WKB-Methode. Jan Kirschbaum
|
|
|
- Rosa Grosse
- vor 9 Jahren
- Abrufe
Transkript
1 WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast gleichzeitig publiziert von Gregor Wentzel, Hendrik Anthony Kramers und Léon Brillouin, beschreibt ein Verfahren, um näherungsweise Lösungen für die eindimensionale, zeitunabhängige Schrödingergleichung d ψ = [E V (x)]ψ (1) m dx zu finden. Mit der damit gefundenen Lösung lassen sich sehr leicht Aussagen über die erlaubten Energien und das Tunnelverhalten des Systems treffen. Ausgangspunkt ist die Idee, dass die Wellenlänge λ eines Teilchens, dass sich in einem räumlich nicht konstanten Potential bewegt, sich sehr viel schneller ändert, als das Potential. Daher nimmt man an, dass die Form der Wellenfunktion des Teilchens gleich bleibt, wobei die Wellenlänge und die Amplitude ortsabhängig werden. Für die Lösung der Wellenfunktion in einem konstanten Potential gilt: ψ(x) = Ae ±ikx mit k m(e V ) und damit für die allgemeine Lösung in der WKB-Näherung: () ψ(x) = A(x)e iψ(x) (3) 1
2 Löst man die Schrödinger-Gleichung (Gl.1) mit diesem Ansatz und benutzt, dass sich die Amplitude nur sehr langsam verändert, erhält man als allgemeine Lösung für die Wellenfunktion der WKB-Näherung: ψ(x) = B p(x) e i dxp(x) + Für den Bereich E>V(x), sowie p(x) C e i dxp(x) (4) ψ(x) = B p(x) e 1 dx p(x) C + p(x) e 1 dx p(x) (5) für den Bereich E<V(x). Jeweils mit p(x) = m[e V (x)] (6) Dabei spricht man für E>V vom klassischen Bereich und für E<V vom nichtklassischen Bereich. Man sieht, dass die Näherung an den klassischen Umkehrpunkten des Teilchens, bei denen die Energie gleich dem Potential ist, nicht funktioniert, da die Wellenfunktion an diesen Stellen divergiert. Verbindungsgleichungen Betrachtet man Potentialtöpfe mit vertikalen Wänden, so sind die Randbedingungen einfach und man bekommt keine Probleme mit den klassischen Umkehrpunkten, sind die Wände des Potentials aber nicht vertikal, muss man genauer betrachten, was an den Umkehrpunkten passiert und wie man diese Bereiche überbrückt, damit die WKB-Näherung weiterhin ihre Gültigkeit hat. Bei der Betrachtung eines aufwärts geneigten Potentials(Abb.1) mit einem Umkehrpunkt bei x=0 erhält man für die WKB-Wellenfunktion mit den Gleichungen 4 und 5: ψ(x) = B e i 0 x dx p(x ) + p(x) D p(x) e 1 x 0 dx p(x ) p(x) C i 0 e x dx p(x ) x < 0 x > 0 (7)
3 Abbildung 1: Aufwärts geneigtes Potential Für x>0 fällt der positive Exponent weg, da dieser nicht normierbar ist. Um den Umkehrpunkt zu überbrücken, führen wir eine Flick-Wellenfunktion ein, die im Bereich um den Umkehrpunkt gültig sein soll. In diesem Bereich kann man das Potential um den Umkehrpunkt herum bis zur 1. Ordnung entwickeln. V (x) = E + ( dv ) dx x=0 x (8) Für das linearisierte Potential lässt sich die Schrödingergleichung analytisch lösen. Dabei erhält man als Lösung eine Linearkombination der Airy- Funktionen(Abb.): ψ F = aai(αx) + bbi(αx) mit α [ ] 1 m V 3 (0) Die so erhaltene Flick-Wellenfunktion muss an beide Seiten der WKB- Wellenfunktion (Gl. 7) angepasst werden, um den Umkehrpunkt zu überbrücken. Für den Anpassungsbereich nimmt man an, dass sowohl die WKB-Wellenfunktion, 3 (9)
4 Abbildung : Verlauf der beiden Airy-Funktionen als auch die Näherung des Potentials als Gerade gut funktionieren. Diese Bedingung ist nicht für alle Systeme gültig, allerdings für die meisten Anwendungsbeispiele gut genug. Daher setzt man in den Impuls p(x) der WKB-Funktion das genäherte Potential ein: p(x) = α 3/ x (10) Außerdem wird angenommen, dass die Airy-Funktionen in dem Bereich, in dem man die beiden Wellenfunktionen zusammenfügt, durch ihre Asymptotische Form beschrieben werden können. Die Asymptotischen Formen der Airy-Funktionen lauten: für αx >> 0: und Ai(αx) 1 π(αx) e 1/4 3 z/3 (11) und für αx << 0: Bi(αx) 1 π(αx) 1/4 e 3 z/3 (1) 4
5 Abbildung 3: Anpassungsbereich von WKB- und Flick-Wellenfunktion Ai(αx) [ 1 sin π( αx) 1/4 3 ( αx)/3 + π ] 4 (13) und Bi(αx) [ 1 cos π( αx) 1/4 3 ( αx)/3 + π ] 4 (14) Beim Vergleich im Überlappbereich (Vgl. Abb.3) erhält man: a = Und im Überlappbereich 1: a i π eiπ/4 = 4π D und b = 0 (15) α B α und a i π e iπ/4 = B α (16) Vergleicht man die beiden Ergebnisse erhält man die ganze Wellenfunktion, die nur noch von einem Parameter abhängt. Der Umkehrpunkt kann dabei an einen beliebigen Punkt x 0 versetzt werden, dass verändert nur die Integrationsgrenzen. ψ(x) = D 1 x D 1 x p(x) e x dx p(x ) p(x) sin [ x dx p(x ) + π 4 ] x < x x > x (17) 5
6 Abbildung 4: Verschiedene Potentialwände Diese Gleichung gilt allgemein für alle aufwärts geneigten Potentiale. Will man allgemein Potentialtöpfe betrachten(abb.4), braucht man noch die Gleichung für das abwärts geneigte Potential. Diese erhält man mit einer analogen Rechnung wie die des aufwärts geneigten Potentials. Als Ergebnis erhält man: D 1 x1 p(x) e x dx p(x ) ψ(x) = [ ] D sin 1 x p(x) x 1 dx p(x ) + π 4 x < x 1 x > x 1 (18) Damit hat man beide Seiten des Potentialtopfes. Um daraus die Wellenfunktion für den Potentialtopf zu bestimmen, müssen die beiden Funktionen auf dem ganzen Intervall [x 1 ;x ] gleich sein. Das bedeutet, dass die Argumente der beiden Sinus gleich sein müssen (modulo nπ). x x 1 p(x)dx = ( n 1 ) π (19) Das ist die Quantisierungsbedingung des Potentialtopfes ohne vertikale Wand in der WKB-Näherung. 3 Beispiele 3.1 Harmonischer Oszillator Als Beispiel für einen Potentialtopf mit einer vertikalen Wand wird zuerst der halbe harmonische Oszillator betrachtet: mω x x > 0 V (x) = x < 0 (0) 6
7 Aus der Randbedingung für x=0 erhält man zusammen mit Gl.17 die Quantisierungsbedingung für den Potentialtopf mit einer vertikalen Wand: x 0 p(x)dx = ( n 1 4) π mit n N (1) Zusammen mit dem in dem Impuls, in den man das Potential einsetzt x 0 p(x)dx = x 0 m [ E mω x ] = πe ω () erhält man für die erlaubte Energien: E n = ( n 1 ) ω mit n N (3) Das sind genau die erlaubten, ungeraden Energien des vollen harmonischen Oszillators. In diesem Fall liefert die Näherung sogar das exakte Ergebnis, weil nur die ungeraden Eigenfunktionen des harmonischen Oszillators die Randbedingung erfüllen, sind auch nur diese ungeraden Eigenfunktionen Eigenzustände des betrachteten Potentials. Mit Gl.19 kann man auch die Energien des vollen harmonischen Oszillators berechnen. V (x) = mω x (4) Dabei erhält man für die erlaubten Energien, bei ähnlicher Rechung wie beim halben harmonischen Oszillator: E n = ( n 1 ) πω mit n N (5) Es ergibt sich also auch beim vollen harmonischen Oszillator mit der Näherungsmethode das exakte Ergebnis. 7
8 4 Zusammenfassung Die so so gefundenen Ergebnisse lassen sich auf Potentiale mit beliebigen Umkehrpunkten anwenden. Im Detail sind hier nur Potentialtöpfe berechnet worden, aber dasselbe Prinzip funktioniert z.b. auch bei Tunnelwahrscheinlichkeiten von Potentialbarrieren. Hat man mithilfe der Verbindungsgleichungen das Problem für ein Potential mit einer bestimmten Art von Umkehrpunkten gelöst, lässt sich das Ergebnis auf alle Potentiale mit ähnlichen Umkehrpunkten verallgemeinern. Dabei erhält man in erster Linie einen Überblick über die Energieverteilung des Systems, ohne genauere Betrachtung der Wellenfunktion selber. 8
Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie
Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................
von Martin Kroesen im Rahmen des Seminars zur Quantenmechanik bei Prof. Dr. Wolschin im Wintersemester 2013/14
Die WKB-Näherung von Martin Kroesen im Rahmen des Seminars zur Quantenmechanik ei Prof. Dr. Wolschin im Wintersemester 203/4 Kurzzusammenfassung: Im Rahmen dieses Seminarvortrags wird die WKB-Näherung
Ferienkurs Quantenmechanik 2009
Ferienkurs Quantenmechanik 9 Quantenmechanik mit Näherungsmethoden, oder: Wie rechne ich etwas aus? Vorlesungskript für den 6. August 9 Max Knötig Inhaltsverzeichnis Einführung Zeitunabhängige, nicht-entartete
Die Schrödingergleichung
Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.
Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke
Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jonas Lübke 7. November 013 Inhaltsverzeichnis 1 Einführung 1 Beziehung zwischen klassischer
Ferienkurs Quantenmechanik
PHYSIKDEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN Felix Rucker, Matthias Herzog Übungsklausur 9.9. Kurze Fragen (6 Punkte) Ferienkurs Quantenmechanik Übungsklausur a) Wie ist ein quantenmechanischer Drehimpuls
Seminar zur Theorie der Teilchen und Felder Supersymmetrie
Alexander Hock [email protected] Seminar zur Theorie der Teilchen und Felder Supersymmetrie Datum des Vortrags: 28.05.2014 Betreuer: Prof. Dr. J. Heitger Westfälische Wilhelms-Universität Münster, Deutschland
6 Der Harmonische Oszillator
6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse
Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter
Seminar zur Theorie der Atome, Kerne und kondensierten Materie Kohärente Zustände des harmonischen Oszillators Thomas Biekötter 16.11.011 QUANTENMECHANISCHER HARMONISCHER OSZILLATOR 1 Klassischer harmonischer
Theoretische Physik II Quantenmechanik
Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige
Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung
Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 13 Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung
ν und λ ausgedrückt in Energie E und Impuls p
phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)
Quasi-exakt lösbare quantenmechanische Potentiale
Quasi-exakt lösbare quantenmechanische Potentiale Ausarbeitung zum Seminar zur Theorie der Atome, Kerne und kondensierten Materie vom.10.014 Philipp Marauhn [email protected] Inhaltsverzeichnis
Die Schrödingergleichung
Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen
Der harmonische Oszillator anhand eines Potentials
Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der
: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2
H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)
Theoretische Physik II: Quantenmechanik
Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt ([email protected]) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:
Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung
Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung
Harmonischer Oszillator und 3d-Schrödingergleichung
Harmonischer Oszillator und d-schrödingergleichung Tutoren: Jinming Lu, Konrad Schönleber 7.02.09 D-Harmonischer Oszillator Für die Entwicklung der Quantenmechanik spielte der harmonische Oszillator eine
T2 Quantenmechanik Lösungen 4
T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante
Ferienkurs Theoretische Quantenmechanik 2010
Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Quantenmechanik 010 1 dimensionale Probleme Inhaltsverzeichnis 1 Die Schrödingergleichung 1.1 Wiederholung
5. Vorlesung Wintersemester
5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode
Gequetschte Zustände beim harmonischen Oszillator
Seminar zur Theorie der Atome, Kerne und kondensierten Materie Gequetschte Zustände beim harmonischen Oszillator Melanie Kämmerer 16. Oktober 011 1 1 Wiederholung Die Wellenfunktion eines kohärenten Zustandes
Nachklausur: Quantentheorie I, WS 07/08
Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential
Übungen Quantenphysik
Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf
1 Die Schrödinger Gleichung
1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit
Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen
Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt
Theoretische Physik I: Lösungen Blatt Michael Czopnik
Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin
Quantentheorie für Nanoingenieure Klausur Lösung
07. April 011 PD Dr. H. Kohler Quantentheorie für Nanoingenieure Klausur Lösung K1. Ja Nein Fragen (8P) Jede richtige Antwort liefert einen Punkt, jede falsche Antwort liefert einen Minuspunkt. Eine nicht
Potentialtöpfe und Potentialbarrieren
Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.
4.6.1 Übergangswahrscheinlichkeit für ein Teilchen in einem Potentialtopf
4-1 4 Anwendungen 4.6 Übungen 4.6.1 Übergangswahrscheinlichkeit für ein Teilchen in einem Potentialtopf Wir werden jetzt die Übergangswahrscheinlichkeit für ein Teilchen der Masse m und der Ladung e in
Physik 4, Übung 8, Prof. Förster
Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten
Eindimensionale Potentialprobleme
Kapitel 4 Eindimensionale Potentialprobleme Wir werden nun die Schrödingergleichung in der Ortsdarstellung für einige einfache Potentialprobleme lösen. Wir betrachten ein spinloses Teilchen der Masse m,
Das mathematische Pendel
1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2
D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9
D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, [email protected]
Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya
Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer
Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)
Freie Universität Berlin WS 2006/2007 Fachbereich Physik 0..2006 Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 3: Zentraler Grenzwertsatz, Mikrokanonisches Ensemble, Entropie Aufgabe
Theorie der Kondensierten Materie I WS 2017/2018
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 17/18 Prof. Dr. A. Mirlin, PD Dr. I. Gornyi Blatt 3 Dr. N. Kainaris, Dr. S. Rex,
r r : Abstand der Kerne
Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner
8 Das Bohrsche Atommodell
8 Das Bohrsche Atommodell 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse,
Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil
Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur
7.3 Der quantenmechanische Formalismus
Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts
Probeklausur zu Physikalische Chemie II für Lehramt
Department Chemie Dr. Don C. Lamb http://www.cup.uni-muenchen.de/pc/lamb Probeklausur zu Physikalische Chemie II für Lehramt Zur Bearbeitung der Klausur ist nur der freie Platz dieser vor Ihnen liegenden
Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion
Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a
Eindimensionale Potentialprobleme
Kapitel 3 Eindimensionale Potentialprobleme 3.1 Problemstellung Fragestellung. Es soll die quantenmechanische Beschreibung eines Teilchens in einer Dimension, das ein Potential V sieht (Abbildung 3.1),
Exakte Lösungen der stationären Schrödingergleichung
Teil III Exakte Lösungen der stationären Schrödingergleichung Inhaltsangabe 6 Eindimensionale Probleme 43 6.1 Das Teilchen im unendlich tiefen Kasten.......... 44 6.1.1 Modell und Lösung der Schrödingergleichung...
Diplomarbeitsvortrag
Diplomarbeitsvortrag von Peer Mumcu Institut für Theoretische Physik A Lehr- und Forschungsgebiet Laserphysik RWTH Aachen Überblick Streuung in starken Laserfeldern 1-Teilchen Schrödingergleichung, analytische
Ballistischer Transport von Elektronen durch Nanostrukturen
Ausarbeitung des Seminarvortrags Ballistischer Transport von Elektronen durch Nanostrukturen Frederik Edens gehalten am 10. Februar 016 Inhaltsverzeichnis 1. Motivation. Einführendes Beispiel - Streuung
Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016
Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der
Klein-Gordon-Gleichung
Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2
Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L
Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem
Wiederholung: Spaltung und Fusion
Wiederholung: Spaltung und Fusion Tröpfchenmodell: Stabilste Kerne liegen im Bereich A~60 Große Energiemenge kann bei der Spaltung eines schweren Kernes in zwei mittelschwere Kerne und bei der Fusion von
(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010
10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:
phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums
Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html
Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Zusätzliche Übung: Aufgrund des großen Andrangs bieten wir eine zusätzliche
Übungen zur Quantentheorie (Lehramt) WS 2006/07
Übungen zur Quantentheorie Lehramt) WS 2006/07 Lesender: Prof. M. Müller-Preußker Übungen: Dr. J. Käppeli Lösungsbeispiele zur 1. Serie Marcus Petschlies 1 Ebene Wellen 1 1.a) Allgemeine Lösung der Wellengleichung
7 Die Hamilton-Jacobi-Theorie
7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir
PC III Aufbau der Materie
PC III Aufbau der Materie Kapitel 3 Einfache Anwendungen Vorlesung: http://www.pci.tu-bs.de/aggericke/pc3 Übung: http://www.pci.tu-bs.de/aggericke/pc3/uebungen Die Schrödingergleichung zeitunabhängige
9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators. Schrödinger-Gl.:
phys4.015 Page 1 9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators Schrödinger-Gl.: Normierung: dimensionslose Einheiten x für die Koordinate x und Ε für die Energie E somit
Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010
Übungen Physik VI (Kerne und Teilchen) Sommersemester 21 Übungsblatt Nr. 3 Bearbeitung bis 6.5.21 Aufgabe 1: Neutronensterne Im Allgemeinen kann man annehmen, dass die Dichte in Zentrum von Neutronensternen
Klausur zur T1 (Klassische Mechanik)
Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte
Theorie der Kondensierten Materie I WS 2016/2017
Krlsruher Institut für Technologie Institut für Theorie der Kondensierten Mterie Theorie der Kondensierten Mterie I WS 06/07 Prof. Dr. A. Shnirmn Bltt PD Dr. B. Nrozhny, M.Sc. T. Ludwig Lösungsvorschlg.
Der quantenmechanische harmonische Oszillator
88 Kapitel 0 Der quantenmechanische harmonische Oszillator In diesem Kapitel befassen wir uns mit den quantenmechanischen Eigenschaften eines der grundlegenden Modelle der Physik, dem harmonischen Oszillator.
Bewegung im elektromagnetischen Feld
Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld
Vorlesung Statistische Mechanik: N-Teilchensystem
Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung
Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen
Rotationen und Schwingungen von Molekülen Schwingungen und Rotationen Bis jetzt haben wir immer den Fall betrachtet, daß die Kerne fest sind Was geschieht nun, wenn sich die Kerne bewegen können? Zwei
TC1 Grundlagen der Theoretischen Chemie
TC1 Grundlagen der Theoretischen Chemie Irene Burghardt ([email protected]) Praktikumsbetreuung: Sarah Römer ([email protected]) Simona Scheit ([email protected]) Juanma
Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =
Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...
Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator
Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische
Beugung am Gitter mit Laser ******
5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild
1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten
Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael
Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky
Zeitunabhängige. Schrödinger-Gleichung: Kapitel Stationäre Zustände. Wir wollen die Schrödinger-Gleichung. i h Ψ t = h2 2 Ψ.
Kapitel 2 Zeitunabhängige Schrödinger-Gleichung 2.1 Stationäre Zustände Wir wollen die Schrödinger-Gleichung für ein vorgegebenes Potential lösen. i h Ψ t = h2 2 Ψ 2m x 2 +VΨ Weiter V(x,t) V(x), d.h. V
I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische
I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte
7 Diracs Bracket-Notation
7 Diracs Bracket-Notation 71 Entwicklungen nach Eigenfunktionen 711 Oszillator-Eigenfunktionen Die Oszillator-Eigenfunktionen Φ n (x), Φ n (x) = N n H ( x) n e x 2 /2a 2, N n = a 1 2 n n! πa (n = 0, 1,
Identische Teilchen. Kapitel Das Pauli-Prinzip (Ausschlussprinzip) System von zwei Teilchen: Ψ( r 1, r 2,t) Schr. Gl. i Ψ t = HΨ.
Kapitel 5 Identische Teilchen 5.1 Das Pauli-Prinzip (Ausschlussprinzip) System von zwei Teilchen: Schr. Gl mit W keit Normierung Ψ( r 1, r 2,t) i Ψ t = HΨ H = h2 2m 1 2 1 h2 2m 2 2 2 +V( r 1, r 2,t) Ψ(
Zeichnen Sie qualitativ jeweils das dahinter und das seitlich aufgenommene Spektrum im Vergleich zum Spektrum der Quelle für die Fälle, dass i) die
UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Elke Scheer (Experimentalphysik) Raum P 1007, Tel. 4712 E-mail: [email protected] Prof. Dr. Guido Burkard (Theoretische Physik) Raum P 807, Tel.
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion
Fourier-Transformation
Fourier-ransformation Im Folgenden werden die schon bekannten Eigenschaften der Fourier-Reihen zur Darstellung periodischer Funktionenn zusammengefasst und dann auf beliebige Funktionen verallgemeinert.
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags
Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.
2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion
Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013
Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Gegeben ist eine GRIN-Linse oder Glasaser) mit olgender Brechzahlverteilung: 2 2 n x, y, z n0 n1 x y Die Einheiten der Konstanten bzw. n 1 sind
Relativistische Quantenmechanik und die Klein-Gordon Gleichung
Relativistische Quantenmechanik und die Klein-Gordon Gleichung Oliver Smith o smit01 wwu.de) 17. Februar 2015 Wir wollen die Klein-Gordon Gleichung untersuchen und Formalismen einführen, um Parallelen
(a) Skizzieren und benennen Sie die Kristallstruktur von Silizium. [2P]
Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer Kaiserstrasse 1 76131 Karlsruhe Festkörperelektronik Klausur Musterlösung 0. September 005 1. Silizium (a) Skizzieren und
7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten
7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13
Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten
6 Gewöhnliche Differentialgleichungen
6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige
Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 6
Fokker-Planck Gleichung
Fokker-Planck Gleichung Max Haardt WWU Münster 21. November 2008 Inhalt 1 Einleitung Langevin Gleichung Fokker-Planck Gleichung 2 Herleitung Mastergleichung Kramers-Moyal Entwicklung Fokker-Planck Gleichung
Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall
Hauptseminar Quantenmechanisches Tunneln WS 2010/2011 Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Torben Kloss, Manuel Heinzmann Gliederung Was ist tunneln? Tunneln durch ein beliebiges
Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt
5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen
