Klassische Theoretische Physik II
|
|
|
- Hartmut Hofmeister
- vor 6 Jahren
- Abrufe
Transkript
1 v SoSe 28 Klassische Theoretische Physik II Vorlesung: Prof. Dr. K. Melnikov Übung: Dr. H. Frellesvig, Dr. R. Rietkerk Übungsblatt 3 Ausgabe: Abgabe: bis 9:3 Aufgabe : Teller 8 Punkte Wir entwenden aus der TTP-Küche einen dünnen kreisförmigen Teller mit dem Radius R und einer homogenen Massendichte, sodass die Gesamtmasse des Tellers m beträgt. Wir positionieren den Teller in der x, y-ebene mit dem Zentrum im Ursprung. (a) Was ist das (skalare) Trägheitsmoment des Tellers um die z-achse? (b) Was ist das (skalare) Trägheitsmoment des Tellers um die x-achse? Und um die y-achse? (c) Betrachten Sie eine Achse parallel zur z-achse durch den Rand des Tellers. Berechnen Sie das (skalare) Trägheitsmoment des Tellers um diese neue Achse mithilfe des Steinerschen Satzes. (d) Beantworten Sie die vorherige Frage durch das direkte Lösen des Integrals und überprüfen Sie die Übereinstimmung mit dem vorherigen Resultat. (e) Nun bohren wir ein Loch mit dem Radius q an der Stelle (r,, ) in den Teller, so dass q < r und q + r < R. Was sind nun die (skalare) Trägheitsmomente des Tellers um die x-, y-, und z-achse? (f) Nachdem wir den Teller gegen einen neuen ohne Loch ersetzt haben, legen wir diesen auf eine Töpferscheibe, die ihn mit der Kreisfrequenz ω um die x-achse rotieren lässt. Was ist die kinetische Energie des Tellers? (g) Nun nehmen wir den Teller und lassen ihn durch den Flur im. Stock mit der Geschwindigkeit v rollen. Was ist seine kinetische Energie? Aufgabe 2: Polygon 4 Punkte Wir betrachten ein homogenes dünnes regelmäßiges Polygon mit der Masse m, der Fläche A und mit N Seiten. (a) Berechnen Sie das (skalare) Trägheitsmoment I N senkrechte Achse durch das Zentrum. des Polygons um die (b) Zeigen Sie, dass sich mit dem allgemeinen Resultat der vorherigen Frage die Trägheitsmomente eines Quadrats und eines Kreises reproduzieren lassen: Hinweis: Verwenden Sie I Quadrat = ma 6, I Kreis = ma 2π. () lim N tan(π/n) = π. N Seite von 6
2 Aufgabe 3: Schaukelstuhl 8 Punkte Nachdem wir den ganzen Tag mit Tellern und Polygonen gearbeitet haben, wollen wir uns in einem Schaukelstuhl ausruhen. Dieser hat die Masse m und das Tra gheitsmoment Is um der Massenmittelpunkt. Die Fu ße des Stuhls sind bogenfo rmige Holzstu cke mit dem Radius R. Wenn der Stuhl aufrecht steht, befindet sich der Massenmittelpunkt auf der Ho he h (mit h < R) u ber den Kontaktpunkten. Ziel dieser Aufgabe ist es, die Schaukelfrequenz des Schaukelstuhls zu bestimmen. R R! h! Abbildung : Schaukelstuhl. (a) Finden Sie die Position des Massenmittelpunkts (xcm (θ), ycm (θ)) in Abha ngigkeit des Winkels θ zwischen dem Schaukelstuhl und der Vertikalen. Der Winkel ist so definiert, dass bei θ = der Stuhl aufrecht steht und er bei θ > ru ckwa rts neigt, siehe Abbildung 2. Der Ursprung liege bei (xcm (), ycm ()) = (, h). (b) Bestimmen Sie die potentielle Energie des Schaukelstuhls (bedingt durch Gravitation) in Abha ngigkeit von θ. Entwickeln Sie die potentielle Energie um den Gleichgewichtspunkt. Warum sind kleine Schwingungen des Schaukelstuhls um den Gleichgewichtspunkt stabil? (c) Bestimmen Sie die kinetische Energie des Schaukelstuhls in Abha ngigkeit von θ und entwickeln Sie diese um den Gleichgewichtspunkt. (d) Zeigen Sie, dass die Frequenz der kleinen Schwingungen durch s mg(r h) f= 2π Is + mh2 () gegeben ist. "! Abbildung 2: Der ru ckwa rts neigende Schaukelstuhl bildet einen Winkel θ zur Vertikalen. Seite 2 von 6
3 Lösung der Aufgabe (a) Punkt I um z-achse Zunächst finden wir die Masse durch die Flächenmassendichte ρ: R 2π R m = ρda = ρrdθdr = 2πρ rdr = πρr 2 ρ = m πr 2. (2) Somit erhalten wir für das Trägheitsmoment um die z-achse: I z = ρr 2 da = m R πr 2π r 3 dr = 2m 2 R 2 4 R4 = 2 mr2. (3) (b) Punkt I um x- und y-achse Um die x-achse: I x = ρy 2 da = m R R 2 z 2 dx 2 dy y 2 = 2m R dx πr 2 R πr ( R x 2 ) 3 R = 2mR2 3π ( ξ 2 ) 3 dξ = mr2. (4) 4 Das Problem ist symmetrisch für x und y. Somit ist die Lösung um die y-achse dieselbe: I y = mr2 4 (c) Punkt I um neue vertikale Achse Aus dem Steinerschen Satz folgt: I v = md 2 + I cm = mr mr2 = 3 2 mr2 (5) (d) Punkt I um neue vertikale Achse mittels direkter Berechnung Wir parametrisieren den Kreis durch k und φ,wobei k der Abstand zur Achse ist. Der Satz des Thales verrät uns, dass die obere Grenze der k-integration 2R sin φ ist. Daher: I v = = 3mR2 2 ρk 2 da = m πr 2 π/2 π/2 dφ 2R sin φ dk k 3 = 4mR2 π π/2 π/2 dφ sin 4 φ (e) 2 Punkte Gebohrtes Loch Der Trick hier ist, das Loch als zusätzlichen Teller mit negativer Masse zu betrachten, der auf den ursprünglichen Teller geklebt wird. Der Loch-Teller hat die Masse (6) ρπq 2 = m q2 R 2 (7) Seite 3 von 6
4 Um seinen eigenen Massenschwerpunkt gilt: I hz = m q4 2R 2 I hx = I hy = m q4 4R 2 (8) Zieht man nun den Abstand zum Massenschwerpunkt des ursprünglichen Tellers in Betracht, so gilt um diesen Punkt: I hz = m q2 r 2 R 2 m q4 2R 2, I hx = m q4 4R, I 2 hy m q2 r 2 R m q4 2 4R 2 (9) Das Gesamtträgheitsmoment ist somit gegeben als die Summe der beiden Teller: ) I z = ( mr2 q4 2 R 2q2 r 2 4 R ) 4 I x = ( mr2 q4 () 4 R 4 ) I y = ( mr2 q4 4 R 4q2 r 2 2 R 4 Wenn das Loch als klein angenommen wird, kann man die q 4 Terme vernachlässigen. (f) Punkt Rotation um x-achse E = 2 I xω 2 = mr2 ω 2 8 () (g) Punkt Auf dem Boden rollen Wenn etwas rollt, ist der Punkt, der den Boden berührt stationär, somit ist v = ωr (d.h. die Geschwindigkeit folgt allein aus der Drehbewegung). Die kinetische Energie ist gegeben durch: T = T rot + T trans = 2 mv2 + 2 I zω 2 = 2 mv2 + 4 mr2 ( v R )2 = 3 4 mv2 (2) Lösung der Aufgabe 2 (a) 2 Punkte Trägheitsmoment des Polygons Verwende die Symmetrie des Problems und teile das Polygon in N Dreiecke. Jedes Dreieck hat zwei Ecken an den Endpunkten einer Seite des Polygons und die dritte Ecke liegt im Zentrum des Polygons. Damit ist das Trägheitsmoment des Polygons die Summe der N Trägheitsmomente der einzelnen Dreiecke: I N = NI tri. Seite 4 von 6
5 Ein Dreick hat die Fläche A/N und einen Öffnungswinkel (vom Zentrum aus gesehen) von 2π/N. Sein Trägheitsmoment beträgt: I tri = dm r 2 = µ = 2µ b b y tan(π/n) dy dy y tan(π/n) y tan(π/n) dx (x 2 + y 2 ) (3) dx (x 2 + y 2 ), (4) wobei µ = m/a die konstante Massendichte und b der kürzeste Abstand zwischen dem Zentrum und dem Rand des Polygons ist. b erfüllt folgende Bedingung: b 2 = (A/N)(/ tan(π/n)). Das Ausführen des Integrals ist einfach und ergibt: b ( ) I tri = 2(m/A) dy 3 y3 tan 3 (π/n) + y 3 tan(π/n) ( ) = 2(m/A) tan(π/n) 3 tan2 (π/n) + 4 b4 (5) = ma 2N 2 [ tan(π/n) + 3 tan(π/n) Multiplitkation mit N ergibt letztendlich: I N = ma [ ] tan(π/n) +. (6) 2 3N N tan(π/n) (b) 2 Punkte Reproduzieren eines Quadrats und eines Kreises Setzen wir N = 4 und verwenden tan(π/4) =, ergibt sich: I Quadrat = I 4 = ma [ ] = ma 4 6, (7) Dies ist das Trägheitsmoment eines Quadrats um die senkrechte Achse durch den Mittelpunkt. Im Limit N wird das Polygon zu einem perfekten Kreis. Dabei strebt der Term tan(π/n) gegen Null, während gegen /π konvergiert. 3N N tan(π/n) Damit ergibt sich: ]. I Kreis = lim I N = ma [ + ] = ma N 2 π 2π. (8) Lösung der Aufgabe 3 (a) 2 Punkte Position des Massenschwerpunkts x cm (θ) = R θ (R h) sin θ, y cm (θ) = R (R h) cos θ, (9) Seite 5 von 6
6 (b) 2 Punkte Potentielle Energie U = mgy cm = mg[r (R h) cos θ] mgh + 2 (R h)θ2 (2) Durch die Annahme h < R ist die potentielle Energie eine Parabel mit dem Minimum am Gleichgewichtspunkt θ =. Dadurch, dass dort ein Minimum ist, sind Oszillationen um den Gleichgewichtspunkt stabil. (c) 2 Punkte Kinetische Energie Beachte, dass die kinetische Energie zwei Beiträge hat: einen von der translatorischen und einen von der rotatorischen Bewegung! T = 2 m(ẋ2 cm + ẏcm) I θ 2 = [ (xcm 2 m θ ) 2 ( 2 ycm ) ] dθ dθ 2 I θ 2 = ] [R 2 m θ (R h) 2 2R(R h) cos θ + 2 I θ 2 (2) 2 mh2 θ2 + 2 I θ 2 Wir vernachlässigen hier den Term θ 2 in der Entwicklung des Cosinus, da bereits der Vorfaktor θ 2 als klein angenommen wird in der Kleinwinkelnäherung. (d) 2 Punkte Bestimmung der Frequenz Mit dem Langrangian L = T U berechnen wir (natürlich!) die Euler- Lagrange-Gleichung (I + mh 2 ) θ + mg(r h)θ =. (22) Diese Gleichung kann in der Form θ + ω 2 θ = geschrieben werden, die einen harmonischen Oszillator mit der Frequenz beschreibt. f = 2π ω = mg(r h) (23) 2π I + mh 2 Seite 6 von 6
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
Repetitorium Theoretische Mechanik, SS 2008
Physik Departement Technische Universität München Dominik Fauser Blatt Repetitorium Theoretische Mechanik, SS 8 Aufgaben zum selbständigen Lösen. Ring mit Kugel Ein Ring, auf dem eine Kugel angebracht
Übungen zum Ferienkurs Theoretische Mechanik
Übungen zum Ferienkurs Theoretische Mechanik Starre Körper Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet. 3.1 Trägheitstensor eines homogenen Quaders Bestimmen Sie den
Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen
Physik Department Technische Universität München Matthias Eibl Blatt 4 Ferienkurs Theoretische Mechanik 9 Starre Körper und Rotation - en Aufgaben für Donnerstag 1 Kinetische Energie eines rollenden Zylinders
Probeklausur zur T1 (Klassische Mechanik)
Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte
Allgemeine Mechanik. Via Hamilton-Gl.: Die Hamiltonfunktion ist (in Kugelkoordinaten mit Ursprung auf der Kegelspitze) p r. p r =
Allgemeine Mechanik Musterl osung 11. Ubung 1. HS 13 Prof. R. Renner Hamilton Jacobi Gleichungen Betrachte die gleiche Aufstellung wie in 8.1 : eine Punktmasse m bewegt sich aufgrund der Schwerkraft auf
Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018
Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen
Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]
Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
Massenträgheitsmomente homogener Körper
http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine
Klassische Theoretische Physik II
SoSe 2019 Klassische Theoretische Physik II Vorlesung: Prof. Dr. K. Melnikov Übung: Dr. M. Jaquier, Dr. R. Rietkerk Übungsblatt 6 Ausgabe: 31.05 Abgabe: 07.06 @ 09:45 Uhr Besprechung: 11.06 Auf Lösungen
Integration über allgemeine Integrationsbereiche.
Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und
2. Klausur zur Theoretischen Physik I (Mechanik)
2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie
Klassische Theoretische Physik III (Elektrodynamik)
rev: 1.17 WiSe 017/18 Klassische Theoretische Phsik III Elektrodnamik) Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 8 Ausgabe: Fr, 15.1.17 Abgabe: Fr,.1.17 Besprechung: Mi, 10.01.18
Übungen zu Theoretischer Mechanik (T1)
Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 8 Übungen zu Theoretischer Mechanik (T) Übungsblatt, Besprechung ab.7.8 Aufgabe. Trägheitstensor
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )
b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt
Winter 2015/2016, Prof. Thomas Müller, IEKP, KIT. Aufgabenblatt 8; Übung am 16.Dezember (Mittwoch)
Winter 15/16, Prof. Thomas Müller, IEKP, KIT Aufgabenblatt 8; Übung am 16.Dezember (Mittwoch) 1. Kettenkarussel Auf dem Jahrmarkt sind die Shuttles der Attraktion Shuttle in die Unendlichkeit an 4 m langen
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik
Mehrdimensionale Integration
Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der
Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16
Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2
D-EDW, D-HET, D-UY Mathematik II F Dr. Ana annas Lösungen zu erie 8. a) Wir berechnen den Fluss von F mittels Green F n ds + ) dx dy und die Zirkulation F T ds )) dx dy wobei Vol ) den Flächeninhalt des
x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.
Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das
3. Erhaltungsgrößen und die Newton schen Axiome
Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray [email protected] 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober
Übungsblatt 06 Grundkurs IIIb für Physiker
Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, ([email protected]) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation
v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2
Aufgabe 1 Mit: und ( x r(t) = = y) ( ) A sin(ωt) B cos(ωt) v(t) = r(t) t a(t) = 2 r(t) t 2 folgt nach komponentenweisen Ableiten ( ) Aω cos(ωt) v(t) = Bω sin(ωt) a(t) = ( ) Aω2 sin(ωt) Bω 2 cos(ωt) Die
Aufgabe 1: Doppelpendel a) [2 Pkte.] Zwangsbedingungen: Massenpunkte auf Kreisen, also A 1 : x y 2 1 l 2 = 0,
Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 : PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Nachklausur vom 28. Oktober 2009 Aufgabe : Doppelpendel
Schriftliche Vordiplomprüfung Physik
Schriftliche Vordiplomprüfung Physik Prof. T. Esslinger / Prof. R. Monnier Dated: Mittwoch, 17. September 2003, 9:00 12:00 Uhr) Aufgaben I. ELEKTRON IM MAGNETFELD Ein Elektron Ladung e, Masse m) bewegt
Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:
Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle
Serie 6. x 2 + y 2, 0 z 4.
Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {
Theoretische Physik: Mechanik
Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort
Klassische Theoretische Physik I WS 2013/2014
Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
Versuch dp : Drehpendel
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung
Lagrange Formalismus
Lagrange Formalismus Frank Essenberger FU Berlin 1.Oktober 26 Inhaltsverzeichnis 1 Oszillatoren 1 1.1 Fadenpendel.............................. 1 1.2 Stabpendel.............................. 3 1.3 U-Rohr................................
Physik I Übung 10 - Lösungshinweise
Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der
Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)
Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +
Mehrdimensionale Integralrechnung 2
Mehrdimensionale Integralrechnung Quiz Wir wollen die Dynamik zweier Teilchen beschreiben, die über ein hoch elastisches Seil verbunden sind und sich wild im Raum bewegen! Ein Kollege schlägt dazu vor
mit 0 < a < b um die z-achse entsteht.
Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit
Blatt 4. Stoß und Streuung - Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei
Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0
Vorlesung 11 Streuung bei nieigen Energien Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen darstellen können σ = 4π k l + 1 sin δ l. 1 l= Allerdings hat diese Reihe
Probeklausur zur Theoretischen Physik I: Mechanik
Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst
Lösung für Blatt 7,,Elektrodynamik
Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert
Übungsblatt 05. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,
Übungsblatt 05 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, ([email protected]) 18. 11. 005 und 1. 11. 005 1 Aufgaben 1. Berechnen Sie für einen LKW von 40t Masse
Repetitorium D: Starrer Körper
Fakultät für Physik T: Klassische Mechanik, SoSe 206 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale
D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz
Rückblick auf die letzte Vorlesung
Rückblick auf die letzte Vorlesung 1. Integration (Fortsetzung) 2. Existenz von Integralen auf Quadern und allgemeineren Mengen 3. Satz von Fubini 4. Berechnung von Integralen 5. Volumina 6. Normalgebiete
Blatt 1. Kinematik- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die
Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte)
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik III WS 014/015 Prof Dr A Shnirman Blatt 8 Dr B Narozhny Lösungen 1 Elektromagnetische Induktion:
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und
D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18
D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )
ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang
ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13
Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte
T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach [email protected] Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das
Erste Schularbeit Mathematik Klasse 7A G am
Erste Schularbeit Mathematik Klasse 7A G am 12.11.2015 Korrekturversion Aufgabe 1. (2P) Zahlenmengen. Es folgen Aussage über Zahlenmengen. Kreuzen Sie die beiden zutreffenden Aussagen an! 2 10 3 ist eine
Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr
KIT SS 4 Klassische Theoretische Physik II V: Prof Dr M Mühlleitner, Ü: Dr M auch Klausur Lösung 8 Juli 4, 7-9 Uhr Aufgabe : Kurzfragen (+++=8 Punkte (a Verallgemeinerte Koordinaten sind Koordinaten, die
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
Klausur Physik I für Chemiker
Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Agio Department Physik Klausur Physik I für Chemiker Lösung zu Aufgabe 1: Kurzfragen Lösung zu Aufgabe 2:
Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik
Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in
Lösungen zur Theoretischen Physik 1 für das Lehramt L3 Blatt 1
H. van Hees Wintersemester 18/19 Lösungen zur Theoretischen Physik 1 für das Lehramt L3 Blatt 1 Schul-Mathe-Test Ziel dieses Mathe-Tests ist es, dass wir (Dozent und Tutoren) Ihre Vorkenntnisse in der
Rollender Zylinder in Zylinder
Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.
(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 17. Januar 26 Übungsblatt 9 Lösungsvorschlag 4 Aufgaben,
Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt
Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt Aufgabe 3 Prof. Dr. Schön und Dr. Eschrig Wintersemester 004/005 Durch Trennung der Veränderlichen und anschließende Integration ergibt sich aus
Musterlösung zur Probeklausur Theorie 1
Institut für Physik WS 24/25 Friederike Schmid Musterlösung zur Probeklausur Theorie Aufgabe ) Potential In einem Dreiteilchensystem (eine Dimension) wirken folgende Kräfte: F = (x x 2 )x 2 3, F 2 = (x
E1 Mechanik Lösungen zu Übungsblatt 2
Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der
Klausursammlung Grundlagen der Mechanik und Elektrodynamik
Klausursammlung Grundlagen der Mechanik und Elektrodynamik Fachschaft Physik Stand: Mai 27 Liebe Physik-Studis, hier haltet ihr die Klausursammlung für das Modul Grundlagen der Mechanik und Elektrodynamik
Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner
Technische Universität München SS 4 Zentrum Mathematik 5.7.4 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 3 (Mehrdimensionale Integrale, (a Wir benutzen die verallgemeinerten
Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1
Ferienkurs Elektrodynamik WS / Übungsblatt Tutoren: Isabell Groß, Markus Krottenmüller, Martin Ibrügger 9.3. Aufgabe - Geladene Hohlkugel In einer Hohlkugel befindet sich zwischen den Radien r und r eine
D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld
D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +
Vektorrechnung in der Physik und Drehbewegungen
Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen
Grundlagen der Physik 1 Lösung zu Übungsblatt 6
Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................
Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)
Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle
1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle
Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als
Übungsblatt 2. zur Vorlesung EP2 (Prof. Grüner) im SS Mai Aufgabe 1: Feldlinien. Aufgabe 2: Elektrisches Feld einer geladenen Linie
Übungsblatt zur Vorlesung EP (Prof. Grüner) im SS 0 0. Mai 00 Aufgabe : Feldlinien a) Richtig oder falsch? Das elektrische Feld einer Punktladung zeigt immer von der Ladung weg. Falsch! Bei negativen Ladungen
Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral
Analysis D-BAUG Dr. ornelia Busch FS 6 Serie 9. Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green das Linienintegral xy dx + x y 3 dy, D wobei D das Dreieck mit den Eckpunkten (,,
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme
Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General
Formelsammlung: Physik I für Naturwissenschaftler
Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9
Prof. C. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9 Aufgabe 34: Steinerscher Satz für den Trägheitstensor Der Schwerpunkt liege im Ursprung des Koordinatensystems.
Dynamik der gkb: die Zentripetalkraft
PD Dr. N.Grinberg - Physik, Kl.0, Zentripetalkraft Dynamik der gkb: die Zentripetalkraft Eine Kraft, egal welcher Natur, die einen Körper auf eine kreisförmige Laufbahn zwingt, nennt man Zentripetalkraft.
Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...
................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik
2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik
2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2.1. Trägheits- bzw. Scheinkräfte Die Bewegung in einem beschleunigen Bezugssystem lässt sich mit Hilfe von sogenannten Scheinkräften
15. Bereichsintegrale
H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von
INSTITUT FÜR THEORETISCHE PHYSIK. Prof. Dr. U. Motschmann Dr. M. Feyerabend. Theoretische Mechanik SS 2017
INSTITUT FÜR THEORETISCHE PHYSIK Prof. Dr. U. Motschmann Dr. M. Feyerabend Theoretische Mechanik SS 2017 Klausurvorbereitung Bearbeitungszeit: 180 Minuten 1. Wissensfragen (20 Punkte) Benennen Sie alle
Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.
Lösung III Veröentlicht:
1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition
Integralrechnung für GLET
Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten
Übungen zu Theoretischer Mechanik (T1)
Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare
