mehr

Hinweise zur Kalibrierung von Kameras mit einer AICON Kalibriertafel

Hinweise zur Kalibrierung von Kameras mit einer AICON Kalibriertafel Hinweise zur Kalibrierung von Kameras mit einer AICON Kalibriertafel AICON 3D Systems GmbH Celler Straße 32 D-38114 Braunschweig Telefon: +49 (0) 5 31 58 000 58 Fax: +49 (0) 5 31 58 000 60 Email: [email protected]

Mehr

PTV VISUM TIPPS & TRICKS:

PTV VISUM TIPPS & TRICKS: PTV VISUM TIPPS & TRICKS: LUFTBILD VON GOOGLEMAPS EINFÜGEN Wie fügt man ein richtig georeferenziertes Luftbild von GoogleMaps ein? Der vorherige Beitrag zum Thema Wie wählt man ein passendes Koordinatensystem

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung Kapitel 6 2D-Transformationen Mit Hilfe von Transformationen ist es möglich, die Position, die Orientierung, die Form und die Größe der grafischen Objekte zu manipulieren. Transformationen eines Objekts

Mehr

1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen

1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen 3D-Rendering Ulf Döring, Markus Färber 07.03.2011 1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen Anzeigefläche (a) Worin besteht das Sichtbarkeitsproblem?

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Literatur Richard Hartle and Andrew Zisserman. Multiple View Geometr in computer vision, Cambridge Universit Press, 2 nd Ed., 23. O.D.

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Aufgabensammlung Bruchrechnen

Aufgabensammlung Bruchrechnen Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................

Mehr

Anleitung zur Excel-Anwendung Basisprämienberechnung

Anleitung zur Excel-Anwendung Basisprämienberechnung Anleitung zur Excel-Anwendung Basisprämienberechnung Inhaltsverzeichnis Inhaltsverzeichnis... 1 Abbildungsverzeichnis... 1 1. Einleitung... 2 2. Allgemeine Anwendungshinweise... 2 3. Die Tabellenkalkulation...

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

Beispiel vor dem Beweis:

Beispiel vor dem Beweis: Beispiel vor dem Beweis: Beispiel vor dem Beweis: A = ¼3 6 2 3 11 2½ Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 3 11

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

VON GRUND AUF RICHTIG AUFBAUEN

VON GRUND AUF RICHTIG AUFBAUEN EIN RICHTIG SKALIERTES NETZ VON GRUND AUF RICHTIG AUFBAUEN Oft braucht man ein kleines Netz, um eine Funktionalität auszutesten, schnell mal eben eine Abschätzung zu berechnen oder als Ergänzung zu einem

Mehr

Divergenz 1-E1. Ma 2 Lubov Vassilevskaya

Divergenz 1-E1. Ma 2 Lubov Vassilevskaya Divergenz 1-E1 1-E2 Vektorfeld: Aufgabe 1 Stellen Sie graphisch folgende Vektorfelder dar x, y = x i y j a) F x, y = x i y j b) F Welcher Unterschied besteht zwischen den beiden Vektorfeldern? 1-A Vektorfeld:

Mehr

Orientierungstest für angehende Industriemeister. Vorbereitungskurs Mathematik

Orientierungstest für angehende Industriemeister. Vorbereitungskurs Mathematik Orientierungstest für angehende Industriemeister Vorbereitungskurs Mathematik Weiterbildung Technologie Erlaubte Hilfsmittel: Formelsammlung Taschenrechner Maximale Bearbeitungszeit: 1 Stunde Provadis

Mehr

Praktikum Schau Geometrie

Praktikum Schau Geometrie Praktikum Schau Geometrie Intuition, Erklärung, Konstruktion Teil 1 Sehen auf intuitive Weise Teil 2 Formale Perspektive mit Aufriss und Grundriss Teil 3 Ein niederländischer Maler zeigt ein unmögliches

Mehr

LINGO: Eine kleine Einführung

LINGO: Eine kleine Einführung LINGO: Eine kleine Einführung Jun.-Prof.Dr. T. Nieberg Lineare und Ganzzahlige Optimierung, WS 2009/10 LINDO/LINGO ist ein Software-Paket, mit dessen Hilfe (ganzzahlige) lineare Programme schnell und einfach

Mehr

GDPdU Export. Modulbeschreibung. GDPdU Export. Software-Lösungen. Stand: 21.02.2012. Seite 1

GDPdU Export. Modulbeschreibung. GDPdU Export. Software-Lösungen. Stand: 21.02.2012. Seite 1 Seite 1 Inhalt... 3 Allgemeines... 3 Vorteile... 3 Handhabung... 3 Seite 2 Allgemeines Mit der so genannten GDPdU-Schnittstelle (GDPdU steht für Grundsätze zum Datenzugriff und zur Prüfbarkeit digitaler

Mehr

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar Workshop: Einführung in die 3D-Computergrafik Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar 1 Organisatorisches Tagesablauf: Vormittags: Theoretische Grundlagen Nachmittags: Bearbeitung

Mehr

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich.

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Kapitel 1 Animation (Belebung) Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Anwendungen findet die

Mehr

Wie ist das Wissen von Jugendlichen über Verhütungsmethoden?

Wie ist das Wissen von Jugendlichen über Verhütungsmethoden? Forschungsfragen zu Verhütung 1 Forschungsfragen zu Verhütung Wie ist das Wissen von Jugendlichen über Verhütungsmethoden? Wie viel Information über Verhütung ist enthalten? Wie wird das Thema erklärt?

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

3.6 Drehungen in der Ebene

3.6 Drehungen in der Ebene 3.6-1 3.6 Drehungen in der Ebene 3.6.1 Die Drehmatrix Gelegentlich müssen wir die Lage eines Teilchens in einem ebenen Koordinatensystem beschreiben, das gegenüber einem festen System um φ gedreht ist.

Mehr

How-to: Webserver NAT. Securepoint Security System Version 2007nx

How-to: Webserver NAT. Securepoint Security System Version 2007nx Securepoint Security System Inhaltsverzeichnis Webserver NAT... 3 1 Konfiguration einer Webserver NAT... 4 1.1 Einrichten von Netzwerkobjekten... 4 1.2 Erstellen von Firewall-Regeln... 6 Seite 2 Webserver

Mehr

Sichere E-Mail Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere E-Mail. der

Sichere E-Mail Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere E-Mail. der Sichere E-Mail der Nutzung von Zertifikaten / Schlüsseln zur sicheren Kommunikation per E-Mail mit der Sparkasse Germersheim-Kandel Inhalt: 1. Voraussetzungen... 2 2. Registrierungsprozess... 2 3. Empfang

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

2. Negative Dualzahlen darstellen

2. Negative Dualzahlen darstellen 2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt

Mehr

Adobe Flash CS4»3D-Tool«

Adobe Flash CS4»3D-Tool« Flash Tutorial Philipp Nunnemann Adobe Flash CS4»3D-Tool«Im folgenden Tutorial könnt Ihr das»3d-tool«in Adobe Flash CS4 kennenlernen. Das Tool erlaubt euch, Objekte im dreidimensionalen Raum zu bewegen.

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Rechnung wählen Lernstandserfassung

Rechnung wählen Lernstandserfassung Rechnungen verstehen Richtige F1 Rechnung wählen Lernstandserfassung 1. Wie rechnen Sie? Höhe eines Personenwagens Schätzen Sie die Höhe des Gebäudes. Schätzen Sie die Grundfläche des Gebäudes. Schätzen

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Linearen Gleichungssysteme Anwendungsaufgaben

Linearen Gleichungssysteme Anwendungsaufgaben Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Makigami, Prozessmapping und Wertstromdesign. erstellt von Stefan Roth

Makigami, Prozessmapping und Wertstromdesign. erstellt von Stefan Roth Makigami vs. Prozessmapping & Wertstromdesign im Office Gegenüberstellung der Prozess-Analysemethoden Makigami, Prozessmapping und Wertstromdesign erstellt von Stefan Roth 2010 by Centre 2010 of by Excellence

Mehr

Grundlagen. 1. Grundlagen

Grundlagen. 1. Grundlagen Grundlagen 1. Grundlagen Grafikprogramme unterscheiden sich in einem wesentlichen Punkt: sie sind entweder Pixelorientiert (wie beispielsweise Corel Photo Paint)oderVektororientiert(wieetwaCorelDRAW).

Mehr

Alice SmartDisk. Auf dem PC - Schritt für Schritt erklärt

Alice SmartDisk. Auf dem PC - Schritt für Schritt erklärt Alice SmartDisk. Auf dem PC - Schritt für Schritt erklärt Alice SmartDisk Schön, dass Sie sich für Alice SmartDisk entschieden haben. Mit unserem Angebot können Sie Ihre Daten sichern, zentral speichern,

Mehr

Professur für Betriebswirtschaftslehre, insbesondere Verkehrsbetriebslehre und Logistik. GIS Tutorium

Professur für Betriebswirtschaftslehre, insbesondere Verkehrsbetriebslehre und Logistik. GIS Tutorium Professur für Betriebswirtschaftslehre,, M.A. GIS Grundlagen Geographisches Informationssystem (hier: MapInfo Professional 7.5) Digitale Erfassung, Speicherung, Organisation, Modellierung und Analyse von

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Wärmebildkamera. Arbeitszeit: 15 Minuten

Wärmebildkamera. Arbeitszeit: 15 Minuten Wärmebildkamera Arbeitszeit: 15 Minuten Ob Menschen, Tiere oder Gegenstände: Sie alle senden unsichtbare Wärmestrahlen aus. Mit sogenannten Wärmebildkameras können diese sichtbar gemacht werden. Dadurch

Mehr

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 zu erhalten? Probe! 3) Von zwei Zahlen ist die eine

Mehr

Spiel und Spaß im Freien. Arbeitsblat. Arbeitsblatt 1. Zeichnung: Gisela Specht. Diese Vorlage darf für den Unterricht fotokopiert werden.

Spiel und Spaß im Freien. Arbeitsblat. Arbeitsblatt 1. Zeichnung: Gisela Specht. Diese Vorlage darf für den Unterricht fotokopiert werden. Spiel und Spaß im Freien Arbeitsblatt 1 Arbeitsblat 1 Zeichnung: Gisela Specht Arbeitsblatt 1 Was kann man mit diesen Dingen machen? Was passt zusammen? Verbinde die richtigen Bildkarten miteinander. 2

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Sehr geehrter Herr Pichler, liebe Mitschüler, heute möchte ich euch einen kleinen Einblick in die Welt von gmax geben.

Sehr geehrter Herr Pichler, liebe Mitschüler, heute möchte ich euch einen kleinen Einblick in die Welt von gmax geben. Sehr geehrter Herr Pichler, liebe Mitschüler, heute möchte ich euch einen kleinen Einblick in die Welt von gmax geben. Beginnen wir mit dem ersten Punkt 1.Was ist gmax? Zuerst stellt sich die Frage: Was

Mehr

Excel Funktionen durch eigene Funktionen erweitern.

Excel Funktionen durch eigene Funktionen erweitern. Excel Funktionen durch eigene Funktionen erweitern. Excel bietet eine große Anzahl an Funktionen für viele Anwendungsbereiche an. Doch es kommt hin und wieder vor, dass man die eine oder andere Funktion

Mehr

5.1 Anforderungen an die SVG-Datei

5.1 Anforderungen an die SVG-Datei Kapitel 5 Toolchain Nachdem wir nun experimentell die Grundlagen und Einstellungen herausgefunden haben, wollen wir uns mit der Toolchain befassen, um von der Datei zum fertigen Objekt zu kommen. 5.1 Anforderungen

Mehr

Nr. 12-1/Dezember 2005-Januar 2006. A 12041

Nr. 12-1/Dezember 2005-Januar 2006. A 12041 Nr. 12-1/Dezember 2005-Januar 2006. A 12041 Industrie- und Handelskammer Bonn/Rhein-Sieg. Postfach 1820. 53008 Bonn Industrie- und Handelskammer Bonn/Rhein-Sieg Sparkassen-Finanzgruppe Wenn man sich zur

Mehr

Guide DynDNS und Portforwarding

Guide DynDNS und Portforwarding Guide DynDNS und Portforwarding Allgemein Um Geräte im lokalen Netzwerk von überall aus über das Internet erreichen zu können, kommt man um die Themen Dynamik DNS (kurz DynDNS) und Portweiterleitung(auch

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Schluss mit langweiligen Papierexposees! Die Zukunft heißt immodisplay. Vision Displays GmbH Schnackenburgallee 41b 22525 Hamburg

Schluss mit langweiligen Papierexposees! Die Zukunft heißt immodisplay. Vision Displays GmbH Schnackenburgallee 41b 22525 Hamburg Schluss mit langweiligen Papierexposees! Die Zukunft heißt immodisplay. Vision Displays GmbH Schnackenburgallee 41b 22525 Hamburg Tel.: 040-500 505 60 Fax: 040-500 505 61 E-Mail: [email protected]

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

ROFIN App Benutzerhandbuch. Version 1.0

ROFIN App Benutzerhandbuch. Version 1.0 ROFIN App Benutzerhandbuch Version 1.0 Inhaltsverzeichnis 1. Beschreibung 2. Passwort und Einstellungen 3. Support Tab 4. Vertriebs Tab 5. Web Tab 6. Häufig gestellte Fragen BESCHREIBUNG Die ROFIN App

Mehr

So erstellen Sie nützliche Beschreibungen zu Ihren Tradingdaten

So erstellen Sie nützliche Beschreibungen zu Ihren Tradingdaten So erstellen Sie nützliche Beschreibungen zu Ihren Tradingdaten http://tradingtutorialautomation.de/wp-content/uploads/2015/04/so-erstellen-sienuetzliche-beschreibungen-zu-ihren-tradingdaten_20150406.mp3

Mehr

SMART Newsletter Education Solutions April 2015

SMART Newsletter Education Solutions April 2015 SMART Education Newsletter April 2015 SMART Newsletter Education Solutions April 2015 Herzlich Willkommen zur aktuellen Ausgabe des Westcon & SMART Newsletters jeden Monat stellen wir Ihnen die neuesten

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Die aktuelle Entwicklung des GeoService-Portals. Analyse- und Auswertefunktionen

Die aktuelle Entwicklung des GeoService-Portals. Analyse- und Auswertefunktionen Die aktuelle Entwicklung des GeoService-Portals Analyse- und Auswertefunktionen Referent Herr Karl-Heinz Gerl RDE Regionale Dienstleistung Energie Folie 1 2004 RDE Objektmengenlehre Nachbarn Info Auswertung

Mehr

Klassenentwurf. Wie schreiben wir Klassen, die leicht zu verstehen, wartbar und wiederverwendbar sind? Objektorientierte Programmierung mit Java

Klassenentwurf. Wie schreiben wir Klassen, die leicht zu verstehen, wartbar und wiederverwendbar sind? Objektorientierte Programmierung mit Java Objektorientierte Programmierung mit Java Eine praxisnahe Einführung mit BlueJ Klassenentwurf Wie schreiben wir Klassen, die leicht zu verstehen, wartbar und wiederverwendbar sind? 1.0 Zentrale Konzepte

Mehr

Datenanalyse - Schnittstellendesign

Datenanalyse - Schnittstellendesign Datenanalyse - Schnittstellendesign Der Plan ist es eine Schnittstelle zu konstruieren, die aus Future Wertpapier- und Kontotransaktionen eine Wertpapiertransaktion generiert, die bereits den aus dem Geschäft

Mehr

Durch Drücken des Buttons Bestätigen (siehe Punkt 2) wird Ihre E-Mail an Ihr Outlookpostfach weiterleiten.

Durch Drücken des Buttons Bestätigen (siehe Punkt 2) wird Ihre E-Mail an Ihr Outlookpostfach weiterleiten. CUS IT GmbH & Co. KG - www.cus-it.net Seite 1 von 6 Sehr geehrte Damen und Herren, wir möchten die Benutzerfreundlichkeit der E-Mail Sicherheitsprogramme verbessern und vereinfachen. Aus diesem Grund erhalten

Mehr

Projektion. Ebene geometrische Projektionen

Projektion. Ebene geometrische Projektionen Projektion - 1 - Ebene geometrische Projektionen Die ebenen geometrischen Projektionen sind dadurch charakterisiert, daß mit Projektionsstrahlen konstanter Richtung, d.h. entlang von Geraden, auf Ebenen

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Bedienungsanleitung für 3D PDF

Bedienungsanleitung für 3D PDF Bedienungsanleitung für 3D PDF Der Lautsprechershop setzt sich als Ziel, Ihnen viele Werkzeuge an die Hand zu geben um einen Lautsprecher vor dem Bau genau zu sehen und um Ihnen Baupläne so einfach wie

Mehr

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

iphone 4 - Einrichtung des VPN Clients (Cisco VPN Client) / Verbinden des iphones mit einem Exchange

iphone 4 - Einrichtung des VPN Clients (Cisco VPN Client) / Verbinden des iphones mit einem Exchange iphone 4 - Einrichtung des VPN Clients (Cisco VPN Client) / Verbinden des iphones mit einem Exchange Die Verwendung der E-Mail- und Kalenderdienste des Exchange Servers über das iphone kann auf zwei unterschiedlichen

Mehr

Projektarbeit CATIA V5 3D Differenzial

Projektarbeit CATIA V5 3D Differenzial Projektarbeit CATIA V5 3D Differenzial Von Valery Volov Differenzialgetriebe Ein Differenzialgetriebe oder kurz Differenzial genannt ist ein spezielles Planetengetriebe mit einer Standübersetzung i 0 =

Mehr

Digitalisieren im GeoBrowser und Exportieren als GPX-Datei

Digitalisieren im GeoBrowser und Exportieren als GPX-Datei Digitalisieren im GeoBrowser und Exportieren als GPX-Datei Im neuen GeoBrowser kann man Wegpunkte und Tracks am Bildschirm digitalisieren, bearbeiten und löschen und dabei sämtliche Themen als Hintergrundthemen

Mehr

VPN Mac OSX mit Forticlient SSL

VPN Mac OSX mit Forticlient SSL 1 Forticlient installieren und konfigurieren - Download des Forticlient für Mac OSX von http://www.forticlient.com/ - zur Installation das.dmg-file mounten und Doppelklick auf die FortiClientUpdate.app

Mehr

ACDSee 10. ACDSee 10: Fotos gruppieren und schneller durchsuchen. Was ist Gruppieren? Fotos gruppieren. Das Inhaltsverzeichnis zum Gruppieren nutzen

ACDSee 10. ACDSee 10: Fotos gruppieren und schneller durchsuchen. Was ist Gruppieren? Fotos gruppieren. Das Inhaltsverzeichnis zum Gruppieren nutzen In diesem Tutorial erfahren Sie, wie man Fotos gruppiert. Mit der Option "Gruppieren nach" werden die Fotos in der Dateiliste nach Gruppen geordnet. Wenn Sie beispielsweise auf "Bewertung" klicken, werden

Mehr

Theoretische Informatik SS 04 Übung 1

Theoretische Informatik SS 04 Übung 1 Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die

Mehr

E-Mails aus E-Mail-Programm sichern Wählen Sie auf der "Startseite" die Option "E-Mails archivieren" und dann die entsprechende Anwendung aus.

E-Mails aus E-Mail-Programm sichern Wählen Sie auf der Startseite die Option E-Mails archivieren und dann die entsprechende Anwendung aus. MailStore Home Das E-Mail Postfach ist für viele Anwender mehr als ein Posteingang. Hier wird geschäftliche Kommunikation betrieben, werden Projekte verwaltet, Aufträge und Rechnungen archiviert und vieles

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Projektmanagement in Outlook integriert

Projektmanagement in Outlook integriert y Projektmanagement in Outlook integriert InLoox 6.x Update auf InLoox 6.7.x Ein InLoox Whitepaper Veröffentlicht: März 2011 Copyright: 2011 InLoox GmbH. Aktuelle Informationen finden Sie unter http://www.inloox.de

Mehr

1. EINLEITUNG 2. GLOBALE GRUPPEN. 2.1. Globale Gruppen anlegen

1. EINLEITUNG 2. GLOBALE GRUPPEN. 2.1. Globale Gruppen anlegen GLOBALE GRUPPEN 1. EINLEITUNG Globale Gruppen sind system- oder kategorieweite Gruppen von Nutzern in einem Moodlesystem. Wenn jede Klasse einer Schule in eine globale Gruppe aufgenommen wird, dann kann

Mehr

Scan & Transfer und IBAN- Scan

Scan & Transfer und IBAN- Scan Scan & Transfer und IBAN- Scan ebanking App so funktioniert`s The www.bawagpskfonds.at new Bank. The new BAWAG P.S.K. Smartphone Scanfunktionen 1 Rufen Sie die Scan & Transfer - Funktion im Hauptmenü der

Mehr

Das tgm stellt virtuelle Desktops zur Verfügung. Um diese nutzen zu können, gehen Sie bitte wie folgt vor:

Das tgm stellt virtuelle Desktops zur Verfügung. Um diese nutzen zu können, gehen Sie bitte wie folgt vor: Das tgm stellt virtuelle Desktops zur Verfügung. Um diese nutzen zu können, gehen Sie bitte wie folgt vor: Diese Anleitung wurde für Windows 7 und Internet Explorer 11 geschrieben. Für andere Betriebssystem/Browser

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Anleitung für Mobildruck und -scan aus Brother iprint&scan (Windows Phone )

Anleitung für Mobildruck und -scan aus Brother iprint&scan (Windows Phone ) Anleitung für Mobildruck und -scan aus Brother iprint&scan (Windows Phone ) Vor der Verwendung des Brother-Geräts Zu den Hinweisen In diesem Benutzerhandbuch werden die folgenden Symbole und Konventionen

Mehr

Mitarbeiterbefragung als PE- und OE-Instrument

Mitarbeiterbefragung als PE- und OE-Instrument Mitarbeiterbefragung als PE- und OE-Instrument 1. Was nützt die Mitarbeiterbefragung? Eine Mitarbeiterbefragung hat den Sinn, die Sichtweisen der im Unternehmen tätigen Menschen zu erkennen und für die

Mehr