Fokker-Planck Gleichung
|
|
|
- Michaela Holzmann
- vor 8 Jahren
- Abrufe
Transkript
1 Fokker-Planck Gleichung Max Haardt WWU Münster 21. November 2008
2 Inhalt 1 Einleitung Langevin Gleichung Fokker-Planck Gleichung 2 Herleitung Mastergleichung Kramers-Moyal Entwicklung Fokker-Planck Gleichung Kramers-Moyal Entwicklungskoeffizienten 3 Beispiele und Lösungen Die Fokker-Planck Gleichung als Kontinuitätsgleichung Stationäre Lösung der Fokker-Planck Gleichung Ornstein-Uhlenbeck Prozess Anwendung auf die Brownsche Bewegung 4 Zusammenfassung
3 Einleitung Einleitung
4 Einleitung Langevin Gleichung Langevin Gleichung Langevin Gleichung ẋ = h(x,t) + g(x,t)γ(t) Γ(t) : Normalverteilte δ korrelierte Zufallskraft Bewegungsgleichung direkt für die Beobachtungsgröße Allerdings Lösung aller mikroskopischen Gleichungen notwendig Alternative Betrachtung: Trajektorie x(t) Wahrscheinlichkeitsdichte p(x,t)
5 Einleitung Fokker-Planck Gleichung Fokker-Planck Gleichung Fokker-Planck Gleichung p(x,t) t = x [D(1) (x,t)p(x,t)] + 2 x 2 [D(2) (x,t)p(x,t)] D (1) = h(x,t) Driftkoeffizient D (2) = (g(x,t)) 2 Diffusionskoeffizient Beschreibt die Zeitentwicklung einer Wahrscheinlichkeitsdichte p(x,t)
6 Einleitung Fokker-Planck Gleichung Abbildung: Aus H.Haken: Synergetics An introduction, 2.Auflage,Springer Verlag Lösung der Fokker-Planck Gleichung führt in der Regel zu einer Gaußverteilung
7 Herleitung Herleitung
8 Herleitung Mastergleichung Mastergleichung Mastergleichung p(x,t) t = W (x x)p(x,t)dx } {{ } Quellen W (x x )p(x,t)dx } {{ } Senken Bilanzgleichung Beschreibt die Zeitentwicklung der Wahrscheinlichkeitsdichte p(x,t) eines Systems Übergangsrate W (x x) = lim t 0 p(x,t+ t x,t) t Bedingte Wahrscheinlichkeit p(x,t + t x, t) Gültig nur für Markow Prozesse: p(x 1 x 2,x 3,...) = p(x 1 x 2 )
9 Herleitung Kramers-Moyal Entwicklung Kramers-Moyal Entwicklung Einsetzen der Länge des Sprungs x = x x : W (x x) = W (x ; x) = W (x x; x) Taylorentwicklung des ersten Terms der Mastergleichung nach x Kramers-Moyal Entwicklung p(x,t) = ( t x )n (p(x,t) 1 ( x) n W (x; x)d( x) ) n! n=1 }{{} D (n) (x,t) D (n) (x,t) Kramers-Moyal Entwicklungskoeffizienten
10 Herleitung Kramers-Moyal Entwicklung Problem: Gleichung hat unendlich viele Terme Frage: Wann bricht die Reihe ab? Satz von Pawula: Verschwindet der 4. Term (D (4) (x,t)), so verschwinden auch der 3. und alle höheren Terme Dies ist der Fall für eine Gaußverteilte δ korrelierte Langevin Kraft
11 Herleitung Fokker-Planck Gleichung Fokker-Planck Gleichung Fokker-Planck Gleichung in 1D p(x,t) t = x [D(1) (x,t)p(x,t)] + 2 x 2 [D(2) (x,t)p(x,t)] D (1) Driftkoeffizient Fokker-Planck Gleichung in 3D D (2) Diffusionskoeffizient p( x,t) t = i [D (1) i ( x,t)p( x,t)] + x i ij 2 [D (2) ij ( x,t)p( x,t)] x i x j D (1) Driftvektor D (2) Diffusionsmatrix
12 Herleitung Fokker-Planck Gleichung Vorteile Gegenüber der Mastergleichung: Die Fokker-Planck Gleichung ist eine reine DGL Nur die Bestimmung von Driftkoeffizient D (1) und Diffusionkoeffizient D (2) erforderlich
13 Herleitung Kramers-Moyal Entwicklungskoeffizienten Kramers-Moyal Entwicklungskoeffizienten Zu zeigen: D (n) (x,t) = 1 n! Bedingte Momente: lim t 0 1 t < [ξ(t + t) ξ(t)]n > ξ(t)=x M n (x,t, t) =< [ξ(t + t) ξ(t)] n > ξ(t)=x
14 Beispiele und Lösungen Beispiele und Lösungen
15 Beispiele und Lösungen Die Fokker-Planck Gleichung als Kontinuitätsgleichung Die Fokker-Planck Gleichung als Kontinuitätsgleichung Im folgenden: Driftkoeffizient : D (1) = K Definieren des Wahrscheinlichkeitsflusses: Diffusionskoeffizient : D (2) = D J = [K D d dx ]p(x,t) FPG nimmt die Form einer Kontinuitätsgleichung an: p t + d dx J = 0
16 Beispiele und Lösungen Stationäre Lösung der Fokker-Planck Gleichung Stationäre Lösung der Fokker-Planck Gleichung Für den stationären Fall gilt: Natürliche Randbedingungen: p t = 0 J = const p 0 f ür x ± J 0 f ür x ± Zu lösende Gleichung: D dp(x) dx = Kp(x)
17 Beispiele und Lösungen Stationäre Lösung der Fokker-Planck Gleichung Stationäre Lösung der Fokker-Planck Gleichung Lösung durch Exponentialansatz: Potential: V (x) = p(x) = N exp( V (x)/d) x x 0 K(x)dx Normierungskonstante N bestimmt durch + p(x)dx = 1
18 Beispiele und Lösungen Stationäre Lösung der Fokker-Planck Gleichung Beispiel D = const K(x) = αx βx 3 V (x) = α 2 x 2 + β 4 x 4 Wahrscheinlichkeitsverteilung p(x) = N exp[ ( α 2 x 2 + β 4 x 4 )/D] Langevin Gleichung ẋ = αx βx 3 + DΓ(t)
19 Beispiele und Lösungen Stationäre Lösung der Fokker-Planck Gleichung Zufallskraft schiebt ein Teilchen einen Potentialtopf hoch Nach jedem Schub fällt das Teilchen wieder herunter (a) Fall α > 0 (b) Fall α < 0 Doppelmulden Potential
20 Beispiele und Lösungen Ornstein-Uhlenbeck Prozess Ornstein-Uhlenbeck Prozess Linearer Driftkoeffizient K = γx Daraus folgt: Harmonisches Potential um die Gleichgewichtslage V (x) = 1 2 γx 2 Konstanter Diffusionskoeffizient D = const Fokker-Planck Gleichung für den Ornstein-Uhlenbeck Prozess p(x,t) t = γ 2 [xp(x,t)] + D x x 2 p(x,t) Anfangsbedingung p(x,t = 0) = δ(x x 0 )
21 Beispiele und Lösungen Ornstein-Uhlenbeck Prozess Lösung der Gleichung im Fourierraum Fouriertransformierte der Gleichung: p(k,t) t Anfangsbedingung wird zu: = γk p(k,t) Dk2 p(k,t) k p(k,t = 0) = e ikx 0
22 Beispiele und Lösungen Ornstein-Uhlenbeck Prozess Rücktransformation der Lösung: p(x,t) = 1 < x >)2 exp[ (x 2πσ 2 2σ 2 ] mit < x >= e γt x 0 σ 2 = 1 γ D(1 e 2γt ) Lösung entspricht einer Gaußverteilung Zum Zeitpunkt 0 ist die Varianz 0 Lösung ist eine δ-funktion Für steigendes t konvergiert die Lösung gegen eine Gaußverteilung mit Varianz D γ
23 Beispiele und Lösungen Ornstein-Uhlenbeck Prozess Stationäre Lösung Für t folgt ergibt sich der Gleichgewichtszustand: p(x,t ) = 1 < x >)2 exp[ (x 2πσ 2 2σ 2 ] mit < x >= 0 Es ergibt sich: σ 2 = D γ p(x,t ) = 1 2πD/γ exp[ x 2 2D/γ ]
24 Beispiele und Lösungen Anwendung auf die Brownsche Bewegung Anwendung der Fokker-Planck Gleichung auf die Brownsche Bewegung Die Fokker-Planck Gleichung läßt sich aus den Lösungen der Langevin Gleichung gewinnen: t v(t) = v 0 exp( γt) + dt exp( γ(t t ))Γ(t ) 0 Ziel: Berechnung von Drift- und Diffusionskoeffizient
25 Beispiele und Lösungen Anwendung auf die Brownsche Bewegung Berechnung von Drift und Diffusionskoeffizient Driftkoeffizient: D (1) 1 (v,t) = lim t 0 t < [V (t + t) V (t)] > V (t)=v Diffusionskoeffizient: D (1) (v,t) = γv D (2) (v,t) = 1 2 lim 1 t 0 t < [V (t + t) V (t)]2 > V (t)=v D (2) (v,t) = γk BT m
26 Beispiele und Lösungen Anwendung auf die Brownsche Bewegung Fokker-Planck Gleichung für die Brownsche Bewegung Fokker-Planck Gleichung für die Brownsche Bewegung p(v,t) t = γ v [vp(v,t)] + γ k BT 2 m v 2 p(v,t) Erster Term auf der rechten Seite: Driftterm Beschreibt die dynamische Reibung Zweiter Term auf der rechten Seite: Diffusionsterm Beschreibt den Diffusionsprozess im Geschwindigkeitsraum
27 Beispiele und Lösungen Anwendung auf die Brownsche Bewegung Stationäre Lösung Annahme Für große t: lim p(v,t) = p(v) ; p(v,t) = 0 t t Die Fokker-Planck Gleichung wird zu: γ v [vp(v)] + γ k BT 2 m v 2 p(v) = 0 Lösung ist die Maxwell-Boltzmannsche Geschwindigkeitsverteilung: p(v) = c exp( mv 2 2k B T ) ; c = ( m 2γπk B T )1/2 Lösung entspricht der des Ornstein-Uhlenbeck Prozesses
28 Zusammenfassung Zusammenfassung Langevin und Fokker-Planck Gleichung sind äquivalente Beschreibungen eines stochastischen Prozesses Die Fokker-Planck Gleichung läßt aus der Mastergleichung unter Anwendung der Kramers-Moyal Entwicklung und des Pawula Theorems herleiten Der Ornstein-Uhlenbeck Prozess ist ein einfaches Beispiel für Systeme, die man durch Fokker-Planck beschreiben kann Lösung ist in der Regel eine Gaußfunktion
29 Vielen Dank für Ihre Aufmerksamkeit
30 Literatur H.Risken: The Fokker-Planck Equation, 1. Auflage, Springer-Verlag H.Haken: Synergetics, 2.Auflage, Springer Verlag
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
Flüsse, Fixpunkte, Stabilität
1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher
9 Die Normalverteilung
9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,
ν und λ ausgedrückt in Energie E und Impuls p
phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)
Theorie und Simulation von Zeitreihen mit Anwendungen auf die Aktienkursdynamik
Theorie und Simulation von Zeitreihen mit Anwendungen auf die Aktienkursdynamik Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
Beispiel: Evolution infizierter Individuen
Differentialgleichungen sind sehr nützlich in der Modellierung biologischer Prozesse, denn: damit kann man auch sehr komplizierte Systeme beschreiben die Mathematik liefert mit der gut entwickelten Theorie
Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:
Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen
Klassifikation von partiellen Differentialgleichungen
Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
Dynamische Systeme eine Einführung
Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,
Motivation. Motivation 2
Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t
5. Wechselwirkungen zwischen verschiedenen Spezies Allgemein kann man die zeitliche Entwicklung zweier Spezies N 1 und N 2 durch Ratengleichungen der Form d N 1 t d N 2 t = F 1 N 1 t, N 2 t, t = F 2 N
Theoretische Physik I: Lösungen Blatt Michael Czopnik
Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin
Signifikanz von Alignment Scores und BLAST
Westfälische Wilhelms Universität Münster Fachbereich 10 - Mathematik und Informatik Signifikanz von Alignment Scores und BLAST Seminarvortrag von Leonie Zeune 10. Mai 2012 Veranstaltung: Seminar zur mathematischen
Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen
Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory
Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada
Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?
Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H
Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k
9. Vorlesung Wintersemester
9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen
Geometrische Brownsche Bewegung und Brownsche Brücke
Seminar: Grundlagen der Simulation und Statistik von dynamischen Systemen SoSe 2012 Geometrische Brownsche Bewegung und Brownsche Brücke Korinna Griesing 10. April 2012 Dozentin: Prof. Dr. Christine Müller
27 Taylor-Formel und Taylor-Entwicklungen
136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen
Überschrift. Titel Prognosemethoden
Überschrift Prognosemethoden Überschrift Inhalt 1. Einleitung 2. Subjektive Planzahlenbestimmung 3. Extrapolierende Verfahren 3.1 Trendanalyse 3.2 Berücksichtigung von Zyklus und Saison 4. Kausale Prognosen
Grundlagen der Physik 2 Schwingungen und Wärmelehre
(c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti [email protected] Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel
Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder
DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/
4.3 Anwendungen auf Differentialgleichungen
7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,
6. Erzwungene Schwingungen
6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen
Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1
Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit
Empirische Bestimmung stochastischer Differentialgleichungssysteme für hochfrequente Aktienkursdaten
Empirische Bestimmung stochastischer Differentialgleichungssysteme für hochfrequente Aktienkursdaten vorgelegt als Diplomarbeit von Jan Schuppert am 9. Dezember 29 2 Inhaltsverzeichnis Einleitung 1 1 Theorie
Lösungsvorschläge zum 14. Übungsblatt.
Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine
Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.
Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer
IX Relativistische Mechanik
IX Relativistische Mechanik 34 Relativitätsprinzip Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind. Im Teil IX stellen wir die
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve
Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass
Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.
Spezielle stetige Verteilungen
Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für
FC3 - Duffing Oszillator
FC3 - Duffing Oszillator 4. Oktober 2007 Universität Paderborn - Theoretische Physik leer Autor: Stephan Blankenburg, Björn Lange Datum: 4. Oktober 2007 FC3 - Duffing Oszillator 3 1 Theorie komplexer Systeme
Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff
Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das
ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?
BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions
Markov-Prozesse mit stetigem Zustands- und Parameterraum
Kapitel 8 Markov-Prozesse mit stetigem Zustands- und Parameterraum Markov-Prozesse mit stetigem Zustandsraum S R (bzw. mehrdimensional S R p und in stetiger Zeit, insbesondere sogenannte Diffusionsprozesse
Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop
Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop 2. Februar 2011 Prof. Dr. Halfmann, Prof. Dr. Walser Quantenoptik und nichtlineare
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter
Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator
Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische
Vergleich von experimentellen Ergebnissen mit realen Konfigurationen
Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig
18 Höhere Ableitungen und Taylorformel
8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a
Chaos unter Koordinatentransformation
Chaos unter Koordinatentransformation Gundula Meckenhäuser WiSe 2006/07 Inhaltsverzeichnis Die Lorentz-Transformation 2. Das Michelson-Morley Experiment................. 2.2 Die Galilei-Transformation......................
Berechenbare Funktionalanalysis und kompakte Operatoren
Berechenbare Funktionalanalysis und kompakte Operatoren Volker Bosserhoff Oberseminar der Fakultät für Informatik, 22. Juli 2008 Typ-2-Berechenbarkeit Rechnen mit endlichen Objekten Σ := {0, 1}. f : Σ
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften
Dieter Suter - 223 - Physik B3, SS03
Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie
Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)
Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben
Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016
Kausalität Seminar zur Lorentz Geometrie Jonas Haferkamp 9. Juni 2016 1 Einleitung Kausalität ist das Prinzip von Ursache und Wirkung. Um dieses Konzept zu formalisieren, ist offenbar ein sinnvoller Zeitbegriff
Einführung in die Fehlerrechnung und Messdatenauswertung
Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer
8. Stetige Zufallsvariablen
8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse
Wellenfunktion. Kapitel 1. 1.1 Schrödinger - Gleichung
Kapitel 1 Wellenfunktion Diejenigen, die nicht schockiert sind, wenn sie zum ersten mal mit Quantenmechanik zu tun haben,habensie nicht verstanden. ( If you are not confusedby quantum physics then you
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS
ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung
Grundlagen der Theoretischen Mechanik für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen)
Grundlagen der Theoretischen Mechanik für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen) Priv.-Doz. Dr. Reinhard Mahnke Institut für Physik Lehrveranstaltung Nr. 12558 (Wintersemester
1.3 Flüsse. Y (t) = f(y(t))
18 Kapitel 1. Gewöhnliche Differentialgleichungen 1.3 Flüsse Sei jetzt F:D R n R n ein stetig differenzierbares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und Eindeutigkeitssatzes. Das
Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik
Univ. Leipzig Mathematisches Institut Vertretung Professur Stochastische Prozesse Max v. Renesse email: [email protected] Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik
4. Differentialgleichungen
4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter
Analysis II (FS 2015): Vektorfelder und Flüsse
Analysis II (FS 215): Vektorfelder und Flüsse Dietmar A. Salamon ETH-Zürich 7. April 215 1 Der Fluss eines Vektorfeldes Sei U R n eine offene Menge und sei f : U R n eine lokal Lipschitz-stetige Abbildung.
Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010
Aufgaben für die 6. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 00 6. Wie hat man eine reelle Zahl α > 0 so in a b 3 positive Summanden x, y, z zu zerlegen, damit fx, y x y
Die Varianz (Streuung) Definition
Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ
Differenzengleichungen. und Polynome
Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich [email protected] 1 Einleitung Mit linearen Differenzengleichungen
T6 Elektrodynamik in Materie
T6 Elektrodynamik in Materie T6. Die phänomenologischen Maxwell Gleichungen Wir wollen hier den Einfluss von Materie auf makroskopische elektromagnetische Phänomene beschreiben. Wir betrachten zunächst
1 Einleitung: Die Lichtgeschwindigkeit
1 Einleitung: Die Lichtgeschwindigkeit In der zweiten Hälfte des 19. Jahrhunderts wurde die elektromagnetische Natur des Lichts erkannt (J. C. Maxwell, ca. 1870). Wir wollen die Argumentation kurz skizzieren.
Kapitel 8. Rekursionsgleichungen. Landau-Symbole. Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen
Rekursionsgleichungen Landau-Symbole Kapitel 8 Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen Kapitel 8 Rekursionsgleichungen p./42 Landau-Symbole () Modellierung
Einführung in die theoretische Physik 1
Einführung in die theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 und Donnerstag 10:45 12:00 Beginn: 23.10.12 Jungius 9, Hörs 2 1 Organisatorisches Vorlesung am 1.11.: wird dankenswerterweise
Analysis I - Stetige Funktionen
Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt
Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen
Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen David Knötel Freie Universität Berlin, Institut für Informatik Seminar über Algorithmen Leitfaden Wiederholung
Differenzengleichungen
Universität Basel Wirtschaftswissenschaftliches Zentrum Differenzengleichungen Dr. Thomas Zehrt Inhalt: 1. Einführungsbeispiele 2. Definition 3. Lineare Differenzengleichungen 1. Ordnung (Wiederholung)
"wahre Anomalie": (= Winkel bzgl. Fokus) "exzentrische Anomalie": const =
Beipiel 4: Iteratives Lösen von Gleichungen Kepler-Gleichung: Finde Lösung für bis inklusive! Physikalische Anwendung im Kepler-Problem: Gl. (1) bestimmt den Zusammenhang zwischen Laufzeit t und der "exzentrischen
Extremwertverteilungen
Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen
ad Physik A VL2 (11.10.2012)
ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=
Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine
Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 4. Versuch: Atwoodsche Fallmaschine 1 Einführung Wir setzen die Untersuchung der beschleunigten Bewegung in diesem Versuch fort.
Angewandte Stochastik
Angewandte Stochastik Dr. C.J. Luchsinger 17 Crash Course Brownsche Bewegung (stetige Zeit, stetiger Zustandsraum); Pricing & Hedging von Optionen in stetiger Zeit Literatur Kapitel 17 * Uszczapowski:
Exemplar für Prüfer/innen
Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2016 Mathematik Kompensationsprüfung 3 Angabe für Prüfer/innen Hinweise zur
1.3 Ein paar Standardaufgaben
1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte
l p h (x) δw(x) dx für alle δw(x).
1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe
Ausarbeitung des Seminarvortrags zum Thema
Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung
Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.
Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines
3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer
3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich
Würfelspiele und Zufall
Würfelspiele und Zufall Patrik L. Ferrari 29. August 2010 1 Random horse die Irrfahrt des Pferdchens Betrachte ein Schachbrett mit einem Pferd (Springer), welches sich nach den üblichen Springer-Regeln
Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1
Energie und Energieerhaltung
Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen
Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den
M Geoppelte Pendel Versuchsprotooll von Thomas Bauer und Patric Fritzsch Münster, den.1.1 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Die Pendelbewegung. Dder Kopplungsgrad 3. Versuchsbeschreibung
Korrelation und Regression
FB 1 W. Ludwig-Mayerhofer und 1 und FB 1 W. Ludwig-Mayerhofer und 2 Mit s- und sanalyse werden Zusammenhänge zwischen zwei metrischen Variablen analysiert. Wenn man nur einen Zusammenhang quantifizieren
4 Elementare Vektorraumtheorie
4. ELEMENTARE VEKTORRAUMTHEORIE 51 4 Elementare Vektorraumtheorie Im folgenden sei K stets ein Körper. Definition. (i) Eine homogene Gleichung in den Unbekannten ξ 1,..., ξ n ist ein Ausdruck der Gestalt
Thema 4 Limiten und Stetigkeit von Funktionen
Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.
Übungsaufgaben zu Statistik II
Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben
diskrete und kontinuierliche Verteilungen
Vorlesung: Computergestützte Datenauswertung Wahrscheinlichkeit, Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik diskrete und kontinuierliche Verteilungen SS '16 KIT Die Forschungsuniversität
Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie
Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele
Formelsammlung Theoretische Physik Examensvorbereitung
Formelsammlung Theoretische Physik Examensvorbereitung Frank Reinhold 6. März 2012 Inhaltsverzeichnis 1 Mechanik 2 Drehimpulskomponente L z in R 3.................... 2 Langrange-Bewegungsgleichung......................
Axiomatische Beschreibung der ganzen Zahlen
Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz [email protected] 0055282 Claudia Hemmelmeir JKU Linz [email protected] 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen
Einführung in die Biophysik - Übungsblatt 8
Einführung in die Biophysik - Übungsblatt 8 July 2, 2015 Allgemeine Informationen: Die Übung ndet immer montags in Raum H030, Schellingstr. 4, direkt im Anschluss an die Vorlesung statt. Falls Sie Fragen
