4. Ausblick. 4.1 Lineare dynamische Analysen 4.2 Nichtlineare Analysen 4.3 Weitere Anwendungen Höhere Festigkeitslehre 3.

Größe: px
Ab Seite anzeigen:

Download "4. Ausblick. 4.1 Lineare dynamische Analysen 4.2 Nichtlineare Analysen 4.3 Weitere Anwendungen Höhere Festigkeitslehre 3."

Transkript

1 4. Ausblick 4.1 Lineare dynamische Analysen 4.2 Nichtlineare Analysen 4.3 Weitere Anwendungen 3.4-1

2 4.1 Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen Analysen hängen die Knotenpunktsverschiebungen von der Zeit ab: Beschleunigungen der Knotenpunkte: Trägheitskräfte: Für die Beschleunigungen innerhalb eines Elements gilt: [ ü x ]=[üx x ü y x ] =[ H E x ] [ü E ] [ u t ] [ ü t ] 3.4-2

3 4.1 Lineare dynamische Analysen Die Trägheitskraft pro Volumen ist [ f T ]= [ H E ] [ü E ] Die zugehörigen Kräfte an den Knotenpunkten des Elements sind [ E F T Mit der Elementmassenmatrix gilt: [ F T E ]= [ m E ] [ü E ] ]= V E [ H E ] T [ H E ] dv [ü E ] [ m E ]= V E [ H E ] T [ H E ] dv 3.4-3

4 4.1 Lineare dynamische Analysen Assemblierung: Die Elementmassenmatrizen werden zur Massenmatrix assembliert: [ M ]= E Dynamisches Gleichgewicht: [ a E ] T [ m E ] [ a E ] Das dynamische Gleichgewicht am Gesamtsystem lautet: [ K ] [ u ]=[ F ] [ M ] [ ü ] [ M ] [ü] [ K ] [ u ]=[ F ] 3.4-4

5 4.1 Lineare dynamische Analysen Dämpfungsmatrix: Zusätzlich können noch Dämpfungskräfte berücksichtigt werden: [ M ] [ ü ] [ K ] [ u ]=[ F ] [ F D ] Bei geschwindigkeitsproportionaler Dämpfung gilt: [ F D ]= [ D ] [ u ] [ M ] [ü] [ D ] [ u ] [ K ] [u]=[ F ] [ D ] Die Matrix wird als Dämpfungsmatrix bezeichnet

6 4.1 Lineare dynamische Analysen Analysen: Freie ungedämpfte Schwingungen: Freie ungedämpfte Schwingungen sind Lösungen von Sie beschreiben das Verhalten der Struktur nach einer kleinen Störung. Der Lösungsansatz [ M ] [ü ] [ K ] [ u]=[0] [u t ]=[ x ]sin t führt auf das lineare Eigenwertproblem [ K ] [ x ]= 2 [ M ] [ x ] 3.4-6

7 4.1 Lineare dynamische Analysen Die Lösung des Eigenwertproblems liefert die Eigenfrequenzen und die Eigenvektoren. f n = n /2 [ x n ] Eigenfrequenzen und Eigenvektoren charakterisieren das dynamische Verhalten schwingender Strukturen. Transiente Analysen: Bei transienten Analysen wird aus der Gleichung [ M ] [ü ] [ D ] [ u ] [ K ] [u ]=[ F t ] mit einem numerischen Verfahren der zeitliche Verlauf der Verschiebung ermittelt. Daraus können die zeitlichen Verläufe aller anderen interessierenden Größen berechnet werden

8 4.1 Lineare dynamische Analysen Frequenzganganalysen: Bei Frequenzganganalysen wird der eingeschwungene Zustand für eine harmonische Anregung in Abhängigkeit von der Erregerfrequenz ermittelt. Anregung: [ F t ]=[ F ] e i t Lösungsansatz: [u t ]=[ u ] e i t Der Lösungsansatz führt auf das komplexe Gleichungssystem 2 [ M ] i [ D ] [ K ] [ u]=[ F ] 3.4-8

9 4.1 Lineare dynamische Analysen Daraus kann die komplexe Amplitude für jede Erregerfrequenz ermittelt werden. [ u ] Aus der komplexen Amplitude können die reelle Amplitude und die Phase bestimmt werden

10 4.2 Nichtlineare Analysen Arten von Nichtlinearitäten: Geometrische Nichtlinearitäten: Bei großen Verschiebungen oder großen Rotationen besteht eine nichtlineare Beziehung zwischen den Verschiebungen und den Verzerrungen. Nichtlineares Material: Bei einem nichtlinearen Material besteht eine nichtlineare Beziehung zwischen den Verzerrungen und den Spannungen. Gummi zeigt ein nichtlinear- elastisches Verhalten. Bei Metallen tritt bei großen Verzerrungen Plastifizierung auf

11 4.2 Nichtlineare Analysen Nichtlineare Randbedingungen: Die häufigste nichtlineare Randbedingung ist Kontakt. Elastische Kräfte: Bei geometrischen Nichtlinearitäten oder nichtlinearem Material besteht ein nichtlinearer Zusammenhang zwischen den elastischen Kräften und den Verschiebungen: linear: nichtlinear: [ F E ]=[ K ] [u ] [ F E ]=[ F E [ u ] ]

12 4.2 Nichtlineare Analysen Statische nichtlineare Analysen: Das nichtlineare Gleichungssystem wird iterativ gelöst. [ F E [u] ]=[ F ] Dynamische nichtlineare Analysen: Das gewöhnliche Differenzialgleichungssystem [ M ] [ ü ]=[ F ] [ F E [ u ], [ u ] ] wird mit einem geeigneten Zeitintegrationsverfahren gelöst

13 4.2 Nichtlineare Analysen Explizite Verfahren: Die Beschleunigungen für den betrachteten Zeitschritt werden aus ermittelt. Geschwindigkeiten und Verschiebungen werden z.b. aus ermittelt. [ ü n ]=[ M ] 1 [ F n ] [ F E [ u n ], [ u n ] ] [ u n 1 ]=[ u n ] [ü n ] t und [ u n 1 ]=[ u n ] [ u n ] t 1 2 [ ü n ] t 2 Explizite Verfahren werden hauptsächlich zur Berechnung von hochdynamischen kurzzeitigen Vorgängen wie Crash eingesetzt

14 4.2 Nichtlineare Analysen Implizite Verfahren: Bei impliziten Verfahren werden Geschwindigkeiten und Beschleunigungen durch Ansätze approximiert, die außer den bereits berechneten Verschiebungen zu früheren Zeitpunkten auch die Verschiebungen des gerade zu berechnenden Zeitpunkts enthalten. Für jeden Zeitschritt muss daher ein nichtlineares Gleichungssystem gelöst werden. Bei impliziten Verfahren kann ein größerer Zeitschritt gewählt werden als bei expliziten Verfahren. Implizite Verfahren werden zur Berechnung von länger andauernden Vorgängen eingesetzt

15 4.3 Weitere Anwendungen Wärmeleitung: Sowohl die stationäre als auch die instationäre Wärmeleitungsgleichung werden oft mit finiten Elementen gelöst. An die Stelle der Knotenpunktsverschiebungen treten die Temperaturen an den Knotenpunkten. Wenn die Wärmeleitungskoeffizienten oder die Wärmeübertragungskoeffizienten von der Temperatur abhängen oder Wärmestrahlung berücksichtigt wird, ergeben sich nichtlineare Gleichungen

16 4.3 Weitere Anwendungen Akustik: Die Schallausbreitung in einem Gas oder einer Flüssigkeit wird durch die Wellengleichung bzw. die Helmholtz-Gleichung beschrieben. Beides sind lineare partielle Differenzialgleichungen, die sich mit finiten Elementen lösen lassen. An die Stelle der Verschiebungen an den Knotenpunkten tritt der Schalldruck an den Knotenpunkten. Die akustischen Gleichungen lassen sich auch mit den Strukturgleichungen koppeln, um die Wechselwirkung des schalldrucks mit einer Struktur zu untersuchen

17 4.3 Weitere Anwendungen Aeroelastik: Die Luftkräfte, die an einem Flugzeug angreifen, hängen von der Verformung ab. Für kleine Verformungen lässt sich der Zusammenhang zwischen den Verformungen und den Luftkräften linearisieren. Die Linearisierung führt auf eine zusätzliche sogenannte aerodynamische Steifigkeit

18 4.3 Weitere Anwendungen Statische aerodynamische Analysen: Statische aerodynamische Analysen dienen dazu, die Lasten auf ein Flugzeug für verschiedene ausgetrimmte stationäre Zustände zu ermitteln. Dynamische Analysen: Mit dynamischen aerodynamischen Analysen können die Lasten auf ein Flugzeug infolge von Böen oder Flugmanövern ermittelt werden. Flatteranalysen untersuchen, ob sich Schwingungen infolge der Interaktion mit den Luftkräften aufschaukeln können

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1 Ausblick 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen Prof. Dr. Wandinger 5. Ausblick FEM 5-1 1. Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen

Mehr

3. Fluid-Struktur-Kopplung

3. Fluid-Struktur-Kopplung 3. Fluid-Struktur-Kopplung Bei einer schwingenden Struktur muss die Normalkomponente der Schallschnelle mit der Normalkomponente der Geschwindigkeit an der Oberfläche der Struktur übereinstimmen. Dadurch

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

2. Modalanalyse. Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen.

2. Modalanalyse. Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen. 2. Modalanalyse Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen. Die experimentelle Modalanalyse von Flugzeugen erfolgt

Mehr

4. Transiente Analyse

4. Transiente Analyse 4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+

Mehr

Teilstrukturen

Teilstrukturen 5. Teilstrukturen Die Berechnung von komplexen trukturen lässt sich oft vereinfachen, wenn die truktur in Teilstrukturen unterteilt wird. Die Teilstrukturen hängen an den Anschlusspunkten zusammen. Für

Mehr

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

2. Finite Elemente. Die Methode der finiten Elemente ist ein spezielles Bubnow-Galerkin-Verfahren:

2. Finite Elemente. Die Methode der finiten Elemente ist ein spezielles Bubnow-Galerkin-Verfahren: 2. Finite lemente Die Methode der finiten lemente ist ein spezielles Bubnow-Galerkin-Verfahren: Zur Lösung der Gleichung K [ ~ u,u]+d [ ~ u, u]+m [ ~ u, ü]=l[ ~ u ] ~ u wird folgender Ansatz gemacht: u=

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

2. Methode der Randelemente

2. Methode der Randelemente 2. Methode der Randelemente Bei allgemeinen Schall abstrahlenden Flächen lässt sich der Schalldruck an einem beliebigen Punkt im Raum aus einem Integral über auf der Fläche definierte Funktionen berechnen.

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

3. Modalanalyse. Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen.

3. Modalanalyse. Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen. 3. Modalanalyse Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen. Bei der rechnerischen Modalanalyse muss ein Eigenwertproblem

Mehr

Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem

Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem Institute of Structural Engineering Page 1 Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem Institute of Structural Engineering Page 2 Lernziele: Sie können Stabilitätsprobleme

Mehr

5. Eigenschwingungen

5. Eigenschwingungen 5. Eigenschwingungen Bei Innenraumproblemen gibt es wie bei elastischen Strukturen Eigenschwingungen. Eigenschwingungen sind rein reelle Lösungen der Helmholtz-Gleichung bei homogenen Randbedingungen.

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

3. Erzwungene gedämpfte Schwingungen

3. Erzwungene gedämpfte Schwingungen 3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung

Mehr

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12 Bernd Klein FEM Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau 8., verbesserte und erweiterte Auflage Mit 230 Abbildungen, 12 Fallstudien und 20 Übungsaufgaben STUDIUM

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differenzialgleichungssysteme 5.1-1 1.1 Grundlagen

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

Finite Elemente Programmsystem MEANS V10 für Windows

Finite Elemente Programmsystem MEANS V10 für Windows Finite Elemente Programmsystem MEANS V10 für Windows Statik Dynamik Formoptimierung Beulen und Temperatur Geometrisch nichtlineare und plastische Verformungen Kontaktbedingungen mit Aufprall Umfangreiche

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

5. Ebene Probleme. 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand Höhere Festigkeitslehre Prof. Dr.

5. Ebene Probleme. 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand Höhere Festigkeitslehre Prof. Dr. 5. Ebene Probleme 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand 1.5-1 Definition: Bei einem ebenen Spannungszustand ist eine Hauptspannung null. Das Koordinatensystem kann so gewählt werden,

Mehr

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Periodische Lasten 2.2 Allgemeine zeitabhängige Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE 2.5 ANFANGSRANDWERTPROBLEM DER ELASTOMECHANIK Charakterisierung Die Zusammenfassung der in den vorangehenden Folien entwickelten Grundgleichungen des dreidimensionalen Kontinuums bildet das Anfangsrandwertproblem

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

2. Verzerrungszustand

2. Verzerrungszustand 2. Verzerrungszustand Ein Körper, der belastet wird, verformt sich. Dabei ändern die Punkte des Körpers ihre Lage. Die Lageänderung der Punkte des Körpers wird als Verschiebung bezeichnet. Ist die Verschiebung

Mehr

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Numerik Parameterschätzprobleme INHALT 1. 1D Wärmeleitungsgleichung 1.1 Finite-Differenzen-Diskretisierung

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen http://www.free background wallpaper.com/background wallpaper water.php Partielle Differentialgleichungen 1 E Partielle Differentialgleichungen Eine partielle Differentialgleichung (Abkürzung PDGL) ist

Mehr

Eigenwerte und Fourier - Simulation von Massenschwingern mit Mathcad

Eigenwerte und Fourier - Simulation von Massenschwingern mit Mathcad Eigenwerte und Fourier - Simulation von Massenschwingern mit Mathcad Federschwinger mit zwei Federn Federmassenschwinger sind schön geeignet, um in Vorlesung der Ingenieurmathematik die Brücke zwischen

Mehr

6.1.2 Summe von drei Variablen Lösung eines linearen Gleichungssystemes mit zwei Unbekannten

6.1.2 Summe von drei Variablen Lösung eines linearen Gleichungssystemes mit zwei Unbekannten 6. Rechenbeispiele Die nachfolgenden einfachen Demonstrationsbeispiele aus dem Gebiet der Analog-Rechentechnik zeigen die Funktion dieses kleinen Analogrechners, der nur mit einer minimalen Anzahl von

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

3 Zweidimensionale dynamische Systeme Oszillationen

3 Zweidimensionale dynamische Systeme Oszillationen 3 Zweidimensionale dynamische Systeme Oszillationen Lineare Systeme Ein Beispiel für ein zweidimensionales dynamisches System ist die Gleichung ẍ + ω 2 sin x = 0 für ebene Schwingungen eines reibungsfreien

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

Gewöhnliche Differentialgleichungen: Einleitung

Gewöhnliche Differentialgleichungen: Einleitung Gewöhnliche Differentialgleichungen: Einleitung Die Sprache des Universums ist die Sprache der Differentialgleichungen. 1-E1 Faszinierender Anwendungsreichtum cc 1-E2 Wie verstanden die Alten das Naturgesetz?

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 8. April 2009 Beachtenswertes Die Veranstaltung

Mehr

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

Praktikum Nichtlineare FEM

Praktikum Nichtlineare FEM Praktikum Nichtlineare FEM Einführung FEM II - Einführung 1 Mario.Lindner@MB.TU-Chemnitz.DE Ziele des Praktikums Überblick über die Berechnung nichtlinearer Strukturen Umgang mit der kommerziellen FEM-Software

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

9 Erzwungene Schwingungen durch verteilte Kräfte

9 Erzwungene Schwingungen durch verteilte Kräfte 57 9 Erzwungene Schwingungen durch verteilte Kräfte Wirken auf ein kontinuierliches System verteilte zeitveränderliche Kräften bzw. Momente, entstehen erzwungene Schwingungen. In diesem Fall sind die partiellen

Mehr

Numerische Akustik. Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh

Numerische Akustik. Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh Numerische Akustik Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh 1 Einleitung Akustischen Messungen und Berechnungen sind mittlerweile in vielen Fällen nicht ohne Einsatz eines Computers

Mehr

Kapitel 7 Generalisierte Koordinaten und dynamische Antwortrechnung

Kapitel 7 Generalisierte Koordinaten und dynamische Antwortrechnung Kapitel 7 Generalisierte Koordinaten und dynamische Antwortrechnung In Kap. 4 wurden am Beispiel von Zwei- und Mehrmassenschwingern dynamische Antwortrechnungen durchgeführt. Dabei zeigte sich, dass bei

Mehr

Datenblatt Lineare Systemanalyse

Datenblatt Lineare Systemanalyse Datenblatt Lineare Systemanalyse Übersicht Die Lineare Systemanalyse bietet vielfältige Möglichkeiten, das Verhalten verschiedenster Systeme zu untersuchen. Dabei wird das im Allgemeinen nichtlineare Simulationsmodell

Mehr

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

4. Der Berechnungsprozess

4. Der Berechnungsprozess Idealisierung Bauteil / Entwurf Preprocessor Mathematisches Modell Diskretisierung Finite-Elemente- Modell Solver Rechnung Ergebnisse Postprocessor Bewertung Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-1

Mehr

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T 8.1 Die Methode der Finiten Differenzen Wir beschränken uns auf eindimensionale Probleme und die folgenden Anfangs und Anfangsrandwertprobleme 1) Cauchy Probleme für skalare Erhaltungsgleichungen, also

Mehr

Systeme mit einem Freiheitsgrad - Einmassenschwinger...5. Lernziel...5

Systeme mit einem Freiheitsgrad - Einmassenschwinger...5. Lernziel...5 Inhaltsverzeichnis Einleitung...1 1 Was ist Strukturdynamik...1 2 Für wen ist das Buch geschrieben?...1 3 Wie hängt dieses Buch mit den anderen Büchern der Reihe FEM für Praktiker zusammen?...2 4 Wie sollte

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei

Mehr

2. Quasilineare PDG erster Ordnung

2. Quasilineare PDG erster Ordnung H.J. Oberle Differentialgleichungen II SoSe 2013 2. Quasilineare PDG erster Ordnung Eine skalare PDG erster Ordnung hat die allgemeine Form F (x, u(x), u x (x)) = 0. (2.1) Dabei ist u : R n G R die gesuchte

Mehr

Definieren einer Studie. Schritt 1 Definieren einer Studie und Auswählen des Materials

Definieren einer Studie. Schritt 1 Definieren einer Studie und Auswählen des Materials R A T G E B E R Simulation von Fallprüfungen in SolidWorks Übersicht SolidWorks -Software können Konstrukteure nun im Vorfeld ihre Konstruktionen schnell und einfach einer Fallprüfung unterziehen, obwohl

Mehr

Simulation von Fallprüfungen in SolidWorks

Simulation von Fallprüfungen in SolidWorks White Paper Simulation von Fallprüfungen in SolidWorks inspiration Übersicht SolidWorks -Software können Konstrukteure nun im Vorfeld ihre Konstruktionen schnell und einfach einer Fallprüfung unterziehen,

Mehr

1. Einführung. Baudynamik (Master) SS 2017

1. Einführung. Baudynamik (Master) SS 2017 Baudynamik (Master) SS 2017 1. Einführung 1.1 Bedeutungen der Baudynamik 1.2 Grundbegriffe und Klassifizierung 1.3 Modellierung der Bauwerksschwingungen LEHRSTUHL FÜR BAUSTATIK 1 Baudynamik (Master) SS

Mehr

Dynamische Analyse und infinite Elemente in Abaqus

Dynamische Analyse und infinite Elemente in Abaqus Dynamische Analyse und infinite Elemente in Abaqus nach Abaqus-Dokumentation C. Grandas, A. Niemunis, S. Chrisopoulos IBF-Karlsruhe Karlsruhe, 2012 Infinite Elemente (1) Infinite Elemente simulieren das

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen 4 Schwingungen 41 Pendel 4 Untersuchung von oszillierenden Systemen um was geht es? Schwingungen = Oszillationen Beschreibung von schwingenden Systemen Methoden zur Analyse, Modellierung und Simulation

Mehr

Systeme gewöhnlicher Di erentialgleichungen. Ordnung

Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme. Ordnung De nition Für eine gegebene n n-matrix A(x) =(a ij (x)) n i,j=, deren Elemente Funktionen von x sind und einer gegebenen rechten Seite

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung:

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: (3q.6) folgt auch direkt, wenn ein exp-ansatz für x(t),

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Das Geheimnis. der Kaffeetasse

Das Geheimnis. der Kaffeetasse Das Geheimnis der Kaffeetasse Uttendorf 2005 Lutz Justen Überblick Der Kaffeetasseneffekt was ist das? Einige (nicht-numerische!) Experimente Modellierung: Lineare Elastizitätsgleichung Numerik: FEM Testrechnungen

Mehr

1. ÜBUNG. Die Differentialgleichung, die aus der Massenbilanz folgt, ist für folgende Bedingungen zu lösen:

1. ÜBUNG. Die Differentialgleichung, die aus der Massenbilanz folgt, ist für folgende Bedingungen zu lösen: PAVP - Übungsaufgaben Ü - 1 1. ÜBUNG Für den dargestellten Behälter ist der zeitliche Verlauf H(t) der Füllhöhe zu bestimmen. Die folgenden Konstanten sind als bekannt vorauszusetzen: A - h v - ñ - Querschnitt

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-regensburg.de/mathematik/mathematik-abels/aktuelles/index.html Schnupperstudium

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

15. Elektromagnetische Schwingungen

15. Elektromagnetische Schwingungen 5. Elektromagnetische Schwingungen Elektromagnetischer Schwingkreis Ein Beispiel für eine mechanische harmonische Schwingung wäre eine schwingende Feder, die im Normalfall durch den uftwiderstand gedämpft

Mehr

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält.

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält. C7 Differentgleichungen (DG) (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] C7.1 Was ist eine DG, wozu wird sie gebraucht?

Mehr

Statik I Ergänzungen zum Vorlesungsskript Dr.-Ing. Stephan Salber Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Statik I Vorlesungs- und Übungsmaterial Vorlesung Benutzername: Vorlesungsskript

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

1 Einleitung Historie Elemente der Mehrkörperdynamik Anwendungsgebiete... 3 Literatur... 4

1 Einleitung Historie Elemente der Mehrkörperdynamik Anwendungsgebiete... 3 Literatur... 4 Inhaltsverzeichnis 1 Einleitung... 1 1.1 Historie... 1 1.2 Elemente der Mehrkörperdynamik... 2 1.3 Anwendungsgebiete... 3 Literatur... 4 2 Dynamik des starren Körpers... 5 2.1 Lagebeschreibung... 6 2.1.1

Mehr

6 Eigenlösungen der eindimensionalen Wellengleichung

6 Eigenlösungen der eindimensionalen Wellengleichung 39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die

Mehr