Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0

Größe: px
Ab Seite anzeigen:

Download "Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0"

Transkript

1 Vorlesung 11 Streuung bei nieigen Energien Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen darstellen können σ = 4π k l + 1 sin δ l. 1 l= Allerdings hat diese Reihe unendlich viele Terme und die Streuphasen sind nicht bekannt. Das bedeutet, dass diese Darstellung nicht sehr praktisch ist. Es gibt aber ein wichtiger Fall die Streuung bei nieigen Energien wo wir nur eine kleine Zahl von Termen in Gl. 1 brauchen. Um das zu bestätigen, gehen wir zurück zur Schrödingergleichung und versuchen, eine exakte Darstellung für die Streuphasen zu erreichen. Wir schreiben die Wellenfunktionen als ψ r = Y lm θ, φu l r/r und bekommen für den Radialteil die Schrödingergleichung [ ll + 1 d u l r + r + mv r ] u l r = k u l r, Die Schrödingergleichung für ein freies Teilchen lautet [ ] d f l r ll r f l r = k f l r, Wir betrachten jetzt eine Funktion W l r = df lr k = me. k = me. 3 u l r f l r du lr, 4 leiten nach r ab, benutzen die Schrödingergleichungen für f l r und u l r und bekommen dw l r Dann finden wir durch Integrieren W l r = W l m = m V ru lrf l r. 5 r u l rf l rv r. 6 Was ist W l? Für Potentiale V r, die bei r kleiner sind als das Zentrifugalpotential 1/r, kann man V r in diesem Limes vernachlässigen, sodass die reguläre Lösung der zwei Schrödingergleichungen Gl. und 3 bei r identisch sind. Das bedeutet, dass dann W l = ist. Als zweiten Punkt wollen wir r betrachten. Dann sind die Lösungen u l = sin kr lπ + δ l, f l = sin kr lπ. 7 1

2 Wir berechnen lim W df l r lr = lim u l r f l r du lr r r = k cos kr lπ sin kr lπ + δ l k sin kr lπ cos kr lπ + δ l 8 D.h. = k sin δ l sin δ l = m k u l r f l r V r. 9 Wir wollen diese exakte Formel analysieren und zwar im Fall großer l-werte. Das effektive Potential in der Schrödingergleichung hat die Form V eff r = ll + 1 r + mv r. 1 Wir stellen uns vor, dass V r eine endliche Reichweite R hat, sodass V r für r > R. Wenn l größer wird, verschiebt sich das klassisch erlaubte Bewegungsgebiet nach rechts, bis es schließlich außerhalb des r-intervalls liegt, in dem V r wichtig ist. Dies bedeutet, dass, wenn l zunimmt, das Potential V r unwichtiger wird. Also folgt, dass die Streuphasen δ l für große l kleiner sind. Wir können abschätzen für welche l-werte diese Situation eintritt. Als ersten Schritt berechnen wir den Wendepunkt r l der klassischen Bewegung des freien Teilchens dies entspricht dem kleinsten Abstand des Teilchens zum Ursprung ll + 1 mr l = E ll + 1 = k r l. 11 Es gilt dann, für r l R, ll + 1 mr E, ll + 1 kr l kr. 1 Falls diese Bedingung erfüllt ist, ist δ l klein und wir können die exakte Lösung der Schrödingergleichung u l r durch die freie Lösung f l r in Gl. 9 ersetzen. Wir erhalten δ l = m k V rf l r. 13 Wie groß dieses Integral ist, können wir abschätzen. Für das Integral brauchen wir wegen der endlichen Reichweite nur das Intervall < r < R und wir betrachten die l-werte, die R r l erfüllen. Dann können wir die Gleichung für f l r so schreiben d f l r + k r l r 1 f l r =. 14

3 Da wir uns für Werte von r interessieren, wo r l /r 1 ist, können wir die obige Gleichung vereinfachen d f l r + k r l r f lr =. 15 Diese Gleichung können wir jetzt ohne Probleme lösen. Als Ansatz nehmen wir f l r = r ν und bekommen ν1 ν + ll + 1 =, ν = l + 1 oder l. 16 Wir suchen eine bei r = reguläre Lösung, d.h. es bleibt nur 1 Damit schätzen wir dann die Phase ab durch δ l m R kr l+ V r = m f l r kr l dξ R krξ l+ V ξr kr l+1, 18 wobei wir angenommen haben, dass m/ V ξr 1/R skaliert basierend auf Dimensionsanalyse. D.h. δ l kr l+1, 19 und, weil kr 1 ist, nimmt δ l mit wachsendem l ab. Es ist offensichtlich, dass sich alle diese Näherungen für kleine Energien verbessern die Bedingung l kr ist für alle l-werte im Limes k erfüllt. Im Extremfall k ist nur der Term mit l = S-Welle wichtig. Dann Wir definieren die Streulänge durch Der Wirkungsquerschnitt ist dann σ k 4π k sin δ. e iδ sin δ lim k k = a. 1 lim σ = k 4πa. Wie groß oder klein kann die Streulänge sein? Um das zu bestimmen, schauen wir uns ein Beispiel an die Streuung an einen Potentialtopf. Wir interessieren uns nur für nieige Energien und betrachten S-Wellen. Das Potential ist V r = V θr r. 3 1 Den Vorfaktor k L führen wir ein, weil für unsere Normierung f l r einheitenlos sein soll. 3

4 Die Schrödingergleichung lautet dann d f r = k f r, r > R, d f r = k + mv f r, r < R. 4 Die zwei Lösungen sind wobei f r = A sinkr + δ θr R + B sinκr θr r, 5 κ = Die Stetigkeit von f r und df r/ bei r = R ergibt k + mv. 6 tankr + δ tanκr = k κ. 7 Die Gleichung 7 ist gültig für alle k-werte. Wir lösen die Gleichung nach δ und bekommen k δ = kr + atan κ tanκr. 8 Im k Limit bekommen wir κ = κ. Falls tanκ R nicht zu groß ist, bekommen wir δ = k R + tanκ R 9 κ Falls der Potentialtopf flach ist, also κ R 1 gilt, erhalten wir δ = k D.h. der Wirkungsquerschnitt lautet 1 3 κ R 3, a = κ R σ = 4πa = 4π κ4 R6 9 = 4π 4m V 9 4 R Weil κ R 1 ist, ist der Wirkungsquerschnitt σ κ R 4 R, d.h. κ R 4 -mal kleiner als der natürliche Wert σ R. Es gibt aber auch einen anderen Fall und zwar wenn tanκ R = ist. In diesem Fall können wir obige Näherungen nicht rechtfertigen und wir müssen unsere Vorgehensweise ändern. Wir schauen uns Gl. 8 an und stellen fest, dass im Limes k, wenn tan κ R 1 ist, wir den Term kr vernachlässigen können. Dann gilt Wir benutzen tanx x + x 3 /3 + Ox 5. tan δ = k tan κr 3 κ 4

5 und wir schreiben Der Wirkungsquerschnitt ist dann sin δ = tan δ 1 + tan δ = k γ + k, γ = κ tanκr. 33 σ = 4π γ + k. 34 Weil γ 1/ tanκ R 1 ist, ist der Wirkungsquerschnitt bei kleinen Energien sehr groß. In diesem Fall spricht man von Resonanzstreuung. Was bedeutet das physikalisch? Um das zu verstehen, gehen wir zurück zur Schrödingergleichung und schreiben die Gleichung für einen gebundenen S-Zustand mit der Energie E = k /m. Wir finden die zwei Lösungen ur > R = A 1 e kr, ur < R = A sin κr, 35 wobei κ = mv/ k ist. Die Forderung der Stetigkeit bei r = R ergibt tan κr κ = 1 k. 36 Wir sehen jetzt, dass k = gerade tanκ R = entspricht; k = bedeutet aber, dass es einen gebundenen Zustand mit Energie Null gibt. Ein großer Wirkungsquerschnitt bei kleinen Energien oder eine große Streulänge ist ein Signal dafür, dass so ein Zustand existiert. 5

H LS = W ( r) L s, (2)

H LS = W ( r) L s, (2) Vorlesung 5 Feinstruktur der Atomspektren Wir betrachten ein Wasserstoffatom. Die Energieeigenwerte des diskreten Spektrums lauten E n = mα c n, (1 wobei α 1/137 die Feinstrukturkonstante, m die Elektronmasse

Mehr

Zusätzliche Aspekte der Absorbtion und Emission von Photonen

Zusätzliche Aspekte der Absorbtion und Emission von Photonen Vorlesung 9 Zusätzliche Aspekte der Absorbtion und Emission von Photonen Plancksche Verteilung und thermisches Gleichgewicht: Wir betrachten ein Medium aus Atomen. Die Atome wechselwirken nicht direkt

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 21 Übungsblatt Nr. 3 Bearbeitung bis 6.5.21 Aufgabe 1: Neutronensterne Im Allgemeinen kann man annehmen, dass die Dichte in Zentrum von Neutronensternen

Mehr

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung Vorlesung 8 Spontane Abstrahlung, Multipolentwiclung Wir betrachten das Wasserstoffatom im P -Zustand. Falls wir ein Wasserstoffatom in Isolation betrachten, ist der P -Zustand stabil. Wie wir aber schon

Mehr

Matrixelemente von Tensoroperatoren und die Auswahlregeln

Matrixelemente von Tensoroperatoren und die Auswahlregeln Vorlesung 3 Matrixelemente von Tensoroperatoren und die Auswahlregeln In der Quantenmechanik müssen wir ab und zu die Matrixelemente von verschiedenen Operatoren berechnen. Von spezieller Bedeutung sind

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Nach der Drehung des Systems ist der neue Zustandsvektor

Nach der Drehung des Systems ist der neue Zustandsvektor Vorlesung 1 Die allgemeine Theorie des Drehimpulses Eine Drehung des Quantensystems beschreibt man mit Hilfe des Drehimpulsoperators. Um den Drehimpulsoperator zu konstruieren, betrachten wir einen Vektor

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip Vorlesung 1 Identische Teilchen und das Pauli-Prinzip Identische Teilchen: Jede Art von Teilchen in der Natur definieren wir durch ihre Eigenschaften, z.b. Massen, Spins, Ladungen usw. Das bedeutet, dass

Mehr

Potentialstufen. Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen.

Potentialstufen. Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen. Potentialstufen Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen. Stetigkeit von ψ(x, ψ (x für stückweise stetiges Potential betrachte

Mehr

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r =

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r = Volesung 9 Die elastische Steuung, optisches Theoem, Steumatix Steuexpeimente sind ein wichtiges Instument, das uns elaubt die Eigenschaften de Mateie bei kleinsten Skalen zu studieen. Ein typisches Setup

Mehr

Die Schrödinger Gleichung

Die Schrödinger Gleichung Die Schrödinger Gleichung Eine Einführung Christian Hirsch Die Schrödinger Gleichung p. 1/16 Begriffserklärung Was ist die Schrödingergleichung? Die Schrödinger Gleichung p. 2/16 Begriffserklärung Was

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 4 PD Dr. B. arozhny, P. Schad Lösungsvorschlag.

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

Kapitel 10. Potentiale Elektronen im Potentialtopf

Kapitel 10. Potentiale Elektronen im Potentialtopf Kapitel 10 Potentiale 10.1 Elektronen im Potentialtopf Mit dem Aufstellen der Schrödinger-Gleichung ist man der realistischen Beschreibung von Quantenobjekten ein großes Stück nähergekommen. Unser Interesse

Mehr

j 1,m 1 ;j 2,m 2 J 2 1,2 j 1, m 1 ; j 2, m 2 = j 1,2 (j 1,2 + 1) j 1, m 1 ; j 2, m 2, (3)

j 1,m 1 ;j 2,m 2 J 2 1,2 j 1, m 1 ; j 2, m 2 = j 1,2 (j 1,2 + 1) j 1, m 1 ; j 2, m 2, (3) Vorlesung Drehimpulsaddition Wir betrachten ein mechanisches System, das aus zwei unabhängigen Systemen besteht. Jedes der zwei Subsysteme besitzt einen Drehimpuls. Der Drehimpuls des ganzen Systems ist

Mehr

Vorlesung 17. Quantisierung des elektromagnetischen Feldes

Vorlesung 17. Quantisierung des elektromagnetischen Feldes Vorlesung 17 Quantisierung des elektromagnetischen Feldes Wir wissen, dass man das elektromagnetische Feld als Wellen oder auch als Teilchen die Photonen beschreiben kann. Die Verbindung zwischen Wellen

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Wasserstoffatom Vorlesung: Mo 1h-12h, Do9h-1h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie Kapitel 8 Störungstheorie 8.1 Motivation Die meisten quantenmechanischen Problemstellungen lassen sich (leider) nicht exakt lösen. So kommt zum Beispiel der harmonische Oszillator in der Natur in Reinform

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

Hydrodynamische Wechselwirkung und Stokes Reibung

Hydrodynamische Wechselwirkung und Stokes Reibung Hydrodynamische Wechselwirkung und Stokes Reibung 9. Februar 2008 Problemstellung Kolloidsuspension aus Teilchen und Lösungsmittel Teilchen bewegen sich aufgrund von externen Kräften Schwerkraft Äußere

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

Klassische Theoretische Physik II

Klassische Theoretische Physik II v SoSe 28 Klassische Theoretische Physik II Vorlesung: Prof. Dr. K. Melnikov Übung: Dr. H. Frellesvig, Dr. R. Rietkerk Übungsblatt 3 Ausgabe: 3.7.8 Abgabe: 2.7.8 bis 9:3 Aufgabe : Teller 8 Punkte Wir entwenden

Mehr

Linearisierung einer Funktion Tangente, Normale

Linearisierung einer Funktion Tangente, Normale Linearisierung einer Funktion Tangente, Normale 1 E Linearisierung einer Funktion Abb. 1 1: Die Gerade T ist die Tangente der Funktion y = f (x) im Punkt P Eine im Punkt x = a differenzierbare Funktion

Mehr

3.5 Streuung auf dem kurzreichweitigen Potential

3.5 Streuung auf dem kurzreichweitigen Potential Woche 9 3.5 Streuung auf dem kurzreichweitigen Potentia Betrachten wir die Streuung angsamer Teichen τ 1) auf einem kurzreichweitigen Potentia mit charakteristischer Reichweite a. Die radiae G. ist: [

Mehr

8.2. Der harmonische Oszillator, quantenmechanisch

8.2. Der harmonische Oszillator, quantenmechanisch 8.. Der harmonische Oszillator, quantenmechanisch Quantenmechanische Behandlung Klassisch: Rückstellkraft für ein Teilchen der Masse m sei zur Auslenkung : 0.5 0.0 0.5 D m Bewegungsgleichung: m D F -D

Mehr

Ferienkurs Theoretische Mechanik Frühjahr 2009

Ferienkurs Theoretische Mechanik Frühjahr 2009 Physikdepartment Technische Universität München Sebastian Konopka Blatt 1 Ferienkurs Theoretische Mechanik Frühjahr 2009 Newtonsche Mechanik und das Keplerproblem 1 Koordinatensysteme 1.1 Kugelkoordinaten

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 12

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 12 Übungen zur Vorlesung Physikalische Chemie B. Sc. ösungsvorschlag zu Blatt 1 Prof. Dr. Norbert Hampp Jens Träger Wintersemester 7/8. 1. 8 Aufgabe 1 Welche Schwingungsübergänge in einem elektronischen Spektrum

Mehr

6. Die dreidimensionale Wellengleichung

6. Die dreidimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 6. Die dreidimensionale Wellengleichung Wir suchen Lösungen u(x, t) der folgenden AWA für die 3-D Wellengleichung u t t c 2 3 u = 0, x R 3, t 0, u(x, 0)

Mehr

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist.

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist. A U F G A B E N A N A L Y S I S. Vorlesung. Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion, 0, stetig bei 0 = 5 ist. Lösung: Es sei 5 < ɛ. () Daraus folgt 5 ɛ < < 5 + ɛ () oder Folglich gilt

Mehr

2.6 Der endliche Potentialtopf

2.6 Der endliche Potentialtopf .6 Der endliche Potentialtopf W E Ψ 3 3.38 ev V() Ψ 1.5 ev Ψ 1.38 ev L = 1 nm - Beim Übergang vom unendlichen zum endlichen Potentialtopf ändern sich die Lösungen qualitativ. Eine wichtige Rolle spielen

Mehr

Lösungsvorschlag Übung 9

Lösungsvorschlag Übung 9 Lösungsvorschlag Übung 9 Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit a Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Partialwellenanalyse

Partialwellenanalyse Partialwellenanalyse Marc Schiereck 21. November 2007 Marc Schiereck Partialwellenanalyse 21. November 2007 1 / 35 Einleitung Überblick 1 Resonanzen 2 Partialwellenentwicklung 3 Polarisationsobservablen

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

T2 Quantenmechanik Lösungen 3

T2 Quantenmechanik Lösungen 3 T2 Quantenmechanik Lösungen LMU München, WS 1/18.1. Wellenfunktion und Wahrscheinlichkeit Prof. D. Lüst / Dr. A. Schmidt-May version: 2. 11. Es seien x 1, x 2, N drei reelle Konstanten und x 2 > x 1 >.

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Musterlösung 02/09/2014

Musterlösung 02/09/2014 Musterlösung 0/09/014 1 Streuexperimente (a) Betrachten Sie die Streuung von punktförmigen Teilchen an einer harten Kugel vom Radius R. Bestimmen Sie die Ablenkfunktion θ(b) unter der Annahme, dass die

Mehr

6. Orbits und die Runge-Lenz Vektor

6. Orbits und die Runge-Lenz Vektor Übungen zur T: Theoretische Mechani, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physi.uni-muenchen.de 6. Orbits und die Runge-Lenz Vetor Übung 6.: Die Rücehr der Kanonenugel

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Streuung an einer harten Kugel

Streuung an einer harten Kugel Semina zu Theoie de Kene, Teilchen und kondensieten Mateie 16.1.015 404549 Inhaltsvezeichnis 1 Einleitung 1 Klassische 1 3 Steuung an eine Potentialbaiee 4 5 5 Wikungsqueschnitte 7 6 Zusammenfassung 8

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

6.7 Delta-Funktion Potentialbarriere

6.7 Delta-Funktion Potentialbarriere Skript zur 9. Vorlesung Quantenmechanik, Montag den 6. Mai, 0. 6.7 Delta-Funktion Potentialbarriere Betrachten wir nun eine negative) δ-funktion Potentialbarriere mit dem Potential V) = v 0 δ a). V 0 a

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 004 Zentrum Mathematik 3.5.004 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 4 Implizite Funktionen Die Funktion f : R R, fx, y := e sinxy

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 9 Quantenmechanik mit Näherungsmethoden, oder: Wie rechne ich etwas aus? Vorlesungskript für den 6. August 9 Max Knötig Inhaltsverzeichnis Einführung Zeitunabhängige, nicht-entartete

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und Stromfunktion kann man ein komplexes Potential

Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und Stromfunktion kann man ein komplexes Potential Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und tromfunktion kann man ein komplexes Potential definieren, wobei φ ( ) ( ) i ( ) F z =φ x,y +ψ x,y (2.8) z = x+

Mehr

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Quantenmechanik II Übungsblatt 10 Solutions 7. Wenn die zeitabhängige Störung periodisch in der Zeit ist, V = αx cos(ωt), mit einer Zahl α und einem

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

2m x + U(x) ψ(x) = Eψ(x),

2m x + U(x) ψ(x) = Eψ(x), 4. Woche 4.1 Beispiel der Lösung der Schrödinger-Gleichung: Das Rechteckpotential. Die stationäre Schrödinger-Gl. ist ) ( 2 2 2m x + U(x) ψ(x) = Eψ(x), 2 mit Parametern: Längenskala L, Energieskala U 0.

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 2013/2014

Vorlesung Molekülphysik/Festkörperphysik Wintersemester 2013/2014 Vorlesung "Molekülhysik/Festkörerhysik" Wintersemester 13/14 Prof. Dr. F. Kremer Übersicht der Vorlesung am 8.1.13 Die Schrödingergleichung für einen harmonischen Oszillator Die Nullunktsenergie des harmonischen

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin WS 6/7 Fachbereich Physik 4..6 Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 7: Dichtematrix, Variationsprinzip Aufgabe (5 Punkte) Betrachten Sie ein Gas

Mehr

Theorie der Kondensierten Materie I WS 2017/2018

Theorie der Kondensierten Materie I WS 2017/2018 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 17/18 Prof. Dr. A. Mirlin, PD Dr. I. Gornyi Blatt 3 Dr. N. Kainaris, Dr. S. Rex,

Mehr

konvergent falls eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der darstellen mittels einer Potenzreihe in

konvergent falls eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der darstellen mittels einer Potenzreihe in C5 Funktionen: Taylorreihen & Fourieranalysis C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37

Mehr

Uneigentliche Integrale

Uneigentliche Integrale Uneigentliche Integrale -E Ma Lubov Vassilevskaya Integrierbarkeit ccvon Funktionen Folgende Gründe können die Integrierbarkeit verhindern: Die Funktion f (x) ist im endlichen Integrationsintervall [a,

Mehr

Klassische Theoretische Physik II

Klassische Theoretische Physik II SoSe 2019 Klassische Theoretische Physik II Vorlesung: Prof. Dr. K. Melnikov Übung: Dr. M. Jaquier, Dr. R. Rietkerk Übungsblatt 6 Ausgabe: 31.05 Abgabe: 07.06 @ 09:45 Uhr Besprechung: 11.06 Auf Lösungen

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

ANALYSIS 2 VERSION 26. Juni 2018

ANALYSIS 2 VERSION 26. Juni 2018 ANALYSIS VERSION 6 Juni 018 LISIBACH ANDRÉ 6 Potenzreihenentwicklung 61 Einleitung Die Linearisierung einer Funktion f(x an der Stelle x ist die Funktion L(x f( + df dx ((x Die Linearisierung ist ein Polynom

Mehr

Die Hartree-Fock-Methode

Die Hartree-Fock-Methode February 11, 2016 1 Herleitung der Hartree-Fock-Gleichung 2 Das Heliumatom Gauß sche s-basis Roothaan-Hall-Gleichung Moleküle Herleitung der Hartree-Fock-Gleichung Betrachten wir zunächst das H 2 -Molekül:

Mehr

Integrierbare Funktionen

Integrierbare Funktionen Integrierbare Funktionen 1 E Integrierbarkeit von Funktionen Bisher haben wir nie die Frage gestellt, ob die betrachteten Funktionen integrierbar sind. Die Frage nach der Existenz des bestimmten Integrals

Mehr

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve.

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve. PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 7 WS 007/008 0.. 007. Lenz scher Vektor. Für die Bahn eines Teilchens der Masse m im Potential U(r) = α/r definieren wir mit

Mehr

Übungen zur Analysis II für Physiker Universität Regensburg, Sommersemester 2012 Dr. Nicolas Ginoux / Dr. Mihaela Pilca Übungsblatt 5 - Musterlösung

Übungen zur Analysis II für Physiker Universität Regensburg, Sommersemester 2012 Dr. Nicolas Ginoux / Dr. Mihaela Pilca Übungsblatt 5 - Musterlösung Übungen zur Analysis II für Physiker Universität Regensburg, Sommersemester 0 r. Nicolas Ginou / r. Mihaela Pilca Übungsblatt 5 - Musterlösung. Aufgabe Sei f die Abbildung f : R R, f(r, φ) = (r cos φ,

Mehr

Analysis für Informatiker und Statistiker Nachklausur

Analysis für Informatiker und Statistiker Nachklausur Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................

Mehr

3 Gewöhnliche Differentialgleichungen 23.4.

3 Gewöhnliche Differentialgleichungen 23.4. 3 Gewöhnliche Differentialgleichungen 23.4. 3.1 Differentialgleichungen erster Ordnung 3.1.1 Fundamentalsätze Definition 3.1. Es sei Ω R d eine offene Menge und V : Ω R d eine Vektorfunktion. Eine Kurve

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Vertiefende Theoretische Chemie Übungen

Vertiefende Theoretische Chemie Übungen Universität eipzig Studiengang Chemie (Bachelor) Sommersemester 5 Vertiefende Theoretische Chemie Übungen Inhaltsverzeichnis Teilchen im Kasten. Translation: Teilchen im Kasten............................................

Mehr

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen Kapitel XII Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen 53 Implizite Funktionen und allgemeine partielle Differenzierbarkeit 54 Der Umkehrsatz 55 Lokale Extrema unter Nebenbedingungen,

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Neutron-Proton Streuung im GRAZ II Potential

Neutron-Proton Streuung im GRAZ II Potential 3. Februar 2010 Überblick 1 2 3 4 Einleitung Streuexperimente wichtig zur Untersuchung der Matrie auf atomarer und subatomarer Ebene. Physikalische Beschreibung durch Wechselwirkungspotential V. Potentiale

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Festkörperelektronik 3. Übung

Festkörperelektronik 3. Übung Festkörperelektronik 3. Übung Felix Glöckler 02. Juni 2006 1 Übersicht Themen heute: Motivation Ziele Rückblick Quantenmechanik Aufgabentypen/Lösungsmethoden in der QM Stückweise konstante Potentiale Tunneln

Mehr

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Das Deuteronen Potential

Das Deuteronen Potential Das Deuteronen Potential N. Dorfinger, S. Gerber, G. Heinrich, O. Huber, N. Stevanecz, J. Weingrill 29. Mai 2004 Gesucht ist die Lösung des folgenden Potentials: 1 Aufgabenstellung Abbildung 1: Das Potential

Mehr