Differenzengleichungen
|
|
|
- Eleonora Weiß
- vor 9 Jahren
- Abrufe
Transkript
1 Universität Basel Wirtschaftswissenschaftliches Zentrum Differenzengleichungen Dr. Thomas Zehrt Inhalt: 1. Einführungsbeispiele 2. Definition 3. Lineare Differenzengleichungen 1. Ordnung (Wiederholung) 4. Lineare Differenzengleichungen 2. Ordnung
2 Teil 1 Einführungsbeispiel
3 Vermögenswachstum gegeben: Anfangsvermögen V 0 Zinsrate p Konsumausgaben (pro Jahr) C gesucht: Vermögen V t im Jahr t für alle t = 1,2,... Lösung 1 (rekursiv, Differenzengleichung): V t+1 = (1 + p) V t C Lösung 2 (direkt): ( V t = (1 + p) t V 0 C ) p + C p
4 Normales Bevölkerungswachstum gegeben: Anfangsbevölkerung N 0 Geburtenrate α Sterberate β gesucht: Anzahl Individuen N t im Jahr t für alle t = 1,2,... Lösung (rekursiv, Differenzengleichung): N t = N t 1 Todesfälle + Geburten N t 1 + αn t 1 βn t 1 = N t 1 + } (α {{ β) } N t 1 =:r
5 Aufgabe 1: Wie lautet die direkte Lösung dieser Rekursion (Differenzengleichung)?
6 Beschränktes (Bevölkerungs)wachstum Modellansatz N t = N t 1 + R(N t 1 ) N t 1 Forderungen an R = R(N t 1 ) ( ) mit steigendem N t 1 (Überbevölkerung) soll R(N t 1 ) abnehmen ist ein Sättigungsgrad K erreicht (d.h. gilt N t 1 = K), so soll R(N t 1 ) = 0 gelten (Bevölkerung im Gleichgewicht) für N t 1 0 (Überbevölkerungseffekte nehmen ab) nähert sich die Wachstumsrate R(N t 1 ) einem festen Wert r, der unbeschränkten Wachstumsrate an lim R(N t 1) = R(0) = r N t 1 0
7 Die logistische Gleichung Ein einfaches Modell R(N t 1 ) = r K N t 1 + r = r ( 1 1 ) K N t 1 führt zur so genannten diskreten logistischen Differenzengleichung N t = N t 1 + r N t 1 (1 1 K N t 1 )
8 Aufgabe 2: Zeigen Sie, dass die Funktion R(N t 1 ) = r }{{} K N }{{ t 1 } x x +r = r die drei Forderungen ( ) erfüllt. ( 1 1 K N t 1 }{{} x ) Hinweis: Der Einfachheit halber schreiben wir x statt N t 1.
9 Teil 2 Definitionen
10 Eine Differenzengleichung gibt Gesetzmässigkeiten in der zeitlichen Entwicklung einer (unbekannten) Funktion y t an: Die Zeit wird dabei als diskret betrachtet (t = 0,1,2,...) d.h. y t wird nur an regelmässig aufeinanderfolgenden Zeitpunkten betrachtet. Bezeichnung: k statt t Die Differenzengleichung verk nupft die Werte der Funktion an zwei, drei oder mehr Zeitpunkten. y k = f(y k 1,y k 2,y k 3,...)
11 Beispiele: y k+1 = 3 y k 5 y k+2 + 5y k+1 7y k = 9 y k k(y k 1 ) 3 + y k 2 = 3 k sin(y k ) k y k 1 + ln(y k 4 ) = 3 k
12 Einteilung von Differenzengleichungen Die Ordnung Eine Differenzengleichung heisst von n-ter Ordnung wenn sie die unbekannte Funktion y k an (n + 1) aufeinanderfolgenden Zeitpunkten verknüpft, d.h. y k = f(y k 1,y k 2,...,y k n ) Beispiele: 1. Ordnung: y k = 3y k Ordnung: y k = y k 1 + y k 1 y k 2 3. Ordnung: y k = y k 1 y k 2 y k 3
13 Linear-Nichtlinear Eine lineare Differenzengleichung (mit konstanten Koeffizienten) ist von der Form y k = A y k 1 + B y k 2 + C y k 3... mit reellen Zahlen A,B,C,... Beispiele: Linear: y k = y k 1 + 6y k 2 Nichtlinear: y k = y k 1 y k 2 y k 3
14 Die Lösung einer Differenzengleichung 1. Die allgemeine Lösung einer Differenzengleichung ist die Menge aller Funktionen (Folgen), die die angegebene Gesetzmässigkeit erfüllt. Beispiel: Allgemeine Lösung von y k+1 = 2y k sind alle Folgen y k = C 2 k mit C R. 2. Die Lösung eines Anfangswertproblems (AWP) ist das Element aus der allgemeinen Lösung, das eine (oder zwei,...) Anfangsbedingung(en) erfüllt d.h. das Element, das zu einem festgelegten Zeitpunkt einen gegebenen Wert annimmt. Beispiel: Das AWP y k+1 = 2y k, y 0 = 3 hat die Lösung y k = 3 2 k.
15 Teil 3 Lineare Differenzengleichungen 1. Ordnung (mit konstanten Koeffizienten)
16 Normalform einer linearen Differenzengleichung 1. Ordnung (mit konstanten Koeffizienten) y k+1 = A y k + B mit reellen Zahlen A,B mit A 0. Allgemeine Lösung y k = A k y 0 + B 1 Ak A 1 1 A y 0 + Bk A = 1
17 oder auch y k = A k (y 0 y ) + y mit y = B 1 A, A 1
18 Untersuchung des Lösungsverhaltens Fall 1: A 1 und y k y = A k (y 0 y ) Fall y k y y k A > 0 y k y monoton A < 0 y k y alternierend y k monoton y k oszillierend A > 1 y k y = A k y 0 y y k lim A k = + explosiv A < 1 y k y = A k y 0 y y k lim A k = 0 gedämpft limy k = y
19 A 1 A explosiv monoton 1 0 gedämpft oszillierend 1 explosiv
20 Fall 2: A = 1 lim y k = lim (y 0 + Bk) k k = y 0 + B lim = k k { + B > 0 B < 0
21 Teil 4 Lineare Differenzengleichungen 2. Ordnung (mit konstanten Koeffizienten)
22 Eine Differenzengleichung der Gestalt y k+2 + a 1 y k+1 + a 2 y k = 0 heisst homogene, eine solche der Gestalt y k+2 + a 1 y k+1 + a 2 y k = r heisst inhomogene lineare Differenzengleichung 2. Ordnung (mit konstanten Koeffizienten). Die reelle Zahl r heisst Störglied.
23 Teil 4.1 Lineare Differenzengleichungen 2. Ordnung (mit konstanten Koeffizienten) Lösung der homogenen Gleichung
24 y k+2 + a 1 y k+1 + a 2 y k = 0 Ansatz: y k = m k, m 0 Einsetzen: 0 = y k+2 + a 1 y k+1 + a 2 y k = m k+2 + a 1 m k+1 + a 2 m k = m 2 + a 1 m + a 2 m Lösung der charakteristischen Gleichung: m 1,2 = a 1 ± a 2 1 4a 2 2
25 Fall 1 a 2 1 4a 2 > 0 Die charakteristische Gleichung hat zwei verschiedene reelle Lösungen m 1 und m 2. y (1) k = m k 1 und y (2) k = m k 2 sind zwei linear unabhängige Lösungen der homogenen Differenzengleichung. Allgemeine Lösung: y k = c 1 m k 1 + c 2 m k 2 Beispiel: y k+2 + y k+1 6y k = 0 y 0 = 1, y 1 = 7
26 Fall 2 a 2 1 4a 2 = 0 Die charakteristische Gleichung hat eine reelle Lösung m 1 = m 2 = m = a 1 2 und y (1) k = m k ist eine Lösung der homogenen Differenzengleichung. Behauptung: Auch y (2) k = k m k ist eine Lösung der homogenen Differenzengleichung. Allgemeine Lösung: y k = c 1 m k + c 2 k m k = (c 1 + c 2 k) m k Beispiel: 4y k+2 + 4y k+1 + y k = 0 y 0 = 1, y 1 = 0
27 Beweis der Behauptung: Sei y (2) k = k mk wobei m = a 1 2 die charakteristische Gleichung m 2 +a 1 m+a 2 m = 0 erfüllt. Dann gilt y (2) k+2 + a 1 y (2) k+1 + a 2 y (2) k = (k + 2) m k+2 + a 1 (k + 1) m k+1 + a 2 k m k = k m k m k+2 + a 1 k m k+1 + a 1 m k+1 +a 2 k m k = k m k (m 2 + a 1 m + a 2 m) }{{} = 0 =0 +m k+1 (2m + a 1 ) }{{} =0
28 Fall 3 a 2 1 4a 2 < 0 Die charakteristische Gleichung hat keine reelle Lösungen. Allgemeine Lösung: wobei y k = R k (c 1 sin(kφ) + c 2 cos(kφ)) R = a 2 cos(φ) = a 1 2 a 2, 0 φ < π Beispiel: y k+2 y k y k = 0 y 0 = 2, y 1 = 0
29 Teil 4.2 Lineare Differenzengleichungen 2. Ordnung (mit konstanten Koeffizienten) Lösung der inhomogenen Gleichung
30 Superpositionsprinzip Die allgemeine Lösung der inhomogenen Gleichung y k+2 + a 1 y k+1 + a 2 y k = r ist gleich der Summe aus der allgemeinen Lösung der zugehörigen homogenen Gleichung y k+2 + a 1 y k+1 + a 2 y k = 0 und einer speziellen Lösung der inhomogenen Gleichung: y k = c 1 y (1) k + c 2 y (2) k + y k y (1) k, y(2) k zwei linear unabhängige Lösungen der homogenen Gleichung yk eine Lösung der inhomogenen Gleichung
31 Bestimmung einer (speziellen) Lösung y k der inhomogenen Gleichung y k+2 + a 1 y k+1 + a 2 y k = r Fall 1: 1 + a 1 + a 2 0 Spezielle Lösung: yk = r = konstant 1 + a 1 + a 2 Fall 2: 1 + a 1 + a 2 = 0, a 1 2 Spezielle Lösung: y k = r 2 + a 1 k Fall 3: 1 + a 1 + a 2 = 0, a 1 = 2 Spezielle Lösung: y k = r 2 k2
32 Aufgabe 3: Gegeben sind die folgenden inhomogenen linearen Differenzengleichungen 2. Ordnung: y k+2 3 y k y k = 6 y k+2 + y k+1 2 y k = 12 y k+2 2 y k+1 + y k = 12 Bestimmen Sie eine spezielle Lösung jeder Differenzengleichung. Bestimmen Sie die allgemeine Lösung jeder Differenzengleichung.
1 Einführung Vermögenswachstum Unbeschränktes Bevölkerungswachstum Beschränktes (Bevölkerungs)wachstum...
Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Mathematik 1 Dr. Thomas Zehrt Differenzengleichungen Inhaltsverzeichnis 1 Einführung 1.1 Vermögenswachstum.............................. 3 1. Unbeschränktes
14 Lineare Differenzengleichungen
308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (
Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y
Lösung - Schnellübung 13
D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (
Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)
WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII
Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)
Rückblick auf die letzte Vorlesung
Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung
Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.
Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x
Übungen zum Ferienkurs Analysis II
Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,
9.4 Lineare gewöhnliche DGL
9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In
Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4
anu [email protected] www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne
Systemanalyse und Modellbildung
Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 7. Zeitdiskrete Modelle 7.1
SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle
Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle 1. Zeitdiskrete
Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt
Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik
Differenzialgleichungen erster Ordnung
Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2
Lineare Differenzengleichungen
Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung
12 Gewöhnliche Differentialgleichungen
2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert
Differentialgleichungen
Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)
Kapitel 12. Differenzen- und Differenzialgleichungen
Kapitel 12. Differenzen- und Differenzialgleichungen In diesem Kapitel wollen wir die grundlegenden Techniken erklären, mit denen das dynamische Verhalten von ökonomischen Systemen (und nicht nur solchen)
Die inhomogene Differentialgleichung höherer Ordnung.
Die inhomogene Differentialgleichung höherer Ordnung. Ist das Funktionensystem (y 1,..., y n ) ein Fundamentalsystem, so ist die Matrix Y(t) = y (0) 1... y n (0). y (n 1) 1... y n (n 1) eine Fundamentalmatrix
Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten
Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen und Ordnung mit konstanten Koeffizienten Prof Dr BGrabowski Lösung linearer Dgl Ordnung mittels Zerlegungssatz Aufgabe ) Lösen Sie
Partikuläre Lösung inhomogener DGLen 2. Ordnung mit konstanten Koeffizienten
Partikuläre Lösung inhomogener DGLen 2. Ordnung konstanten Koeffizienten Seite 1 von 5 Partikuläre Lösung inhomogener DGLen 2. Ordnung konstanten Koeffizienten Tabelle: Lösungsansatz für eine partikuläre
Lineare Differenzen- und Differenzialgleichungen
Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
1. Übungsblatt Aufgaben mit Lösungen
. Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
Eigenwerte und Eigenvektoren
Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte
Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik
Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.
Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 1
Prof. Roland Gunesch Sommersemester 00 Übungen zur Vorlesung Einführung in Dnamische Ssteme Musterlösungen zu Aufgabenblatt Aufgabe : Sei A 0 4. a Bestimmen Sie für jeden Anfangswert 0 R das Verhalten
Prof. Steinwart Höhere Mathematik I/II Musterlösung A =
Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A
Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 8.1 (Herbst 2002, Thema 1, Aufgabe 6) y = 3y +2x x 8.2 (Frühjahr 2005, Thema 1, Aufgabe 6) (x > 0) y(1)
Differentialgleichungen WS 2011/ Übungsblatt. und y(x) = cos(x) x
Differentialgleichungen WS 2011/2012 1. Übungsblatt 1. Zeigen Sie, dass y(x) = sin(x) x und y(x) = cos(x) x Lösungen der Bessel-Gleichung sind. x 2 y +xy +(x 2 1 4 )y = 0 2. Konstruieren Sie zu dem Anfangswertproblem
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
Funktionen in zwei (und mehreren) Veränderlichen
Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstsemester 8 Funktionen in zwei (und mehreren) Veränderlichen Inhalt: 1. Definition und Beispiele.
eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.
Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen
Apl. Prof. Dr. N. Knarr Musterlösung , 120min
Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
Differentialgleichungen
Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:
Folgen und Reihen Folgen
Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort
1.5 Lineare Differentialgleichungen zweiter Ordnung
16 Kapitel 1. Differentialgleichungen 1.5 Lineare Differentialgleichungen zweiter Ordnung Eine lineare Differentialgleichung zweiter Ordnung hat die Form y +a 1 (x)y +a 0 (x)y = b(x), wobei a 1,a 0,b:I
4 Gewöhnliche Differentialgleichungen
4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten
Differentialgleichungen 2. Ordnung
Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei
Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )
TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare
11.4. Lineare Differentialgleichungen höherer Ordnung
4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)
Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016
Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der
Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten
Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene
4.3 Anwendungen auf Differentialgleichungen
7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,
Differentialgleichungen WS 2013/ Übungsblatt. und y(x) = cos(x) x
Differentialgleichungen WS 2013/2014 1. Übungsblatt 1. Zeigen Sie, dass y(x) = sin(x) x und y(x) = cos(x) x Lösungen der Bessel-Gleichung sind. x 2 y +xy +(x 2 1 4 )y = 0 2. Konstruieren Sie zu dem Anfangswertproblem
Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014
Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen
Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen Dr. Thomas Zehrt Folgen und Reihen Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band, 7. Auflage,
Inhaltsverzeichnis. Universität Basel 7 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematik 1
Universität Basel 7 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Produktionsfunktionen Inhaltsverzeichnis 1 Homogene Funktionen 2 1.1 Definition und
Kapitel 7. Differenzengleichungen
apitel 7 Differenzengleichungen I n h a ltsverze ichnis DIFFERENZENGLEICHUNGEN... 3 EINFÜHRUNG UND BEISPIELE... 3 DIFFERENZENGLEICHUNG 1. ORDNUNG... 3 ELEMENTARE DIFFERENTIALGLEICHUNGEN... 4 GEWÖHNLICHE
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
II Stationäre Zeitreihen
II Stationäre Zeitreihen Bei der Modellierung von Zeitreihen in Anwendungen spielen ARMA(p, q)-modelle eine wichtige Rolle. Sie sind als stationäre Lösungen stochastischer Differenzgleichungen mit konstanten
5. Vorlesung Wintersemester
5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode
Mathematik für Naturwissenschaftler II SS 2010
Mathematik für Naturwissenschaftler II SS 2010 Lektion 19 8. Juli 2010 Kapitel 14. Gewöhnliche Differentialgleichungen zweiter Ordnung 14.1 Systeme gewöhnlicher linearer Differentialgleichungen erster
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)
BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften
Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester
Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2
Univ.-Prof. Dr. Goulnara ARZHANTSEVA
Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 06: Rekursionen 1 / 30 Rekursionen Definition: Rekursion Sei c n eine Zahlenfolge. Eine Rekursion
Differentialgleichungen II für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg SoSe 2006 Prof. Dr. R. Lauterbach Dr. K. Rothe Differentialgleichungen II für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 4 Aufgabe 13: Gegeben
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)
y hom (x) = C e p(x) dx
Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)
Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,
Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,
Reihenentwicklungen von Lösungen (I) 1 Einleitung
Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 22.11.2011 Carmen Freuen Ziel dieses Vortrages ist es, die Reihenentwicklung von Lösungen linearer Differentialgleichungen vorzustellen und zu untersuchen.
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik
Eine gewöhnliche Differentialgleichung ist eine. Funktionsgleichung, Die allgemeine Differentialgleichung n-ter Ornung für eine Funktion y = y (x) :
Gewöhnliche Differentialgleichung. Einleitung und Grundbegriffe Def.: Eine gewöhnliche Differentialgleichung ist eine Funktionsgleichung, die eine unbekannte Funktion = () sowie deren Ableitungen nach
Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018
Institut für Analysis Prof. Dr. Michael Plum M.Sc. Jonathan Wunderlich Lösungsvorschlag zum. Übungsblatt zur Vorlesung Analysis II im Sommersemester 08 3. Mai 08 Aufgabe 5 (K: Es seien n N und A R n eine
2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff.
2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. a k y (k) (x) = b(x) k=0 (L) mit a 0, a 1,..., a n
Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2
Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.
Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten
y = A(x) y + b(x). (1) y = A(x) y (2)
73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe
Mathematischer Vorkurs Lösungen zum Übungsblatt 3
Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester [email protected] Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2
D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion
Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt
Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik
Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik
