4. Transiente Analyse

Größe: px
Ab Seite anzeigen:

Download "4. Transiente Analyse"

Transkript

1 4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+ [ K ] [u ]=[l ] Die transiente Analyse wird verwendet, um die Antwort auf eine stoßartige Anregung zu ermitteln

2 4. Transiente Analyse 4.1 Direkte transiente Analyse 4.2 Modale transiente Analyse 4.3 Praktische Hinweise 5.4-2

3 4.1 Direkte transiente Analyse Methode: Die Bewegungsgleichung wird mit einem Zeitintegrationsverfahren gelöst. Gebräuchlich sind die Methode der zentralen Differenzen, die Methoden von Houbolt, von Wilson, von Newmark und von Hilber, Hughes und Taylor. Vorteile: Es werden keine weiteren Näherungen gemacht. Es muss keine Modalanalyse durchgeführt werden. Es lassen sich auch Nichtlinearitäten berücksichtigen

4 4.1 Direkte transiente Analyse Nachteile: Wenn die Antwort für einen längeren Zeitabschnitt berechnet werden muss, kann die Berechnung sehr aufwändig werden, und es fallen sehr viele Daten an. Einsatz: Bei linearen Systemen wird die direkte transiente Analyse nur zur Kontrolle der modalen transienten Analyse verwendet

5 4.1 Direkte transiente Analyse Die Methode von Newmark: Gegeben sind die Anfangswerte: Aus der Bewegungsgleichung folgt: [u L0 ]=[u L (0)], [ u L0 ]=[ u L (0)] [ü L0 ]=[ M L L ] 1 ( [l L0 ] [ D L L ] [ u L0 ] [ K L L ] [u L0 ] ) Der zu untersuchende Zeitbereich T wird in gleich große Intervalle Δt unterteilt. Für die Verschiebungen und Geschwindigkeiten zum Zeitpunkt t n+1 =(n+1)δ t werden die folgenden Ansätze gemacht: [ u L n+1 ]=[ u Ln ]+( (1 β ) [ü Ln ]+β [ü L n +1 ] )Δ t (1) [u L n+1 ]=[u Ln ]+ [ u Ln ] Δ t +( (1/ 2 α ) [ü Ln ]+α [ü L n+1 ] ) Δ t 2 (2) 5.4-5

6 4.1 Direkte transiente Analyse α und β sind Parameter, von denen die Genauigkeit und die Stabilität des Verfahrens abhängen. Für die Standardwerte α=0,25 und β=0,5 ist das Verfahren unbedingt stabil. Als dritte Gleichung zur Bestimmung von Verschiebungen, Geschwindigkeiten und Beschleunigungen zum Zeitpunkt t n+1 dient die Bewegungsgleichung für den Zeitpunkt t n+1 : Aus (2) folgt: [ M L L ] [ü L n+1 ]+ [ D L L ] [ u L n+1 ]+ [ K L L ] [u L n +1 ]=[l L n +1 ] (3) [ü L n+1 [ n+1 u L ] [u Ln ] ]= α Δ t 2 [ u L n ] α Δ t ( 1 2 α 1 ) [ü L n ] (2') 5.4-6

7 4.1 Direkte transiente Analyse Einsetzen von (2') in (1) ergibt: [ u L n+1 ]= β α Δ t ([ u L n+1 ] [u Ln ] )+(1 β α ) [ u Ln ]+ ( 1 β 2 α ) [ü Ln ] Δ t (1') Einsetzen von (1') und (2') in (3) führt auf: ( 1 α Δ t 2 [ M L L ]+ β α Δ t [ D L L ]+[K L L ] ) [u L n+1 ] n+1 =[l L ]+ [ M L L ] ( 1 n [u α Δ t 2 L ]+ 1 α Δ t [ u n L ]+ ( 1 2 α 1 ) n [ü L ] ) + [ D L L ] ( β α Δ t [ u Ln ]+( β α 1) [ u Ln ]+ ( β 2 α 1 ) Δ t [ü Ln ] ) 5.4-7

8 4.1 Direkte transiente Analyse n+1 Aus dieser Gleichung können die Verschiebungen [u L ] bestimmt werden. Die Geschwindigkeiten und die Beschleunigungen können dann mit (1') und (2') berechnet werden

9 4.2 Modale transiente Analyse Methode: Die Antwort wird durch eine Überlagerung von Eigenvektoren approximiert. Dabei ist die Anzahl der verwendeten Eigenvektoren klein im Vergleich zur Anzahl der Freiheitsgrade. Vorteile: Die zu lösende Bewegungsgleichung ist von wesentlich kleinerer Dimension als bei der direkten transienten Analyse. Im Falle von modaler Dämpfung ergeben sich entkoppelte Bewegungsgleichungen

10 4.2 Modale transiente Analyse Nachteile: Die Methode liefert eine Näherungslösung der Bewegungsgleichung. Es muss zuerst eine Modalanalyse durchgeführt werden, um die Eigenvektoren und Eigenfrequenzen zu ermitteln. Einsatz: Bei linearen Systemen ist die modale transiente Analyse die Standardmethode

11 4.2 Modale transiente Analyse Modale Reduktion: Die Verschiebungen werden durch eine Überlagerung der ersten p Eigenvektoren approximiert: p [u L (t )] [u p L (t )]= n=1 [ x n ] q n (t )=[ X p ] [q p (t )] Einsetzen in die Bewegungsgleichung und Projektion auf die Eigenvektoren ergibt: [ M ] p [ q p ]+[ D ] p [ q p ]+ [ K ] p [ q p ]=[l ] p Die Gleichungen sind nur über die Dämpfungsmatrix gekoppelt

12 4.2 Modale transiente Analyse Anzahl der benötigten Eigenvektoren: Zunächst muss eine Fourier-Transformation der Anregung durchgeführt werden. Anhand der Fourier-Transformation wird eine Abschneidefrequenz f c festgelegt, unterhalb der die wesentlichen Frequenzanteile liegen. Der durch das Abschneiden eingeführte Fehler kann anhand einer inversen Fourier-Transformation der abgeschnittenen Fourier-Transformierten beurteilt werden. Eine andere Möglichkeit besteht darin, mithilfe der Funktion resample den Einfluss einer Erniedrigung der Abtastrate zu untersuchen

13 4.2 Modale transiente Analyse Bei der modalen Reduktion sind im Allgemeinen alle Eigenschwingungen mit f n < 3 f c zu berücksichtigen. Eine genauere Bewertung kann mithilfe der modalen Formänderungsenergien durchgeführt werden. Lösung des gekoppelten Systems: Wenn die Bewegungsgleichungen für die modalen Koeffizienten über die Dämpfung gekoppelt sind, können für die zeitliche Integration die gleichen Verfahren wie bei der direkten transienten Analyse verwendet werden. Durch die modale Reduktion wird jedoch die Größe des zu lösenden Systems erheblich reduziert

14 4.2 Modale transiente Analyse Lösung der entkoppelten Gleichungen: Bei modaler Dämpfung sind die Gleichungen für die modalen Koeffizienten entkoppelt: q n +2 D n ω n q n +ω n 2 q n =[ x n ] T [l L ], n=1,... p Die Lösung ergibt sich durch Faltung mit der Impulsantwortfunktion: t q n (t )= h n (τ) [ x n ] T [l L (t τ)] d τ 0 0 für τ<0 mit h n 1 (τ)={ ω e δ τ n sin(ω dn dn τ) für τ 0, δ n =ω n D n 2 ω dn =ω n 1 D n

15 4.2 Modale transiente Analyse Wenn das Integral numerisch berechnet wird, muss für den Zeitschritt gelten: Δ t < 1 6 f p Die so berechnete Lösung gehört zu homogenen Anfangsbedingungen, d. h. Verschiebungen und Geschwindigkeiten sind am Anfang null. Wenn die Anfangsbedingungen nicht homogen sind, muss eine geeignete Kombination von Lösungen der homogenen Gleichung überlagert werden

16 4.2 Modale transiente Analyse Restmodekorrektur: Wie bei der Frequenzganganalyse lässt sich die Genauigkeit der modalen Reduktion durch eine Restmodekorrektor verbessern. Für zeitlich veränderliche Lasten der Form lautet die Korrektur [l (t )]= k [u s L (t )]= k [l k ] ϕ k (t ) s [u Lk ] ϕ k (t ) mit s [u Lk ]=[ K L L ] 1 ( [l Lk ] [ M L L ] [ X p ] [ X p ] T [l Lk ])

17 4.3 Praktische Hinweise Netzfeinheit: Sowohl bei der direkten als auch bei der modalen transienten Analyse muss der p-te Eigenvektor durch die Vernetzung abgebildet werden können. Die Anzahl p der benötigten Eigenvektoren kann mithilfe der modalen Formänderungsenergien ermittelt werden. Zeitschritt: Der Zeitschritt muss so klein gewählt werden, dass das Verhalten der höchsten berücksichtigten Eigenschwingung wiedergegeben werden kann: Δ t < T min 6 = 1 6 f p Außerdem muss der Verlauf der Last wiedergegeben werden können

18 4.3 Praktische Hinweise Simulationsdauer: Die Simulationsdauer sollte so lange gewählt werden, dass alle wesentlichen Effekte erfasst werden. Ausschlaggebend dafür ist die Periode der ersten Eigenschwingung. Als Richtwert gilt: t S =t l +n T 1 mit n zwischen 3 und 7 Dabei ist t l die Dauer, während der die Last wirkt, und T 1 =1/ f 1 die Periode der ersten Eigenschwingung

19 4.3 Praktische Hinweise Beispiel: Daten: 2a a = 2,5 m E = 2, Pa, ρ = 7850 kg/m 3 A = 10-4 m 2, I z = 10-6 m 4 a D C E F G l(t) Dämpfung: a D n = 1 2 ( α K ω n + α M ω n ) B H a y mit α K = s, α M =7 1 s A x K

20 4.3 Praktische Hinweise Belastung: Für die im Punkt G angreifende Kraft gilt mit ϕ(t )={1 [ 2 1 cos ( 2 π t )] t, 0 t t 0 0, 0, t >t 0 l (t )=l 0 ϕ(t ) l 0 =100 N t 0 =0,01 s Aus der Fourier-Transformation ergibt sich für die Abschneidefrequenz: f c t 0 =2 f c = 2 =200 Hz t 0 Die Abbildung auf der nächsten Seite zeigt eine gute Übereinstimmung zwischen ϕ(t) und der zurück transformierten abgeschnittenen Fourier-Transformierten

21 4.3 Praktische Hinweise

22 4.3 Praktische Hinweise Modale Reduktion: Aus der Abschneidefrequenz folgt für die Frequenz der höchsten berücksichtigten Eigenschwingung: f p > 600 Hz Die Fehleranalyse anhand der modalen Formänderungsenergien zeigt, dass bereits 25 Eigenschwingungen ausreichend sind. Mit p = 25 gilt: f p = 514,3 Hz

23 4.3 Praktische Hinweise Modal strain energies of loadcase 1: mode frequency En/ES Sum 1 - Sum Hz e e Hz e e Hz e e Hz e e Hz e e Hz e e Hz e e Hz e e Hz e e Hz e e Hz e e Hz e e Hz e e

24 4.3 Praktische Hinweise Zeitschritt: Für den Zeitschritt folgt: Δ t < 1 1 = s 6 f p 6 514,3s 1=3, Verwendet wird ein Zeitschritt von 0,2 ms. Damit ergeben sich 50 Zeitschritte für die Dauer der Belastung. Damit wird auch die Belastung gut erfasst

25 4.3 Praktische Hinweise Simulationsdauer: Mit f1 = 8,70 Hz und gewähltem n = 5 folgt für die Simulationsdauer: t S =t 0 +5/ f 1 =0,1 s+5/8,70 s 0,6 s Ergebnisse:

26 4.3 Praktische Hinweise

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

Teilstrukturen

Teilstrukturen 5. Teilstrukturen Die Berechnung von komplexen trukturen lässt sich oft vereinfachen, wenn die truktur in Teilstrukturen unterteilt wird. Die Teilstrukturen hängen an den Anschlusspunkten zusammen. Für

Mehr

4. Ausblick. 4.1 Lineare dynamische Analysen 4.2 Nichtlineare Analysen 4.3 Weitere Anwendungen Höhere Festigkeitslehre 3.

4. Ausblick. 4.1 Lineare dynamische Analysen 4.2 Nichtlineare Analysen 4.3 Weitere Anwendungen Höhere Festigkeitslehre 3. 4. Ausblick 4.1 Lineare dynamische Analysen 4.2 Nichtlineare Analysen 4.3 Weitere Anwendungen 3.4-1 4.1 Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen Analysen hängen die Knotenpunktsverschiebungen

Mehr

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1 Ausblick 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen Prof. Dr. Wandinger 5. Ausblick FEM 5-1 1. Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differenzialgleichungssysteme 5.1-1 1.1 Grundlagen

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

2. Modalanalyse. Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen.

2. Modalanalyse. Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen. 2. Modalanalyse Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen. Die experimentelle Modalanalyse von Flugzeugen erfolgt

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

3. Fluid-Struktur-Kopplung

3. Fluid-Struktur-Kopplung 3. Fluid-Struktur-Kopplung Bei einer schwingenden Struktur muss die Normalkomponente der Schallschnelle mit der Normalkomponente der Geschwindigkeit an der Oberfläche der Struktur übereinstimmen. Dadurch

Mehr

1. Aufgabe: (ca. 14% der Gesamtpunkte)

1. Aufgabe: (ca. 14% der Gesamtpunkte) Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Prüfung in Baudynamik 23. Juli 2018 1. Aufgabe: (ca. 14% der Gesamtpunkte) a) Geben Sie Amplitude, Frequenz und Phasenverschiebung

Mehr

3. Modalanalyse. Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen.

3. Modalanalyse. Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen. 3. Modalanalyse Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen. Bei der rechnerischen Modalanalyse muss ein Eigenwertproblem

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Eigenwerte und Fourier - Simulation von Massenschwingern mit Mathcad

Eigenwerte und Fourier - Simulation von Massenschwingern mit Mathcad Eigenwerte und Fourier - Simulation von Massenschwingern mit Mathcad Federschwinger mit zwei Federn Federmassenschwinger sind schön geeignet, um in Vorlesung der Ingenieurmathematik die Brücke zwischen

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

2. Finite Elemente. Die Methode der finiten Elemente ist ein spezielles Bubnow-Galerkin-Verfahren:

2. Finite Elemente. Die Methode der finiten Elemente ist ein spezielles Bubnow-Galerkin-Verfahren: 2. Finite lemente Die Methode der finiten lemente ist ein spezielles Bubnow-Galerkin-Verfahren: Zur Lösung der Gleichung K [ ~ u,u]+d [ ~ u, u]+m [ ~ u, ü]=l[ ~ u ] ~ u wird folgender Ansatz gemacht: u=

Mehr

Versuchsprotokoll: Modellierung molekularer Schwingungen

Versuchsprotokoll: Modellierung molekularer Schwingungen Versuchsprotokoll: Modellierung molekularer Schwingungen Teammitglieder: Nicole Schai und Cristina Mercandetti Datum: 11.12.12 Versuchsleiter: Claude Ederer 1. Einleitung Dieser Versuch befasste sich mit

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

EINLEITUNG MAGNETSCHWEBETECHNIK

EINLEITUNG MAGNETSCHWEBETECHNIK EINLEITUNG Magnetschwebebahnen sind Transportmittel der Zukunft. Hohe Beschleunigungen und Geschwindigkeiten bedeuten eine Verbesserung der Mobilität im Transportwesen. Die Probleme dieser noch jungen

Mehr

Blatt 11.1: Fourier-Integrale, Differentialgleichungen

Blatt 11.1: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt.:

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

Kapitel 7 Generalisierte Koordinaten und dynamische Antwortrechnung

Kapitel 7 Generalisierte Koordinaten und dynamische Antwortrechnung Kapitel 7 Generalisierte Koordinaten und dynamische Antwortrechnung In Kap. 4 wurden am Beispiel von Zwei- und Mehrmassenschwingern dynamische Antwortrechnungen durchgeführt. Dabei zeigte sich, dass bei

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

4 Plattenschwingungen

4 Plattenschwingungen Elastodynamik Bewegungsgleichung Die Bewegungsgleichung für die homogene Kirchhoff-Platte lautet w x w x y w y h w B t = p B Dabei ist wx, y,t die Verschiebung in z- Richtung, p x, y,t der auf die Platte

Mehr

Kompensation von PMD. Fasernichtlinearitäten

Kompensation von PMD. Fasernichtlinearitäten Kompensation von PMD mit Hilfe von Fasernichtlinearitäten Ansgar Steinkamp, Jens Kissing, Tobias Gravemann, Edgar Voges Übersicht PMD (in linearen Fasern) Solitonen (in Fasern ohne PMD) Deterministische

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen FB IW - Meschede Ingenieurmathematik (MB 0.09.018 Klausur Ingenieurmathematik - Lösungen Name Matr.-Nr. Vorname Unterschrift Aufgabe 1 3 4 5 6 7 8 Summe Note Punkte Die Klausur

Mehr

Blatt 12.3: Fourier-Integrale, Differentialgleichungen

Blatt 12.3: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

4 Erzwungene Schwingungen konservativer Schwingungssysteme

4 Erzwungene Schwingungen konservativer Schwingungssysteme 23 4 Erzwungene Schwingungen konservativer Schwingungssysteme Die allgemeine Lösung einer inhomogenen linearen Schwingungsgleichung findet man durch Überlagerung der homogenen Lösung (freie Schwingungen)

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

Physikprotokoll: Massenträgheitsmoment. Issa Kenaan Torben Zech Martin Henning Abdurrahman Namdar

Physikprotokoll: Massenträgheitsmoment. Issa Kenaan Torben Zech Martin Henning Abdurrahman Namdar Physikprotokoll: Massenträgheitsmoment Issa Kenaan 739039 Torben Zech 738845 Martin Henning 736150 Abdurrahman Namdar 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Vorbereitung zu Hause 3 2 Versuchsaufbau

Mehr

Systeme mit einem Freiheitsgrad - Einmassenschwinger...5. Lernziel...5

Systeme mit einem Freiheitsgrad - Einmassenschwinger...5. Lernziel...5 Inhaltsverzeichnis Einleitung...1 1 Was ist Strukturdynamik...1 2 Für wen ist das Buch geschrieben?...1 3 Wie hängt dieses Buch mit den anderen Büchern der Reihe FEM für Praktiker zusammen?...2 4 Wie sollte

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Besprechung am

Besprechung am PN Einführung in die Physi für Chemier Prof. J. Lipfert WS 206/7 Übungsblatt 0 Übungsblatt 0 Besprechung am 7.0.207 Aufgabe Ungedämpfter harmonischer Oszillator. Eine Masse m schwingt reibungsfrei an einer

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Validierung von Strukturmodellen mit Messdaten aus natürlicher Erregung

Validierung von Strukturmodellen mit Messdaten aus natürlicher Erregung Validierung von Strukturmodellen mit Messdaten aus natürlicher Erregung Gerrit Übersicht Antwortmessung unter natürlicher Erregung Systemidentifikation mit ARMA-Modellen Modellvalidierung mit iterativen

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

2. Elementare Lösungsmethoden

2. Elementare Lösungsmethoden H.J. Oberle Differentialgleichungen I WiSe 2012/13 2. Elementare Lösungsmethoden A. Separierbare Differentialgleichungen. Eine DGL der Form y (t) = f(t) g(y(t)) (2.1) mit stetigen Funktionen f : R D f

Mehr

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen T0: Rechenmethoden WiSe 20/2 Prof. Jan von Delft http://homepages.physik.uni-muenchen.de/~vondelft/lehre/2t0/ Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen Aufgabe. (**)

Mehr

Die inhomogene Differentialgleichung höherer Ordnung.

Die inhomogene Differentialgleichung höherer Ordnung. Die inhomogene Differentialgleichung höherer Ordnung. Ist das Funktionensystem (y 1,..., y n ) ein Fundamentalsystem, so ist die Matrix Y(t) = y (0) 1... y n (0). y (n 1) 1... y n (n 1) eine Fundamentalmatrix

Mehr

Spektrum zeitdiskreter Signale

Spektrum zeitdiskreter Signale Spektrum zeitdiskreter Signale 1 Aufgabenstellung Mithilfe der Fouriertransformation können zeitkontinuierliche Signale in den Frequenzbereich transformiert werden, um die im Signal enthaltenen Frequenzanteile

Mehr

Hamilton-Systeme. J. Struckmeier

Hamilton-Systeme. J. Struckmeier Invarianten für zeitabhängige Hamilton-Systeme J. Struckmeier Vortrag im Rahmen des Winterseminars des Instituts für Angewandte Physik der Johann-Wolfgang-Goethe-Universität Frankfurt a.m. Hirschegg, 04.

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Höhere Mathematik II für den Studiengang BAP Hausaufgabe 2 04.11.2008 1 Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Lösungen 1. Geben Sie die allgemeine Lösung der folgenden Differenzialgleichungen

Mehr

5. Eigenschwingungen

5. Eigenschwingungen 5. Eigenschwingungen Bei Innenraumproblemen gibt es wie bei elastischen Strukturen Eigenschwingungen. Eigenschwingungen sind rein reelle Lösungen der Helmholtz-Gleichung bei homogenen Randbedingungen.

Mehr

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST HTW Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST Dauer : 100 Minuten Prof. Dr. B. Grabowski Name: Matr.Nr.: Erreichte Punktzahl: Hinweise zur Bearbeitung der Aufgaben:

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen 4 Schwingungen 41 Pendel 4 Untersuchung von oszillierenden Systemen um was geht es? Schwingungen = Oszillationen Beschreibung von schwingenden Systemen Methoden zur Analyse, Modellierung und Simulation

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik 1 für Naturwissenschaften Modul 112 Lineare Differenzialgleichungen zweiter Ordnung Hans Walser: Modul 112, Lineare Differenzialgleichungen zweiter Ordnung ii Inhalt 1 Lineare Differenzialgleichungen

Mehr

Drehprüfung. Biophysikalische Grundlagen. Stefan Langenberg

Drehprüfung. Biophysikalische Grundlagen. Stefan Langenberg Drehprüfung Biophysikalische Grundlagen Stefan Langenberg Optokinetik Ermittlung der GLP (Geschwindigkeit der langsamen Phase) Projektion eines Streifenmusters auf einen Schirm, videonystagmographische

Mehr

7.4 Gekoppelte Schwingungen

7.4 Gekoppelte Schwingungen 7.4. GEKOPPELTE SCHWINGUNGEN 333 7.4 Gekoppelte Schwingungen Als Beispiel für 2 gekoppelte Schwingungen betrachten wir das Doppelpendel, das in Abb. 7.19 dargestellt ist. Zunächst vernachlässigen wir die

Mehr

Blatt 05.2: Green sche Funktionen

Blatt 05.2: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

f = f = f = Institut für Technische und Num. Mechanik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P März 2018

f = f = f = Institut für Technische und Num. Mechanik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P März 2018 Institut für Technische und Num. Mechanik Maschinendynamik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P 1 20. März 2018 Prüfung in Maschinendynamik Nachname, Vorname Aufgabe 1 (6 Punkte) Bestimmen

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Baudynamik (Master) SS 2014

Baudynamik (Master) SS 2014 Baudynamik (Master) SS 14 3. Schwingungen mit zwei und mehr Freiheitsgraden 3.1 Einige Prinzipien der Mechanik und Herleitung der Schwingungsgleichungen 3.1.1 Einige Prinzipien der Mechanik 3.1. Herleitung

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

2. Anfangswertprobleme 2. Ordnung

2. Anfangswertprobleme 2. Ordnung 2. Anfangswertprobleme 2. Ordnung 2.1 Grundlagen 2.2 Mathematisches Pendel 2.3 Selbstzentrierung Prof. Dr. Wandinger 7. Numerische Methoden Dynamik 2 7.2-1 2.1 Grundlagen Für ein Anfangswertproblem 2.

Mehr

Blatt 05.3: Green sche Funktionen

Blatt 05.3: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

2. Übung: Lineare dynamische Systeme

2. Übung: Lineare dynamische Systeme 2. Übung: Lineare dynamische Systeme Aufgabe 2.. Gegeben sind die beiden autonomen Systeme und x (2.) {{ A 2 2 x. (2.2) {{ A 2 Berechnen Sie die regulären Zustandstransformationen x = V z und x = V 2 z,

Mehr

4. Leistungs- und Kreuzleistungsdichtespektren

4. Leistungs- und Kreuzleistungsdichtespektren 4. Leistungs- und Kreuzleistungsdichtespektren 23.4.18 Die bereits in Kapitel 1.2 einführten Leistungsdichtespektren werden nun genauer untersucht. Zudem werden Kreuzleistungsdichtespektren eingeführt.

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t)

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) Transformationen Übungen 1 1 Signale und Systeme 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) 1 c) f(-t) d) f(t + 3) 1 t e) f(t / 4) f) f(t) + 2 g)

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 0./.08.008 Kurseinheit 5: Die Wärmeleitungsgleichung Aufgabe : Gegeben ist das Anfangswertproblem

Mehr

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse.

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse. Fourier-Reihen Fourier-Transformation Die Fourier-Transformation ist eines der wichtigsten Instrumente zur Behandlung linearer Systeme, seien es gewöhnliche oder partielle lineare Differentialgleichungen

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010

Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010 WS 2009/2010 Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010 Nachname, Vorname... Matrikel-Nr.:... Studiengang:... Aufgabe 1 2 3 4 5 6 7 8 9 Summe maximale 5

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik WS 06/7 Lösung 3 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe : Stahlseil (a)

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge Institut für Analysis SS 5 PD Dr. Peer Christian Kunstmann 7.9.5 Silvana Avramska-Lukarska Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Bachelor-Modulprüfung Lösungsvorschläge

Mehr

3. Seilhaftung und Seilreibung

3. Seilhaftung und Seilreibung 3. Seilhaftung und Seilreibung Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-1 3. Seilhaftung und Seilreibung 3.1 Haften 3.2 Gleiten Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-2 Bei einer

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

A02 Schwingungen - Auswertung

A02 Schwingungen - Auswertung A2 Schwingungen - Auswertung 6. Messungen 6.1 Bestimmung der Eigenfrequenz mit der Stoppuhr Vorbereitung: Erfassen der Messunsicherheit Reaktionszeit,12,3,8,12,11,9,2,6,8,16 s, 87s,1 s 1 Bei auf Nullmarke

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr