Übung zu Mechanik 4 Seite 28

Größe: px
Ab Seite anzeigen:

Download "Übung zu Mechanik 4 Seite 28"

Transkript

1 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche Führung ist reibungsfrei. a) Wie groß ist die Amplitude der ungedämpften Schwingung? b) Welche maximale Kraft R wird auf den Untergrund ausgeübt? c) Wie groß muß das Dämpfungsmaß D gewählt werden, wenn die Amplitude des ungedämpften Schwingers durch geschwindigkeitsproportionale Dämpfung auf die Hälfte verringert werden soll? d) Wie groß ist die maximale Kraft R beim gedämpften Schwinger? Ungedämpftes System Ω = 0,75 ω 0 Gedämpftes System

2 Übung zu Mechanik 4 Seite 29 Aufgabe 48 Das dargestellte Grenzamplituden-Kontrollgerät besteht aus einem pendelnd aufgehängten schlanken Stab der Masse m und der Länge l, dessen Ende frei auf einem Stößel aufliegt. Der Stößel schwingt harmonisch mit der Frequenz f in horizontaler Richtung. Wie groß muß der Abstand a 0 zwischen dem Aufhängepunkt des Pendels und der Mittellage des Stößels sein, damit das Pendel bei einer Amplitude a 1 gerade nicht abhebt? l = 180 mm a 1 = 1 mm f = 5 Hz m Aufgabe 49 Gegeben ist der skizzierte homogene, starre Stab (Masse m), der im Punkt A frei drehbar gelagert ist. Der Fußpunkt B der Schraubenfeder wird nach der Funktion u(t) = u 0 sin (Ω t) periodisch bewegt. Stellen Sie die Bewegungsgleichung des Systems auf und ermitteln Sie die Amplitude für die Dämpfungskonstante d = 0 und die Erregerfrequenz Ω = 6 s -1! Bei welcher Frequenz Ω* tritt der größte Ausschlag auf, wenn die Dämpfungskonstante d* = 200 Ns/m ist? Wie groß ist der Ausschlag? m = 30 kg c F = 1 kn/m u 0 = 10 cm

3 Übung zu Mechanik 4 Seite 30 Aufgabe 50 Gegeben ist ein homogener Kreiszylinder (Masse m, Radius r), der sich um seine Achse reibungsfrei drehen und dabei Rollbewegungen in einer horizontalen Ebene ausführen kann. Die Achse des Zylinders ist durch eine Feder (Federkonstante c F ) befestigt. Weiterhin ist an der Achse wie skizziert ein Dämpfer (Dämpfungskonstante d) angebracht. Das gegebene System wird durch eine harmonische Verschiebung u(t) = u 0 sin (Ω t) des freien Dämpferendpunktes erregt. a) Wie groß ist die Amplitude der Zylinderachsenbewegung? b) Wie groß ist die Amplitude der Federkraft? m = 2 kg r = 20 cm c F = 27 N/m d = 6 Ns/m u 0 = 10 cm Ω = 2 s -1

4 Übung zu Mechanik 4 Seite 31 Aufgabe 51 Bestimmen Sie die Eigenkreisfrequenzen des skizzierten schwingenden Systems! c M = 96 c F Aufgabe 52 Bestimmen Sie für das dargestellte, aus starren Stäben zusammengesetzte System die Eigenkreisfrequenzen für kleine Auslenkungen! m 1 = m 2 = 120 kg c F = 2400 N/m l = 1,0 m

5 Übung zu Mechanik 4 Seite 32 Aufgabe 53 Eine vertikal schwingende Masse m ist gestützt auf zwei masselose Stäbe, deren Fußpunkte durch Federn gehalten werden (oberes Bild). a) Bestimmen Sie die Amplitude X 0 der stationären Schwingung unter der periodisch einwirkenden Kraft F(t) = F 0 cos (Ω t). Wie groß ist die maximale Federkraft? b) Zur Herabsetzung der Amplitude werden zwei Dämpfungselemente eingebaut (unteres Bild). Wie groß muß die Dämpfungskonstante d gewählt werden, damit die Amplitude gegenüber dem ungedämpften System auf die Hälfte verringert wird? l = 4 m m = 1000 kg c F = N/m F 0 = 8 kn Ω 2 = 600 s -2 g = 10 m/s 2 alle Stäbe EA = und masselos

6 Übung zu Mechanik 4 Seite 33 Aufgabe 54 Ein Maschinenfundament vom Gewicht G A steht auf einem elastischen Boden. Die Grundfläche A und die Bettungsziffer λ sind gegeben. Zur Begrenzung von Resonanzschwingungen, die beim Betrieb der Maschine entstehen, ist die Maschine auf einem schweren Rahmen gelagert. Die Federkonstante c F der elastischen Lagerung des Rahmens auf dem Fundament und das Gesamtgewicht G B des Rahmens mit der Maschine sind bekannt. Man bestimme die Eigenfrequenz des Systems bei vertikaler Translationsschwingung. G A = 1000 kn G B = 4,9 kn A = 1,7 m 2 c F = kn/m λ = kn/m 3 λ: auf die Flächeneinheit bezogene Federsteifigkeit (c F = λ A)

7 Übung zu Mechanik 4 Seite 34 Aufgabe 55 Gegeben ist das dargestellte System. Die Stäbe sind starr und homogen und haben konstante Querschnittswerte. Gesucht sind die Eigenfrequenzen des Systems. m A : m B = 9 : 6 c F, a Aufgabe 56 Ein masseloser Träger mit konstanter Biegesteifigkeit EJ trägt in seinem rechten Drittelpunkt eine als starr anzusehende dünne Kreisscheibe (Durchmesser d, Masse m). a) Man bestimme die Eigenkreisfrequenzen und Eigenformen der freien Schwingung. b) Für die durch eine Kraft F(t) = F 0 sin (Ω t) erzwungene Schwingung bestimme man die Auslenkungen und die größte Biegebeanspruchung im Träger. m = 785 kg EJ = 400 knm 2 F 0 = 0,9 kn Ω = 30 s -1

8 Übung zu Mechanik 4 Seite 35 Aufgabe 57 Mit dem dargestellten homogenen, starren Stab (Länge l, Masse m A ), der an seinem linken Ende frei drehbar gelagert und an seinem rechten Ende elastisch gestützt ist, ist über eine Feder eine Masse m B verbunden. Bestimmen Sie die Eigenkreisfrequenzen ω 1 und ω 2 des Systems mit zwei Freiheitsgraden bei kleinen Auslenkungen! m A = m B = m c F, l Aufgabe 58 Dargestellt ist die statische Gleichgewichtslage eines schwingfähigen Systems aus homogenen, starren Stäben und linearen Federn. Für kleine Auslenkungen gebe man die Differentialgleichungen der Bewegung und die Eigenkreisfrequenzen an. m A : m B = 6 : 1 c F, h, l

9 Übung zu Mechanik 4 Seite 36 Aufgabe 59 Gegeben ist das dargestellte System. Die Stäbe sind starr und homogen. Gesucht sind die Eigenkreisfrequenzen des Systems! m A : m B = 1 : 2 g c F = m A l

10 Übung zu Mechanik 4 Seite 37 Aufgabe 60 Der skizzierte masselose Stab (Biegesteifigkeit EJ) ist im Auflager A gelenkig gelagert. An seinem rechten Ende trägt der Stab eine Einzelmasse m. Am linken Ende des Stabes ist eine Normalkraftfeder (Federkonstante c F ) befestigt, deren freies Ende periodisch nach der Funktion u(t) = u 0 cos (Ω t) bewegt wird. Bestimmen Sie die Eigenkreisfrequenz ω 0 des ungedämpften Systems! Wie groß muß die Dämpfungskonstante d gewählt werden, wenn im stationären Zustand der Schwingung die Amplitude der Einzelmasse bei beliebigen Erregerfrequenzen Ω das 1,35-fache der statischen Auslenkung nicht überschreiten soll? EJ c F = 3 3 l

11 Übung zu Mechanik 4 Seite 38 Aufgabe 61 Ein homogenes Rad (Masse m A, Radius r A ) rotiert um die Achse eines Meßgerätes. Diese Achse ist wie skizziert vertikal unverschieblich und wird in der Horizontalen von einer Normalkraftfeder (Federkonstante c F ) und einem geschwindigkeitsproportionalen Dämpfungselement (Dämpfungskonstante d) gehalten. An dem Rad ist auf dem Umfang eine Unwuchtmasse m B angebracht. Bei der Winkelgeschwindigkeit Ω wird im stationären Zustand der horizontalen Schwingung die maximale Amplitude von 7,5 mm gemessen. Bestimmen Sie die Dämpfungskonstante d und das Lehrsche Dämpfungsmaß D des Meßgerätes. Wie groß wird die Amplitude der stationären Schwingung, wenn die Masse m B halbiert wird? m A = 10 kg m B = 0,1 kg r A = 30,3 cm Ω = 100 s -1 c F = 101 kn/m

12 Übung zu Mechanik 4 Seite 39 Aufgabe 62 Die unten abgebildeten Stäbe und Rahmen konstanter Biegesteifigkeit tragen jeweils zwei Punktmassen. Bestimmen Sie die Eigenkreisfrequenzen und die zugehörigen Eigenformen für Biegeschwingungen, wobei die Balkenmasse vernachlässigt werden soll. a) EJ = konst. b) EJ = konst. c) EJ feldweise konst. d) EJ feldweise konst. EA =

13 Übung zu Mechanik 4 Seite 40 Aufgabe 63 Gegeben sind Stäbe der Länge l mit konstanter Biegesteifigkeit EJ sowie konstanter Massenbelegung µ. 1) Bestimmen Sie durch Lösung der Schwingungsdifferentialgleichung die ersten und zweiten Eigenkreisfrequenzen sowie die zugehörigen Eigenformen für freie Biegeschwingungen. 2) Geben Sie Näherungslösungen für die ersten Eigenkreisfrequenzen an unter Verwendung der Rayleigh-Quotienten mit Hilfe geeigneter Ansätze für die Eigenformen. a) b) c) d)

14 Übung zu Mechanik 4 Seite 41 Aufgabe 64 Die unten stehenden Stabsysteme mit konstanter Biegesteifigkeit EJ sowie konstanter Massenbelegung µ sind für Biegeschwingungen zu untersuchen. Bestimmen Sie Näherungslösungen für die ersten Eigenkreisfrequenzen unter Verwendung des Rayleigh- Quotienten mit Hilfe geeigneter Ansätze für die Eigenformen. a) b) c) d) e)

Übung zu Mechanik 4 Seite 17

Übung zu Mechanik 4 Seite 17 Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 16 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 2016 Prof. Dr.-Ing.

Mehr

3. Erzwungene gedämpfte Schwingungen

3. Erzwungene gedämpfte Schwingungen 3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung

Mehr

Technische Schwingungslehre

Technische Schwingungslehre Technische Schwingungslehre Von Dipl.-Math. M. Knaebel Professor an der Fachhochschule für Technik Esslingen 5., überarbeitete und erweiterte Auflage Mit 219 Bildern, 41 Beispielen und 73 Aufgaben B. G.

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Übung zu Mechanik 3 Seite 61

Übung zu Mechanik 3 Seite 61 Übung zu Mechanik 3 Seite 61 ufgabe 105 Ein Massenpunkt om Gewicht G fällt aus der Höhe h auf eine federnd gestützte Masse om Gewicht G. Um welchen etrag h wird die Feder (Federkonstante c) maximal zusammengedrückt

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/07/11 Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte

Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte 1 Aufgaben FB Maschinenbau Institut für Mechanik FG Maschinendynamik Prof. Dr.-Ing. H. Irretier Dipl.-Ing. A. Stein Klausur Schwingungstechnik 0. September 011 Name Vorname Matr. - Nr. Punkte =50 Aufgabe

Mehr

Übung zu Mechanik 3 Seite 21

Übung zu Mechanik 3 Seite 21 Übung zu Mechanik 3 Seite 21 Aufgabe 34 Ein Hebel wird mit der Winkelgeschwindigkeit ω 0 angetrieben. Bestimmen Sie für den skizzierten Zustand die momentane Geschwindigkeit des Punktes D! Gegeben: r,

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

1. Aufgabe: (ca. 14% der Gesamtpunkte)

1. Aufgabe: (ca. 14% der Gesamtpunkte) Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Prüfung in Baudynamik 23. Juli 2018 1. Aufgabe: (ca. 14% der Gesamtpunkte) a) Geben Sie Amplitude, Frequenz und Phasenverschiebung

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

1. Aufgabe: (ca. 13% der Gesamtpunkte)

1. Aufgabe: (ca. 13% der Gesamtpunkte) Institut für Mechani Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Prüfung in Baudynami 3. Juli 07. Aufgabe: (ca. 3% der Gesamtpunte) a) Was versteht man unter stationärer Lösung einer

Mehr

2. Schwingungen eines Einmassenschwingers

2. Schwingungen eines Einmassenschwingers Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

Übung zu Mechanik 3 Seite 48

Übung zu Mechanik 3 Seite 48 Übung zu Mechanik 3 Seite 48 Aufgabe 81 Vor einer um das Maß f zusammengedrückten und verriegelten Feder mit der Federkonstanten c liegt ein Massenpunkt der Masse m. a) Welchen Wert muß f mindestens haben,

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Prof. Dr.-Ing. Ams Matrikelnummer: Klausur Technische Mechanik 05/02/13 Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) Das unten abgebildete System befindet sich im Schwerefeld (Erdbeschleunigung g). Es besteht aus einer Rolle (Masse m, Radius r), die über zwei Federn (Federsteifigkeit c) und

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Klausur Maschinendynamik I

Klausur Maschinendynamik I Name: Matrikel: Studiengang: Klausur Maschinendynamik I 4/03/10 Aufgabe 1 Ein mathematisches Pendel der Länge a ist im Punkt A frei drehbar gelagert. Die Punktmasse m ist über eine stets horizontal wirkende

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Fakultät für Physik der LMU

Fakultät für Physik der LMU Fakultät für Physik der LMU 21.02.2013 Klausur zur Vorlesung E1: Mechanik für Studenten der Physik für das Lehramt an Gymnasien und im Nebenfach (6 ECTS) Wintersemester 2012/13 Prof. Dr. Joachim O. Rädler

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Klausur Physik für Chemiker

Klausur Physik für Chemiker Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Winter Semester 2018 Prof. Dr. Mario Agio Klausur Physik für Chemiker Datum: 18.3.2019-10 Uhr Name: Matrikelnummer: Einleitung

Mehr

HARMONISCHE SCHWINGUNGEN

HARMONISCHE SCHWINGUNGEN HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Prof. Dr.-Ing. P. Eberhard SoSe 2018 Ü1.1. Das abgebildete System aus zwei Körperpendeln soll untersucht werden.

Prof. Dr.-Ing. P. Eberhard SoSe 2018 Ü1.1. Das abgebildete System aus zwei Körperpendeln soll untersucht werden. Prof. Dr.-Ing. P. Eberhard SoSe 2018 Ü1.1 Aufgabe 1**: Das abgebildete System aus zwei Körperpendeln soll untersucht werden. An Pendel 1 (Länge l 1, Schwerpunktsabstand d 1, Masse m 1 Trägheitsmoment bezüglich

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 07/02/12 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

Lösung zu Übungsblatt 12

Lösung zu Übungsblatt 12 PN - Physik für Cheiker und Biologen Prof. J. Lipfert WS 208/9 Übungsblatt 2 Lösung zu Übungsblatt 2 Aufgabe Reinhold Messner schwingt in den Bergen: Reinhold Messner öchte den Mount Everest besteigen

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

f = f = f = Institut für Technische und Num. Mechanik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P März 2018

f = f = f = Institut für Technische und Num. Mechanik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P März 2018 Institut für Technische und Num. Mechanik Maschinendynamik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P 1 20. März 2018 Prüfung in Maschinendynamik Nachname, Vorname Aufgabe 1 (6 Punkte) Bestimmen

Mehr

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Prof Dr-Ing Ams Klausur Technische Mechanik C 06/0/1 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel

Mehr

4. Einführung in die Baudynamik

4. Einführung in die Baudynamik Baustatik III SS 2017 4. Einführung in die Baudynamik 4.1 Allgemeine Vorbemerkungen 4.1.1 Bedeutungen der Baudynamik 4.1.2 Grundbegriffe und Klassifizierung 4.1.3 Modellierung der Bauwerksschwingungen

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Robert-Bosch-Gymnasium

Robert-Bosch-Gymnasium Seite - 1 - Gedämpfte, Resonanz am Drehpendel 1. Theoretische und technische Grundlagen Ein flaches Kupferspeichenrad ist in der Mitte leicht drehbar gelagert; die Gleichgewichtslage wird dabei durch zwei

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

1. ZIEL 2. FRAGEN ZUR VORBEREITUNG. A02 Schwingungen A02

1. ZIEL 2. FRAGEN ZUR VORBEREITUNG. A02 Schwingungen A02 Schwingungen 1. ZIEL In diesem Versuch sollen Sie Schwingungen und ihre Gesetzmäßigkeiten untersuchen. Sie werden die Erdbeschleunigung messen und mit einem Foucault-Pendel die Drehung der Erde um ihre

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 05/08/13 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Klausur Technische Mechanik C 04/0/ Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen,

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob

Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob 1. Vorarbeiten zu Hause 1.1 Erzwungene Schwingung einer Feder mit Dämpfung Bewegungsgleichung: m & x + b x& + k x m g = F cos(

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

3 Schwingungsvorgänge

3 Schwingungsvorgänge 3 Schwingungsvorgänge Bei vielen Vorgängen nehmen wichtige Größen, die den Zustand eines Systems beschreiben, regelmäßig wieder den gleichen Wert an. Beispiel sind die Mondphasen, die Jahreszeiten, das

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus.

Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus. Versuch Beschreibung von Schwingungen Wir beobachten die Bewegung eines Fadenpendels Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus.

Mehr

Fachhochschule Hannover

Fachhochschule Hannover Fachhochschule Hannover 9..7 Fachbereich Maschinenbau Zeit: 9 min Fach: Physik II im WS67 Hilfsmittel: Formelsammlung zur Vorlesung. Betrachten Sie die rechts dartellte Hydraulikpresse zum Pressen von

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

FHA Dynamik. Grundaufgaben Seite 1/8. Dynamik Grundlagen. 3. Einleitung und Begriffe Schwingungsfähige Systeme 3

FHA Dynamik. Grundaufgaben Seite 1/8. Dynamik Grundlagen. 3. Einleitung und Begriffe Schwingungsfähige Systeme 3 Grundaufgaben Seite 1/8 Dynamik 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. 2 3. Einleitung und Begriffe 2 4. Schwingungsfähige Systeme 3 5. Eigenfrequenz 3 5.1 Feder-Masse-System 3 5.2 Einfeldträger 3 5.3

Mehr

Maschinendynamik. Klausur Frühjahr Name: Matrikel-Nr.:

Maschinendynamik. Klausur Frühjahr Name: Matrikel-Nr.: Maschinendynamik Klausur Frühjahr 2009 Name: Matrikel-Nr.: Punkte Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 erreichte Punkte mögliche Punkte 60 Maschinendynamik Klausur Frühjahr 2009

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

Eine Einführung in die theoretische Behandlung von Schwingungsproblemen

Eine Einführung in die theoretische Behandlung von Schwingungsproblemen Schwingungen Eine Einführung in die theoretische Behandlung von Schwingungsproblemen Von Dr. rer. nat. Dr.-Ing. E. h. Kurt Magnus Professor an dertechn. Universität München 4., durchgesehene Auflage Mit

Mehr

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen.

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen. Das ist das Paradebeispiel eines schwingenden, schwach gedämpften Systems. waren vor der Erfindung des Quarz Chronometers die besten Zeitgeber in Taschenuhren. Als Unruh bestimmten sie die Dauer einer

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Universität Potsdam Institut für Physik und Astronomie Grundpraktikum S4 Erzwungene Schwingungen Dieses Experiment enthält zwei Bestandteile: Es werden Zusammehänge zwischen erregender und erregter Schwingung

Mehr

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen Physik für Oberstufenlehrpersonen Frühjahrssemester 2018 Schwingungen und Wellen Zum Einstieg in das neue Semester Schwingungen Schwingungen spielen bei natürlichen Prozessen bedeutende Rolle: -Hören und

Mehr

Tutorium Physik 2. Schwingungen

Tutorium Physik 2. Schwingungen 1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der

Mehr

Übung zu Mechanik 1 Seite 50

Übung zu Mechanik 1 Seite 50 Übung zu Mechanik 1 Seite 50 Aufgabe 83 Eine quadratische Platte mit dem Gewicht G und der Kantenlänge a liegt wie skizziert auf drei Böcken, so daß nur Druckkräfte übertragen werden können. Welches Gewicht

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr