Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Größe: px
Ab Seite anzeigen:

Download "Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften"

Transkript

1 Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit während der Veranstaltung erleichtern. Ohne die in der Veranstaltung gegebenen zusätzlichen Erläuterungen sind diese Unterlagen unvollständig (z. Bsp. fehlen oft wesentliche Voraussetzungen). Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT! Die Aufzählung wichtiger Themen bedeutet NICHT den Ausschluss anderer Themen für die Klausur. Eine Veröffentlichung dieser Unterlagen an anderer Stelle ist untersagt!

2 Absolut notwendige Werkzeuge: Sicheres partielles ableiten, f = (gradf) T = Vektor der ersten Ableitungen, J f Matrix der ersten Ableitungen, Determinanten, Entwicklung nach Zeilen oder Spalten, Eigenwerte, Eigenvektoren, Hauptvektoren berechnen, Skalarprodukt, Lineare Gleichungssysteme lösen (Eigenvektoren, Parameter aus allg. Lösung mittels Anfangswerte berechnen) 2

3 Top 8 der letzten Klausuren Stabilität: Linerar y = Ay bzw. nichtlinear y = f(y) Stationäre Punkte bzw. Ruhelagen y sind solche für die y = 0 gilt. Beispiel: Klausur 1 Erste Möglichkeit der Prüfung der Stabilität von stationären Punkten: Eigenwerte λ 1, λ 2,...,λ n von A bzw. Jf berechnen. Vorzeichen der Realteile von λ k und eventuell Dimension Eigenraum zu λ k s mit Re(λ k ) = 0 entscheiden! Beispiel: y 1 = 5y 1 y 2 +e t y 2 = y 1 5y 2 +2e t 3

4 Im nichtlinearen Fall bei Realteil Eigenwert = 0 evtl. keine Stabilitätsaussage möglich: Ljapunov Funktion: im Punkt (0,0): V(0,0) = 0 V(y 1,y 2 ) > 0, (y 1,y 2 ) (0,0) mindestens in einer Kreisscheibe um (0,0). < (gradv) T,f > 0. Passende Aufgaben: Klausur 1, B5-P1, B5-P2, B5-H1b: 4

5 Lineare Systeme y = A(t)y + h(t) Bei Konstanten Koeffizienten: Fundamentalsystem berechnen, allgemeine Lösung Spezieller Ansatz y p (t) = e µt a b für partikuläre Lösung der inhomo- c genen Gleichung bei h(t) = e µt α β. γ Variation der Konstanten für partikuläre Lösung der inhom. Gleichung Parameter aus allgemeiner Lösung mit Hilfe von Anfangs- oder Randwerten bestimmen Passende Aufgaben: B3-P1, B3-P2, B3-H1, B3-H2, B6-P1b, B6-P2 5

6 Beispiel von Oben: y = ( ) y + e t ( 1 2 ), y(0) = ( 2 0 ). Schritt 1: Eigenwerte von A: s. Oben λ 1,2 = 5±i Schritt 2: Eigenvektoren (A λe)v = 0 6

7

8 ) Schritt 3: Partikuläre Lösung bei h(t) = e t ( 1 2 7

9 Lineare Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten Allgemeine Lösung für homogene Gleichung Partikuläre Lösung für inhomogenes Problem: spezielle Ansätze Wer spezielle Ansätze nicht mag/kann, muss Matrixschreibweise und Variation der Konstanten können Passende Aufgaben: B4-P1, B4-H2, für Variation der Konstanten: B4-P2 Beispiel: y +7y +12y = 3 8

10 Separierbare y = g(t) h(y) und lineare Einzeldifferentialgleichung y = a(t)y +b(t) Beispiel: y t 3 y = te t4 4 Hier für die inhomogene: Variation der Konstanten! Gut als Ergänzung zu anderen Aufgaben. Passende Aufgaben: B1-P1, B1-P2, B1-H1 (nach Substitution u = ax + by +c), B2-P1 (nach Substitution y = x ) Exakte Differentialgleichung Exaktheit prüfen Potential bestimmen Nach y auflösen Passende Aufgaben: B2-P2, B2-H1 (Integrierender Faktor) 9

11 Randwertaufgaben Matrixschreibweise Eindeutige Lösung: Regularität der Shootingmatrix prüfen Rest: eines der zwei letzten Themen Passende Aufgaben: B6-P1, B6-P2, B6-H1. Variationsrechnung Euler-Lagrange-Gleichung Natürliche Randbedingung Lösen der entstehenden Randwertaufgabe Passende Aufgaben: Blatt 6, Hausaufgabe 2. Laplace-Transformation: Passende Aufgaben: B5-H2 10

12 Blatt 1: Aufgabe B1-1p: separierbare Dgl. (xxx) Aufgabe B1-2p: Lineare Dgl. (xxx) Aufgabe B1-1H: separierbar nach Substitution Aufgabe B2-2H: Bernoulli, Modellierung Blatt 2: Aufgabe B2-1p: Lineare nach Substitution y = x. Aufgabe B2-2p: Exakte Dgl. Aufgabe B2-1H: integrierender Faktor Aufgabe B2-2H: Euler Polygonzug/ sukzessive Approximation 11

13 Blatt 3: Aufgabe B3-1p: Lineares System, variable Koeffizienten, a) Nachweis FS, b) Variation der Konstanten (xx) c) AWA (xxx) Aufgabe B3-2p: Lineares System, konstante Koeffizienten, (xxx) komplexe Eigenwerte, spezieller Ansatz (xxx) Aufgabe B3-1H: Lineares System, variable Koeffizienten, a) gegebene Ansätze einsetzen, b) VdK, (xx), c) AWA (xxx) Aufgabe B3-2H: Lineares System, konstante Koeffizienten, (xxx) mehrfache Eigenwerte, Hauptvektoren nötig, AWA (xxx) 12

14 Blatt 4: Aufgabe B4-1p: Dgl. 3. Ordnung, spezielle Ansätze (xxx) Aufgabe B4-2p: Dgl. 2. Ordnung, umschreiben auf System, VdK (??) Aufgabe B4-1H: Reduktionsansatz () Aufgabe B4-2H: Dgl. 2. Ordnung, spezieller Ansatz (xxx) bzw. 3. Ordnung, komplexe Nullstellen des charakteristischen Polynoms, spezielle Ansätze. Blatt 5: Aufgabe B5-1p: Stabilität linearer Fall (xxx) Aufgabe B5-2p: Stabilität nichtlinearer Fall über Jakobi. (xxx) 13

15 Aufgabe B5-1H: Stabilität nichtlinearer Fall: Ljapunov. (xxx Klausur 1) Aufgabe B5-2H: Laplace-Transformation () Blatt 6: Aufgabe B6-1p: RWA homogen, a: Matrixschreibweise b) Fundamentalsystem, (xxx) c,d) Eindeutigkeit Aufgabe B6-2p: RWA inhomogen, spezieller Ansatz für y p, allg. Lsg. y = y h + y p an Randwerte anpassen (xxx) Aufgabe B6-1H: RWA 2. ord Aufgabe B6-2H: Variationsproblem, Euler Lagrange 14

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2018/2019 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Separierbare und lineare Differentialgleichungen

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2016/2017 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Elementare Lösungsmethoden für

Mehr

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 28/29 Dr. Hanna Peywand Kiani Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Autonome Systeme, Stabilität Die ins

Mehr

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Die ins Netz gestellten Kopien der

Mehr

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WIiSe 18/19 Dr. Hanna Peywand Kiani 28.01.2019 Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Das ins Netz gestellte Material zur

Mehr

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren Fachbereich Mathematik der Universität Hamburg SoSe 2 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung mit anderen Randbedingungen nicht Dirichlet, symmetrische Differentialoperatoren 8.7.2 Die ins Netz

Mehr

Hörsaalübung 1 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 1 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2018/2019 Dr. Hanna Peywand Kiani Hörsaalübung 1 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Einführung in das Gebiet der Differentialgleichungen

Mehr

Wärmeleitungsgleichung,

Wärmeleitungsgleichung, Fachbereich Mathematik der Universität Hamburg SoSe 2015 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung, 05.06.2015 Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit während

Mehr

Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT!

Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT! Fachbereich Mathematik der Universität Hamburg SoSe 17 Dr. Hanna Peywand Kiani 13.07.2017 Klausurberatung Komplexe Funktionen für Studierende der Ingenieurwissenschaften Die ins Netz gestellten Dateien

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 207 Dr. Hanna Peywand Kiani Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Laurent-Reihen, isolierte Singularitäten 6.

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

Die inhomogene Differentialgleichung höherer Ordnung.

Die inhomogene Differentialgleichung höherer Ordnung. Die inhomogene Differentialgleichung höherer Ordnung. Ist das Funktionensystem (y 1,..., y n ) ein Fundamentalsystem, so ist die Matrix Y(t) = y (0) 1... y n (0). y (n 1) 1... y n (n 1) eine Fundamentalmatrix

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge Institut für Analysis SS 5 PD Dr. Peer Christian Kunstmann 7.9.5 Silvana Avramska-Lukarska Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Bachelor-Modulprüfung Lösungsvorschläge

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Differentialgleichungssysteme Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 DGlSysteme - Zusammenfassung Allgemeine Differentialgleichungssysteme.Ordnung

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung

Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung Department Mathematik der Universität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung Die ins Netz

Mehr

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2017/2018 Dr. Hanna Peywand Kiani Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Polynome, Folgen, Reihen 1. Teil 11/12.12.2017

Mehr

Differentialgleichungen WS 2011/ Übungsblatt. und y(x) = cos(x) x

Differentialgleichungen WS 2011/ Übungsblatt. und y(x) = cos(x) x Differentialgleichungen WS 2011/2012 1. Übungsblatt 1. Zeigen Sie, dass y(x) = sin(x) x und y(x) = cos(x) x Lösungen der Bessel-Gleichung sind. x 2 y +xy +(x 2 1 4 )y = 0 2. Konstruieren Sie zu dem Anfangswertproblem

Mehr

Differentialgleichungen WS 2013/ Übungsblatt. und y(x) = cos(x) x

Differentialgleichungen WS 2013/ Übungsblatt. und y(x) = cos(x) x Differentialgleichungen WS 2013/2014 1. Übungsblatt 1. Zeigen Sie, dass y(x) = sin(x) x und y(x) = cos(x) x Lösungen der Bessel-Gleichung sind. x 2 y +xy +(x 2 1 4 )y = 0 2. Konstruieren Sie zu dem Anfangswertproblem

Mehr

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis Höhere Mathematik III für die Fachrichtung Elektro- und Informationstechnik D. A MR Frühjahr 2014 T R, M.S. 06.03.2014 Bachelor-Modulprüfung Aufgabe

Mehr

Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung

Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 7. Juni 2017 Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung Wenn

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff.

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. 2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. a k y (k) (x) = b(x) k=0 (L) mit a 0, a 1,..., a n

Mehr

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Department Mathematik der Universität Hamburg WiSe 2011/2012 Dr. Hanna Peywand Kiani Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenfolgen 02.12.2011 Die ins Netz

Mehr

Lineare Differentialgleichungen

Lineare Differentialgleichungen Technische Universität München Thomas Reifenberger Vorlesung, Kapitel 4 Repetitorium Analysis I für Physiker Analysis I Lineare Differentialgleichungen 1 Das Matrixexponential Definition 1.1 Sei A C n

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

2. Elementare Lösungsmethoden

2. Elementare Lösungsmethoden H.J. Oberle Differentialgleichungen I WiSe 2012/13 2. Elementare Lösungsmethoden A. Separierbare Differentialgleichungen. Eine DGL der Form y (t) = f(t) g(y(t)) (2.1) mit stetigen Funktionen f : R D f

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation

Mehr

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen Karlsruher Institut für Technologie (KIT) Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math. Carlos Hauser SoSe 7 7.7.7 Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen.

Mehr

Höhere Mathematik III für Physik

Höhere Mathematik III für Physik 8..8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Höhere Mathematik III für Physik 5. Übungsblatt - Lösungsvorschläge Aufgabe (Homogene Anfangswertprobleme) Lösen Sie erst die folgenden Differentialgleichungssysteme

Mehr

Lösungsskizzen zur Klausur Mathematik II

Lösungsskizzen zur Klausur Mathematik II sskizzen zur Klausur Mathematik II vom..7 Aufgabe Es sei die Ebene im R 3 gegeben. E = +λ 3 + µ λ,µ R (a) Geben Sie die Hesse-Normalform der Ebene E an. (b) Berechnen Sie die orthogonale Projektion Π E

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Klausur Mathematik II

Klausur Mathematik II Technische Universität Dresden. Juli 8 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. M. Herrich Klausur Mathematik II Modul Dierentialgleichungen und Dierentialrechnung für Funktionen mehrerer

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Hörsaalübung 3, Analysis II

Hörsaalübung 3, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 3, Analysis II SoSe 2016, 02/03. Mai Integration II: Partielle Integration Partialbruchzerlegung (PBZ) Die ins Netz gestellten

Mehr

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25.

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25. A Technische Universität Berlin Fakultät II Institut für Mathematik WS 3/4 Eppler, Richter, Scherfner, Seiler, Zorn 5. Februar 4 Februar Klausur (Rechenteil) Lösungen: Lineare Algebra für Ingenieure Name:.......................................

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Anleitung zu Blatt 1 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 1 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe /3 Dr. Hanna Peywand Kiani Anleitung zu Blatt Analysis III für Studierende der Ingenieurwissenschaften Funktionen f : R n R Höhenlinien, Gradienten,

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) Institut für Analysis Priv.-Doz. Dr. Peer Kunstmann Markus Antoni WS 22/23 Bachelor Modulprüfung Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Aufgaben für das Seminar und zum selbständigen Üben 22. Januar 2018 Vorbereitende Übungen Aufgabe 1: Bestimmen Sie die Isoklinen zu den folgenden Differentialgleichungen

Mehr

9.4 Lineare gewöhnliche DGL

9.4 Lineare gewöhnliche DGL 9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Anleitung zu Blatt 5 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 5 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / r. Hanna Peywand Kiani 4.. Anleitung zu Blatt 5 Analysis III für Studierende der Ingenieurwissenschaften Extrema unter Nebenbedingungen, Lagrange Multiplikatoren

Mehr

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya Fundamentale Lösungen von linearen homogenen Differentialgleichungen 1-E Eigenschaften einer linearen DGL 2. Ordnung Eine homogene lineare Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 1 und 4..14 Lösungshinweise zur Klausur für Studierende der Fachrichtungen el, kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind.

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Dynamische Systeme und Zeitreihenanalyse // Systeme von Differenzengleichungen 6 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Systeme von Differenzengleichungen 6 p.2/?? Dynamische Systeme und Zeitreihenanalyse Systeme von Differenzengleichungen Kapitel 6 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Systeme von Differenzengleichungen

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/ Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/2012 21.03.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN. Nachname:...................................................................

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

Laplace Transformation

Laplace Transformation Department Mathematik der Univerität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Laplace Tranformation Die in Netz getellten Kopien der Anleitungfolien ollen nur die Mitarbeit während der Verantaltung erleichtern.

Mehr

Inhaltsverzeichnis. Kapitel 9. Gewöhnliche Differentialgleichungen... 1

Inhaltsverzeichnis. Kapitel 9. Gewöhnliche Differentialgleichungen... 1 Inhaltsverzeichnis Kapitel 9. Gewöhnliche Differentialgleichungen... 1 1. Einführung... 1 1.1 Grundbegriffe 1.2 Anfangswertprobleme 1.3 Geometrische Bedeutung der DGL 1. Ordnung 2. Spezielle Differentialgleichungen

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Hochschule Augsburg Elektrotechnik/Mechatronik Semester: Mathematik 2 SS 2015 Seite 1/10

Hochschule Augsburg Elektrotechnik/Mechatronik Semester: Mathematik 2 SS 2015 Seite 1/10 Mathematik SS 015 Seite 1/10 Prüfungsfach: Mathematik Zeit: 90 Min. Prüfungstermin: 6.7.015 Prüfer: Prof. Dr. Hollmann, Prof. Dr. Zacherl Hilfsmittel: Formelsammlung (DIN-A4-Blatt) Kontrollieren Sie zunächst,

Mehr

Mathematik III Vorlesung 5,

Mathematik III Vorlesung 5, Mathematik III Vorlesung 5, 03.11.2006 Markus Nemetz November 2006 1 Vorbemerkung Prof. Panholzer hat die illustrierenden Beispiele aus der zur VO empfohlenen Lektüre gebracht - sie sind hier nicht angeführt.

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 23

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 23 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 23 1. Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : sin als Lösung besitzt. Welche der folgenden Aussagen

Mehr

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen:

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen: 23 23 Lineare Systeme Wir wollen Systeme von linearen Differentialgleichungen Ordnung über einem offenen Intervall I R untersuchen: y = y A(t + b(t, mit stetigen Abbildungen A : I M n,n (R und b : I R

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004 B Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004 April Klausur (Rechenteil Lösungen Lineare Algebra für Ingenieure Name:.......................................

Mehr

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen und Ordnung mit konstanten Koeffizienten Prof Dr BGrabowski Lösung linearer Dgl Ordnung mittels Zerlegungssatz Aufgabe ) Lösen Sie

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

Musterlösungen Online Zwischentest - Serie 10

Musterlösungen Online Zwischentest - Serie 10 D-MAVT, D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Online Zwischentest - Serie 10 Frage 1 [Prüfungsaufgabe Frühling 2011)] Sei das Vektorfeld in R 3, ( x v(x,y,z) = 2, x+y ),0 2 und der

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Jonathan Mosser 3. Juni 27 / 38 Vorbemerkungen Singularität Singuläre Probleme können auf zwei Arten formuliert

Mehr

DIFFERENTIALGLEICHUNGEN (DGL)

DIFFERENTIALGLEICHUNGEN (DGL) DIFFERENTIALGLEICHUNGEN (DGL) Definition und Klassifikation und Beispiele Definition und Klassifikation Definition Gleichung, deren Unbekannte eine Funktion ist und die Ableitungen der gesuchten Funktion

Mehr

Tutorial Differentialgleichungen Band I

Tutorial Differentialgleichungen Band I Tutorial Differentialgleichungen Band I mit einem kurzen Repetitorium der Differentialrechnung und einem ausführlichen Tutorial über unbestimmte Integrale und numerische Verfahren P. Schneider, Herborn,

Mehr