Systemanalyse und Modellbildung
|
|
|
- Eduard Stieber
- vor 7 Jahren
- Abrufe
Transkript
1 Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter)
2 7. Zeitdiskrete Modelle 7.1 Zeitdiskrete Modell mit einer Variablen Differenzengleichung und die numerische Lösung von Differentialgleichungen Iterative Gleichungen sind scheinbar leichter als Differentialgleichungen zu lösen, was in der Regel aber nicht zutrifft. Der primitivste Integrationsalgorithmus beruht auf der Idee, den kontinuierlichen Gang der Zeit durch endliche Intervallsprüngen der Größe Δt zu approximieren. Man definiert = + und führt eine sogenannte Differenzengleichung ein: =() () = ()
3 7. Zeitdiskrete Modelle 7.1 Zeitdiskrete Modell mit einer Variablen Differenzengleichung und die numerische Lösung von Differentialgleichungen Wenn man nach () auflöst und zudem vom Ausgangswert mehrmals hintereinander ausgeht, erhält man: () = 1+ (). () = 1+ () Im Grenzfall ist 0. Mit dem Grenzwert lim 1+ = erhalten wir für = lim 1+ das Ergebnis: = () ()
4 7.1 Zeitdiskrete Modell mit einer Variablen Lineare diskrete Modelle erster Ordnung Die inhomogene, lineare, zeitdiskrete Gleichung erster Ordnung mit konstanten Koeffizienten hat die Form: () =+ Treten mehrere Terme auf, dann spricht von Gleichungen zweiter, dritter, usw. Ordnung. Wie sieht die lineare Differentialgleichung aus, die mit der zeitdiskreten linearen Differenzengleichung verwandt ist? Aus () =+ 1+ erhalten wir durch Division mit : () () =+ () =, = 1 Bekanntlich hat die Differentialgleichung den stationären Zustand = falls <0.
5 7.1 Zeitdiskrete Modell mit einer Variablen Lineare diskrete Modelle erster Ordnung Die Differenzengleichung hat den stationären Zustand Beweis: Wird die Gleichung () =+ mehrfach hintereinander mit () ausgeführt, () =+ () =+ () =+ + = 1+ + () =+ () = = erkennt man die allgemeine Regel: () = + = lim () = 1, 1< <1
6 7.1 Zeitdiskrete Modell mit einer Variablen Lineare diskrete Modelle erster Ordnung Mit der Formel zur Berechnung geometrischer Summen, = 1 1 folgt schließlich: 1 () = = Falls <1, verschwindet der zweite Term für, d.h. = lim () = 1
7 7.1 Zeitdiskrete Modelle mit einer Variablen Lineare, diskrete Modelle erster Ordnung: Mögliche Fälle Für kleine Werte oszilliert das System zwischen den Extremwerten hin und her.
8 7.1 Zeitdiskrete Modelle mit einer Variablen Lineare diskrete Modelle höherer Ordnung Zeitdiskrete Modelle höherer Ordnung, z.b. q-ter Ordnung, werden durch eine Iterationsgleichung beschrieben, in der q hintereinander liegende Parameterwerte (), (),, () zueinander in Beziehung gesetzt werden. Ist das System linear, kann man die Gleichung in folgende Form bringen: + () + () + + =0. Diese inhomogene Gleichung kann durch Wahl einer neuen Variablen: () = () +, =1,2, in eine homogene Gleichung umgewandelt werden.
9 7.1 Zeitdiskrete Modelle mit einer Variablen Lineare diskrete Modelle höherer Ordnung Falls 0ist und =, entsteht die obige Form bis auf den Term I, deren die Lösung die Angabe von q Anfangswerten voraussetzt. Für die Transformation () + () + + ( =0 ist die Funktion () =λ eine Lösung. Hier eingesetzt erhalten wir nämlich: λ + λ + + λ =0. Durch Division mit λ n erhält man die vom Iterationsschritt unabhängige, so genannte charakteristische Gleichung: λ + λ + + =0, Im Allgemeinen hat diese charakteristische Gleichung q (reelle oder komplexe) Lösungen λ =1,,.
10 7.1 Zeitdiskrete Modelle mit einer Variablen Lineare diskrete Modelle höherer Ordnung Die allgemeine Lösung der transformierten Differenzengleichung ist eine lineare Kombinationen aller λ j Potenzen: () = λ, wobei die A j aus den Anfangsbedingungen bestimmt werden. Falls die Wurzeln der charakteristischen Gleichung reell sind, unterscheidet man zwischen zwei Fälle: a) Ist der Betrag aller λ j kleiner eins, konvergiert die transformierte Differenzengleichung gegen null für n. b) Ist eine Wurzel betragsmäßig größer 1, dann folgt V() ±.
11 7.1 Zeitdiskrete Modell mit einer Variablen Nichtlineare Modelle Ob ein lineares Differenzenmodell einem stationären Zustand zustrebt, ist nicht einfach zu beantworten. Dennoch gibt es einfache Rezepte, um das Langzeitverhalten zu analysieren. Komplexer wird die Sache für den Fall nichtlinearer Modelle, so schon bei den hier betrachteten Modellen erster Ordnung: () = wobei die Funktion g eine logistische Wachstumsfunktion sei: = () (),,>0 Die Nullstellen dieser Funktion g sind offensichtlich Fixpunkte des Modells, für die gilt: () =.
12 7.1 Zeitdiskrete Modell mit einer Variablen Nichtlineare Modelle Wir untersuchen wieder das Verhalten des Systems beim Fixpunkt, indem eine neue diskrete Variable eingeführt wird: () = () Mit ihr erhält die Differenzgleichung die Form: () = = + () Falls die Abweichung vom Fixpunkt ( () ) sehr klein ist, kann man g in eine Taylor-Reihe entwickeln und nach dem linearen Term abbrechen: + () = + () +
13 7.1 Zeitdiskrete Modell mit einer Variablen Nichtlineare Modelle (Fortsetzung) Da ein Fixpunkt ist, ist definitionsgemäß =0. Wir erhalten eine lineare Differenzengleichung für () bzw. hierfür eine einfache Umformung: () =. = 1+ = ()
14 7.1 Zeitdiskrete Modell mit einer Variablen Nichtlineare Modelle (Fortsetzung) Die Gleichung konvergiert gegen den Fixpunkt, wenn gilt: = 1+ <1.0> Der Fixpunkt ist jedoch instabil, wenn gilt: >1 > 2
15 7.1 Zeitdiskrete Modell mit einer Variablen Nichtlineare Modelle (Beispiel logistisches Wachstumsmodell) Die Modellfunktion = () (),,>0hat die Ableitung: = 2 + Für die beiden Fixpunkte ergibt sich: =+, =,,>0 Solange bk< 2 ist der zweite Fixpunkt stabil, während der erste Fixpunkt immer instabil ist.
16 7.1 Zeitdiskrete Modell mit einer Variablen Nichtlineare Modelle (Beispiel logistisches Wachstumsmodell) Zur Diskussion wird die neue Variable = eingeführt, womit sich die transformierte Gleichung ergibt: = 1, 1+ Die Funktion ist eine nach unten geöffnete Parabel mit dem Scheitel x=1/2, welche die x-achse bei x=0 und x=1 schneidet. Das Modell hat dann ein Gleichgewicht erreicht, wenn gilt: = = 1 Hieraus ergibt sich neben der trivialen Lösung =0 die Lösung: = -.
17 7.1 Zeitdiskrete Modell mit einer Variablen Nichtlineare Modelle (Beispiel logistisches Wachstumsmodell) Grafisch erhält man die Lösung als Schnittpunkt der Parabel mit der Geraden y=x. Die folgende Abbildung suggeriert, dass sich das System notwendigerweise auf den Fixpunkt zubewegt. Das ist aber nicht der Fall. Für µ=3.2 endet das System oszillierend zwischen den zwei Werten. Wenn wir jedoch nur jeden zweiten Wert betrachten, erreichen diese Folgen wiederum einen Fixpunkt. In diesem Fall müssen wir aus der Iterationsgleichung eine neue Vorschrift konstruieren, welche uns von x (n) nach x (n+2) bringt und den Zwischenschritt x (n+1) überspringt.
18 7.1 Zeitdiskrete Modell mit einer Variablen Nichtlineare Modelle (Beispiel logistisches Wachstumsmodell) Diese Doppelsprungfunktion erhält man aus, indem man = 1 in die Funktion = 1 einsetzt: = Die stationären Lösungen dieses Polynom vierten Grades ergeben sich wieder aus der Gleichung = bzw. grafisch aus dem Schnittpunkt von = mit der Geraden y=x. Die Punkte, wo eine Verdopplung auftritt, nennt man Bifurkationspunkte. Um weitere Bifurkationspunkte zu erhalten, untersucht man Viersprung- oder höhere Sprungfunktionen.
19 7.1 Zeitdiskrete Modell mit einer Variablen Nichtlineare Modelle (Beispiel logistisches Wachstumsmodell) Um weitere Bifurkationspunkte zu erhalten, untersucht man Viersprung- oder höhere Sprungfunktionen. Oberhalb =3,8284treten Situationen ohne periodische Lösungen auf, welche als deterministisches Chaos bezeichnet werden.
20
21
22
23
24 7.2 Zeitdiskrete Modell mit mehreren Variablen Lineare Modelle Ein q-dimensionales lineares Differenzenmodell hat die algebraische Form: () = + (), =1,,. Als Matrixform, wobei Peine (q, q) Matrix und (), () q-dimensionale Vektoren sind: () =+ () Formell kann man die analoge Lösung erhalten aus: () = +
25 7.2 Zeitdiskrete Modell mit mehreren Variablen Lineare Modelle Die Berechnung von Potenzen von Matrizen sind jedoch äußerst kompliziert. Nur wenn die Matrix P eine diagonale Form hat, zerfällt das ursprüngliche Gleichungssystem in q disjunkte Gleichungen, welche isoliert, d.h. unabhängig voneinander gelöst werden können. Systeme mit zwei Variable sind noch gut zu bearbeiten (siehe S.183ff).
14 Lineare Differenzengleichungen
308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung
Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K
Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und
Differenzengleichungen
Universität Basel Wirtschaftswissenschaftliches Zentrum Differenzengleichungen Dr. Thomas Zehrt Inhalt: 1. Einführungsbeispiele 2. Definition 3. Lineare Differenzengleichungen 1. Ordnung (Wiederholung)
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
4.3 Anwendungen auf Differentialgleichungen
7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,
Lineare Differenzengleichungen und Polynome. Franz Pauer
Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. [email protected] Vortrag beim ÖMG-LehrerInnenfortbildungstag
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
Rückblick auf die letzte Vorlesung. Bemerkung
Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D
MC-Serie 11: Eigenwerte
D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung
3.6 Eigenwerte und Eigenvektoren
3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse
Explizite Formeln für rekursiv definierte Folgen
Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
Eigenwerte und Diagonalisierung
Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende
Gleichsetzungsverfahren
Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift
Rekursionen (Teschl/Teschl 8.1-8.2)
Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion
4 Lineare Algebra (Teil 2): Quadratische Matrizen
4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,
Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'
Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung
Mathematischer Vorkurs Lösungen zum Übungsblatt 5
Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 [email protected] Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und
Kleine Formelsammlung zu Mathematik für Ingenieure IIA
Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................
(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren
Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene
Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.
Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]
5.10. Mehrdimensionale Extrema und Sattelpunkte
5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(
Iterative Verfahren, Splittingmethoden
Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem
Formelanhang Mathematik II
Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)
Lineare Algebra II 6. Übungsblatt
Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der
6.3 Hauptachsentransformation
Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die
8. Übungsblatt Aufgaben mit Lösungen
8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche
Übungsmaterial Polynome
Prof Dr W Rosenheinrich 010011 Fachbereich Grundlagenwissenschaften Fachhochschule Jena Übungsmaterial Polynome Aufgaben: 1 Diskutieren Sie den Wahrheitsgehalt der folgenden Aussagen! (a) Wenn ein Polynom
Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,
GRUNDLEGENDE MODELLE. Caroline Herbek
GRUNDLEGENDE MODELLE Caroline Herbek Lineares Wachstum Charakteristikum: konstante absolute Zunahme d einer Größe N t in einem Zeitschritt Differenzengleichung: N t -N t-1 =d => N t = N t-1 +d (Rekursion)
(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2
Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten
Zahlen und Gleichungen
Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen
Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.
Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
Lösungsskizzen zur Klausur
sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie
6 Eigenwerte und Eigenvektoren
6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,
Analysis und Lineare Algebra mit MuPAD
Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1
Zahlen und elementares Rechnen
und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3
A2.3 Lineare Gleichungssysteme
A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen
f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.
Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die
4.7 Der Taylorsche Satz
288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise
Mathematik für Informatik 3
Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter
Analytische Geometrie II
Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor
Lösen einer Gleichung
Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in
Gleichungen und Ungleichungen
Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung
Mathematik anschaulich dargestellt
Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Parabeln - quadratische Funktionen
Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
Elementare Wirtschaftsmathematik
Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.
Differenzengleichungen. und Polynome
Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich [email protected] 1 Einleitung Mit linearen Differenzengleichungen
Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?
Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen
( ) ( ) Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0. y s s
R. Brinkmann http://brinkmann-du.de Seite 07.0.0 Achsenschnittpunkte ganzrationaler Funktionen Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0 y s s f = f 0 = 0 0 = 0 0 = P ( 0 ) oder P ( 0 f(0)
x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass
V. Geradengleichungen in Parameterform 5. Definition ---------------------------------------------------------------------------------------------------------------- x 3 v a x x x Definition und Satz :
Lineare Gleichungssysteme
Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare
6 Gleichungen und Gleichungssysteme
03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion
Übungen zur Vorlesung MATHEMATIK II
Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom
Lösung zur Übung 19 SS 2012
Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die
3 Optimierung mehrdimensionaler Funktionen f : R n R
3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht
Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben
Die projektive Ebene Was sind unendlich ferne Punkte?
Die projektive Ebene Was sind unendlich ferne Punkte? Prof. Dr. Hans-Georg Rück Fachbereich Mathematik/Informatik Universität Kassel Heinrich-Plett-Str. 40 34132 Kassel Zusammenfassung: Wir konstruieren
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
2. Der Grad von Körpererweiterungen
2. Der Grad von Körpererweiterungen 15 2. Der Grad von Körpererweiterungen Wenn wir untersuchen wollen, ob eine gegebene Konstruktion in der Ebene mit Zirkel und Lineal durchführbar ist, haben wir im vorigen
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +
3.3 Klassifikation quadratischer Formen auf R n
3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen
1 Fraktale Eigenschaften der Koch-Kurve
Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
6 Differentialgleichungen
88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung
Algebraische Kurven. Holger Grzeschik
Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre
Analytische Geometrie I
Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
Vorkurs Mathematik 2016
Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [
2. Spezielle anwendungsrelevante Funktionen
2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für
Mathematik 1, Teil B. Inhalt:
FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten
f(t) = a 2 + darstellen lasst Periodische Funktionen.
7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen
DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )
Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon
exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur
Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
Ü b u n g s b l a t t 11
Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte
Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)
fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................
f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.
Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit
Erweiterte Koordinaten
Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In
konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in
C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich
Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann
Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen
(Allgemeine) Vektorräume (Teschl/Teschl 9)
(Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:
