2. Freie gedämpfte Schwingungen

Größe: px
Ab Seite anzeigen:

Download "2. Freie gedämpfte Schwingungen"

Transkript

1 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte: Lagerreibung Luftwiderstand innere Reibung des Werkstoffs 2.2-1

2 2. Freie gedämpfte Schwingungen Dämpfungskräfte sind stets der Bewegungsrichtung entgegengesetzt. Die genaue Beschreibung aller dämpfenden Einflüsse ist aufwändig. Das einfachste Dämpfungsmodell ist das Modell einer geschwindigkeitsproportionalen Dämpfung: Dämpfungskonstante d: F D =d v=d ẋ Einheit Kraft/Geschwindigkeit: 1Ns/m = 1kg/s 2.2-2

3 2. Freie gedämpfte Schwingungen 2.1 Schwingungsgleichung 2.2 Dämpfungsfälle 2.3 Dissipierte Energie 2.2-3

4 2.1 Schwingungsgleichung Bewegungsgleichung: m ẍ d ẋ c x=0 Standardform: ẍ 2 ẋ 2 x=0 Abklingkoeffizient: Einheit: N s m kg = kg m s s² m kg =1 s = d 2 m Lösungsansatz: x= A e t ẋ= A e t = x ẍ= 2 A e t = 2 x Einsetzen liefert: A e t =0 Nichttriviale Lösung (A 0) für =

5 2.1 Schwingungsgleichung Charakteristische Gleichung: Lösung: 1/2 = ± 2 2 = ± = Mit dem Lehrschen Dämpfungsmaß D= folgt: 1/2 = ± D

6 2.2 Dämpfungsfälle Starke Dämpfung: D > 1: 2 reelle Lösungen Kritische Dämpfung: D = 1: 1 reelle Lösung Schwache Dämpfung: D < 1: 2 komplexe Lösungen 2.2-6

7 2.2.1 Starke Dämpfung Kritische Dämpfung Schwache Dämpfung Beispiel 2.2 Dämpfungsfälle 2.2-7

8 2.2.1 Starke Dämpfung 2 Reelle Lösungen 1/2 = ± mit = D 2 1= 2 2 Allgemeine Lösung der Schwingungsgleichung: x t = A 1 e 1t A 2 e 2t =e t A 1 e t A 2 e t Das ist eine exponentiell abklingende Bewegung. Für die Geschwindigkeit folgt: ẋ t = e t A 1 e t A 2 e t e t A 1 e t A 2 e t 2.2-8

9 2.2.1 Starke Dämpfung Die Konstanten A 1 und A 2 können aus den Anfangsbedingungen bestimmt werden: Verschiebung: x 0 =x 0 =A 1 A 2 Geschwindigkeit: v 0 =ẋ 0 = A 1 A 2 A 1 A 2 = A 1 A 2 A 1 A 2 = x A 1 A 2 = v 0 A 1 = x 0 v 0 A 1 = x 0 v 0 2 A 2 = x 0 v 0 A 2 = x 0 v

10 2.2.1 Starke Dämpfung v 0 > 0 v 0 = 0 x(t) -δx 0 < v 0 < 0 v 0 < -δx 0 t

11 2.2.2 Kritische Dämpfung Aperiodischer Grenzfall: 1 = 2 = Allgemeine Lösung: x t = A 1 A 2 t e t Geschwindigkeit: ẋ t = A 2 e t A 1 A 2 t e t =[ 1 t A 2 A 1 ] e t Bestimmung der Konstanten A 1 und A 2 aus den Anfangsbedingungen: x 0 =x 0 = A 1 ẋ 0 =v 0 = A 2 A 1 A 1 =x 0 A 2 =v 0 x

12 2.2.2 Kritische Dämpfung x(t) Der Ausschlag geht schneller gegen Null als bei starker Dämpfung. Technische Anwendung findet der Grenzfall z.b. bei der Auslegung von Messgeräten. t

13 2.2.3 Schwache Dämpfung 2 komplexe Lösungen mit 1/2 = ±i d d = 1 D 2 Allgemeine Lösung: x t = A 1 e 1t A 2 e 2t =e t A 1 e i d t A 2 e i d t Die Konstanten A 1 und A 2 sind komplex: A 1 =a 1 i b 1, A 2 =a 2 i b 2 Eulersche Formeln: e ix =cos x i sin x e ix =cos x i sin x x t = e t [ a 1 i b 1 cos d t i sin d t ] e t [ a 2 i b 2 cos d t i sin d t ]

14 2.2.3 Schwache Dämpfung Zusammenfassen der Real- und Imaginärteile: x t = e t [ a 1 a 2 cos d t b 1 b 2 sin d t ] i e t [ b 1 b 2 cos d t a 1 a 2 sin d t ] Die Lösung muss reell sein: a 1 =a 2 = C 1 2, b 1= b 2 = C 2 2 Allgemeine reelle Lösung: x t =e t C 1 cos d t C 2 sin d t

15 2.2.3 Schwache Dämpfung Geschwindigkeit: ẋ t = e t C 1 cos d t C 2 sin d t d e t C 1 sin d t C 2 cos d t Bestimmung von C 1 und C 2 aus den Anfangsbedingungen: x 0 =x 0 =C 1 C 1 =x 0 v 0 =ẋ 0 = C 1 d C 2 C 2 = v 0 x 0 d

16 2.2.3 Schwache Dämpfung Ergebnis: x t =e t [ x 0 cos d t v 0 x 0 d sin d t ] Alternativ (vgl. ungedämpften Fall): mit C= x 2 0 x t =C e t sin d t v 0 x 0 d tan = d x 0 v 0 x 0 2 x 0 =C sin v 0 x 0 =C cos d

17 2.2.3 Schwache Dämpfung T d x(t) t

18 2.2.3 Schwache Dämpfung Es liegt eine exponentiell abklingende Schwingung vor. Die Frequenz f d der gedämpften Schwingung ist kleiner als die Frequenz f der ungedämpften Schwingung: f d f = d = 1 D² Bei vielen praktischen Anwendungen ist D < 5%. Für D = 5% gilt: f d f = 1 0,05²=0,9987 Die Abweichung von der ungedämpften Frequenz beträgt also etwa 0,1%

19 2.2.3 Schwache Dämpfung Verhältnis von 2 Ausschlägen im Zeitabstand einer Periode T d : x t x t T d = C e t sin d t C e t T d sin d t T d =e T d Logarithmisches Dekrement: =ln x t x t T d = T d= 2 d =2 Näherung für sehr schwache Dämpfung (D < 10%): D 1 D 2 1 D D

20 2.2.4 Beispiel Dämpferprüfstand m c/2 d c/2 x Daten: Masse m = 1,5kg Federkonstante c = 150N/m Dämpferkonstante d = 1,8Ns/m Anfangsbedingungen: Auslenkung x 0 = 1,5mm Geschwindigkeit v 0 = 10 mm/s

21 2.2.4 Beispiel Gesucht: Dämpfungsfall maximale Auslenkung Dämpfungsfall: Lehrsches Dämpfungsmaß: Das System ist schwach gedämpft. D= = d m 2m c = d 2 mc 1,8kg/s D= 2 1,5kg 150kg/s² = 1, = 1, =0,

22 2.2.4 Beispiel Maximale Auslenkung: Auslenkung: x t =C e t sin d t Geschwindigkeit: ẋ t =C e t sin d t d cos d t Bei maximalem Ausschlag ist die Geschwindigkeit Null: ẋ t max =0 : sin d t max d cos d t max =0 Abkürzung: = d t max sin = d cos tan = d = 1 D 2 D

23 2.2.4 Beispiel Zahlenwerte: = c m = 150 1,5 kg m s²m kg =10 1 s = D=10 1 s 0,06=0,6 1 s d = 1 D²= 1 0,06²=9,98 1 s tan = d x 0 = 9,98 1,5 v 0 x ,6 1,5 C= x 2 0 v 0 x 0 d mm s =1,3734 =0,9414 s mm = 2 1,5²mm² 10 0,6 1,5 9,98 mm 2=1,855mm

24 2.2.4 Beispiel tan = 1 D² D = 1 0,06² 0,06 =16,6366 =1,5108 = d t max t max = = 1,5108 0,9414 =0,057s d 9,98 s 1 x max =C e t max sin =1,855mm e 0,6 s 1 0,057 s sin 1,5108 =1,79 mm

25 Aufgabenstellung: 2.3 Dissipierte Energie Betrachtet wird ein schwach gedämpftes schwingendes System. Gesucht ist die Energie, die während einer Periode dissipiert wird. Lösung: Potentielle Energie zum Zeitpunkt t = t n : E p t n = 1 2 c x2 t n = 1 2 cc 2 e 2 t n sin 2 d t n

26 2.3 Dissipierte Energie Kinetische Energie zum Zeitpunkt t = t n : v t n =ẋ t n =C e t n [ sin d t n d cos d t n ] E k t n = 1 2 m v2 t n = 1 2 mc 2 e 2 t n [ 2 sin 2 d t n 2 d sin d t n cos d t n d 2 cos 2 d t n ] Gesamte Energie zum Zeitpunkt t = t n : E n =E t n =E p t n E k t n

27 2.3 Dissipierte Energie E n = 1 2 C 2 e 2 t [ n c 2 m sin 2 d t n d m d cos 2 d t n sin 2 d t n ] Zum Zeitpunkt t n+1 = t n + T d gilt: sin d t n 1 =sin d t n, cos d t n 1 =cos d t n Damit folgt für das Verhältnis der Energien: E n 1 E n = e 2 t n T d e 2 t n =e 2 T d =e

28 2.3 Dissipierte Energie Für die während einer Periode dissipierte Energie gilt: E n =E n E n 1 = E n E n 1 E n Verhältnis der Energien nach den ersten N Perioden: E N 1 E 1 E n = 1 e 2 E n = E N 1 E N E 2 =e 2 N E N E N 1 E 1 Während der ersten N Perioden dissipierte Energie: E N =E 1 E N 1 = 1 e 2 N E

29 2.3 Dissipierte Energie Beispiel: Eine masselose, starre Stange mit Feder und Dämpfer trägt eine Masse. c m A F C θ d a a a F D

30 Aufgabenstellung: 2.3. Dissipierte Energie Wie lautet die Bewegungsgleichung? Welche Bedingung muß die Dämpfungskonstante d erfüllen, damit schwache Dämpfung vorliegt? Wie lautet die Lösung der Bewegungsgleichung für die Anfangsbedingungen θ(0) = θ 0 und dθ/dt(0) = 0? Wie groß ist die für D = 0,01 während der ersten Periode dissipierte Energie?

31 2.3 Dissipierte Energie Bewegungsgleichung: Die Bewegung der Stange wird durch den von der Gleichgewichtslage aus gemessenen Winkel θ beschrieben. Für kleine Auslenkungen lautet der Drallsatz bezüglich Punkt A: 2a 2 m = a F C 3 a F D Mit folgt: F C =c a sin c a F D =d 3 a 2a 2 m 3 a 2 d c a 2 =0 4 m 9 d c =0 Standardform: 2 9d 8 m c 4 m =

32 2.3 Dissipierte Energie Bedingung für schwache Dämpfung: Aus der Standardform der Bewegungsgleichung kann abgelesen werden: = 9 d 8 m, 2 = c 4 m Lehrsches Dämpfungsmaß: D= = 9 d 8 m 2 m c = 9 d 4 mc Bedingung für schwache Dämpfung: D 1 d 4 9 mc

33 2.3 Dissipierte Energie Lösung der Bewegungsgleichung: Mit t =e t [C 1 cos d t C 2 sin d t ] d = 1 D²= 1 c 2 81d 1 2 m 16mc folgt: C 1 = 0 C 2 = 0 d = 0 1 D 2 = 0 t = 0 e t D 1 D 2 cos d t D 1 D 2 sin d t

34 Dissipierte Energie: 2.3 Dissipierte Energie Mit D = 0,01 ergibt sich D =2 1 D² =2 0,01 1 0,01² =0,063 E 1 =E 1 E 2 = 1 e 2 0,063 E 1 =0,118 E

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei

Mehr

2. Schwingungen eines Einmassenschwingers

2. Schwingungen eines Einmassenschwingers Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen

Mehr

3. Erzwungene gedämpfte Schwingungen

3. Erzwungene gedämpfte Schwingungen 3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

4. Einführung in die Baudynamik

4. Einführung in die Baudynamik Baustatik III SS 2017 4. Einführung in die Baudynamik 4.1 Allgemeine Vorbemerkungen 4.1.1 Bedeutungen der Baudynamik 4.1.2 Grundbegriffe und Klassifizierung 4.1.3 Modellierung der Bauwerksschwingungen

Mehr

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Schwingungen Donnerstag, der 31.07.008 Inhaltsverzeichnis 1 Einleitung: Schwingungen und Wellen 1

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 3 Energie, Arbeit und Leistung 3 3.1 Energie.................................. 3 3.2 Arbeit...................................

Mehr

Skript zum Ferienkurs Experimentalphysik 1

Skript zum Ferienkurs Experimentalphysik 1 Skript zum Ferienkurs Experimentalphysik 1 Christoph Buhlheller, Rebecca Saive, David Franke Florian Hrubesch, Wolfgang Simeth, Wolfhart Feldmeier 17. Februar 009 Inhaltsverzeichnis 1 Einleitung: Schwingungen

Mehr

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb.

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb. Tutoriumsaufgaben. Aufgabe a) Wir nutzen den Drallsatz für die olle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Θ S φ = M(t) rs + cos(φ) F c + F H () m x = S + F H F c Gl.

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Physik LK 11, 3. Klausur Harmonischer Oszillator Lösung

Physik LK 11, 3. Klausur Harmonischer Oszillator Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben, wenn Zahlenwerte zu berechnen sind. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit

Mehr

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe:

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe: Versuch III Drehpendel Oliver Heinrich oliver.heinrich@uni-ulm.de Bernd Kugler berndkugler@web.de 12.10.2006 Abgabe: 03.11.2006 Betreuer: Alexander Berg 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik!

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Bewegungsgleichung: Dämpfungsrate: Einheit: Kreisfrequenz des Oszillators:

Mehr

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

Physik I Einführung in die Physik Mechanik

Physik I Einführung in die Physik Mechanik Physik I Einführung in die Physik Mechanik Winter 00/003, Prof. Thomas Müller, Universität Karlsruhe Lösung 13; Letztes Lösungsblatt 1. Torsionspendel (a) Vergleichen Sie die Größen rehwinkel ϕ, Winkelgeschwindigkeit

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Schwingungen & Wellen

Schwingungen & Wellen Schwingungen & Wellen 2 2.1 Harmonische Schwingung, Dämpfung, Resonanz I Theorie Schwingungen spielen eine große Rolle in allen Bereichen der Physik. In Uhren sind sie fundamental, in mechanischen Maschinen

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Dieter Suter - 223 - Physik B3, SS03

Dieter Suter - 223 - Physik B3, SS03 Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie

Mehr

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte)

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 013/014 Prof. Dr. J. Schmalian Blatt 8 Dr. P. P. Orth Abgabe 0.1.013 1. Komplexe Zahlen (5 + 5 + 5 + 5 + 5

Mehr

2.9 Gedämpfter Harmonischer Oszillator

2.9 Gedämpfter Harmonischer Oszillator 72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen.

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen. Das ist das Paradebeispiel eines schwingenden, schwach gedämpften Systems. waren vor der Erfindung des Quarz Chronometers die besten Zeitgeber in Taschenuhren. Als Unruh bestimmten sie die Dauer einer

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 13. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Übung zu Mechanik 4 Seite 17

Übung zu Mechanik 4 Seite 17 Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

3 Lineare DGlen mit konstanten Koeffizienten

3 Lineare DGlen mit konstanten Koeffizienten 3 Lineare DGlen mit konstanten Koeffizienten In diesem wichtigen Fall linearer DGlen, dem wir ein eigenes Kapitel widmen wollen, sind die Koeffizientenfunktionen a k (t) a k Konstanten, n 1 x (n) (t)+

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Vorbereitung. Resonanz. Stefan Schierle. Versuchsdatum:

Vorbereitung. Resonanz. Stefan Schierle. Versuchsdatum: Vorbereitung Resonanz Stefan Schierle Versuchsdatum: 17. 01. 2012 Inhaltsverzeichnis 1 Drehpendel, freie Schwingung 2 1.1 Der Versuchsaufbau.............................. 2 1.2 Trägheitsmoment des Pendelkörpers.....................

Mehr

Technische Schwingungslehre

Technische Schwingungslehre Technische Schwingungslehre Von Dipl.-Math. M. Knaebel Professor an der Fachhochschule für Technik Esslingen 5., überarbeitete und erweiterte Auflage Mit 219 Bildern, 41 Beispielen und 73 Aufgaben B. G.

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

A02 Schwingung Resonanz Dämpfung

A02 Schwingung Resonanz Dämpfung A Schwingung Resonanz Dämpfung (A) x t t A Schwingung Resonanz Dämpfung Ziele In diesem Versuch untersuchen Sie Schwingungsphänomene und deren Gesetzmäßigkeiten mit einem Drehschwingsystem ein Beispiel

Mehr

MR - Mechanische Resonanz Blockpraktikum Herbst 2005

MR - Mechanische Resonanz Blockpraktikum Herbst 2005 MR - Mechanische Resonanz, Blockpraktikum Herbst 5 7. September 5 MR - Mechanische Resonanz Blockpraktikum Herbst 5 Assistent Florian Jessen Tübingen, den 7. September 5 Vorwort In diesem Versuch ging

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Physik 1+2 Frühjahr 2008 Prof. G.Dissertori Klausur. Aufgabe 1: Dimensionsanalyse (10 Punkte) a) Es gilt:

Physik 1+2 Frühjahr 2008 Prof. G.Dissertori Klausur. Aufgabe 1: Dimensionsanalyse (10 Punkte) a) Es gilt: Physik 1+2 Frühjahr 2008 Prof. G.Dissertori Klausur Lösungen Aufgabe 1: Dimensionsanalyse (10 Punkte) a) Es gilt: Elektronendichte [n] = cm 3, Massendichte [ρ] = g/cm 3, Avogadrozahl [N A ] = mol 1, molare

Mehr

Galvanometer Versuchsvorbereitung

Galvanometer Versuchsvorbereitung Versuche P1-13,14,15 Galvanometer Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 10.1.2011 1 1 Galvanometer Bei einem Galvanometer handelt

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

Das 2. Newtonsche Gesetz liefert folgende Bewegungsgleichung. mx"(t) = -k x (t) - b x'(t) (1) x" + 2γ x' + ω 0 2 x = 0 (2)

Das 2. Newtonsche Gesetz liefert folgende Bewegungsgleichung. mx(t) = -k x (t) - b x'(t) (1) x + 2γ x' + ω 0 2 x = 0 (2) 6.2-1 6.2 Schwingungen II 6.2.1 Freie Schwingungen mit Dämpfung Bis jetzt haben wir Reibungskräfte außer Acht gelassen. Aber jedes mechanische System besitzt einen gewissen Grad an innerer Reibung, die

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Ferienkurs Experimentalphysik Übung 4 - Musterlösung

Ferienkurs Experimentalphysik Übung 4 - Musterlösung Ferienkurs Experimentalphysik 1 1 Übung 4 - Musterlösung 1. Feder auf schiefer Ebene (**) Auf einer schiefen Ebene mit Neigungswinkel α = befindet sich ein Körper der Masse m = 1 kg. An dem Körper ist

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung,

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, Phasenebene Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, können als Kurven u = f (u, u ), t (u(t), v(t)), v = u, in der sogenannten Phasenebene visualisiert werden. Dabei verläuft

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔!

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔! Schwingungen Harmonische Schwingung 𝐹"#"$ = 𝑥 Rückstellkraft Newton 𝐹 = 𝑚𝑎 𝑥 = 𝑚𝑥 = 𝑚 Bewegungsgleichung + 𝜔 𝑥 = 0 mit 𝜔 = Ansatz: 𝑥 𝑡 = 𝐴𝜔 sin 𝜔 𝑡 𝑥 𝑡 = 𝐴𝜔 cos 𝜔 𝑡 Schwingungsgleichung 𝑥 𝑡 = 𝐴 cos 𝜔 𝑡

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartent E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbau, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

DIFFERENTIALGLEICHUNGEN (DGL)

DIFFERENTIALGLEICHUNGEN (DGL) DIFFERENTIALGLEICHUNGEN (DGL) Definition und Klassifikation und Beispiele Definition und Klassifikation Definition Gleichung, deren Unbekannte eine Funktion ist und die Ableitungen der gesuchten Funktion

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Inhaltsverzeichnis. 1 Fragestellungen der Dynamik... 1

Inhaltsverzeichnis. 1 Fragestellungen der Dynamik... 1 1 Fragestellungen der Dynamik... 1 2 Bewegungen ihre Ursachen und Folgen... 5 2.1 Vieles ist in Bewegung... 5 2.2 Ursachen für Bewegungen... 6 2.3 Folgen von Bewegungen... 7 2.4 Idealisierungen... 8 2.4.1

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Aufgaben Dynamik Vorkurs Mathematik-Physik, Teil 8 c 6 A. Kersch. Ein D-Zug (Masse 4t) fährt mit einer Geschwindigkeit von 8km/h. Er wird auf einer Strecke von 36m mit konstanter Verzögerung zum Stehen

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik 1 für Naturwissenschaften Modul 112 Lineare Differenzialgleichungen zweiter Ordnung Hans Walser: Modul 112, Lineare Differenzialgleichungen zweiter Ordnung ii Inhalt 1 Lineare Differenzialgleichungen

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung:

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: (3q.6) folgt auch direkt, wenn ein exp-ansatz für x(t),

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr