Eindimensionale Potentialprobleme

Größe: px
Ab Seite anzeigen:

Download "Eindimensionale Potentialprobleme"

Transkript

1 Kapitel 4 Eindimensionale Potentialprobleme Wir werden nun die Schrödingergleichung in der Ortsdarstellung für einige einfache Potentialprobleme lösen. Wir betrachten ein spinloses Teilchen der Masse m, das sich in einem Potential bewegen kann. Das Potential sei zeitunabhängig (Stationärer Fall). Der Hamiltonoperator ist dann nach Gl. (3.10) Die Schrödingergleichung Ĥ = ˆ P 2 2m + ˆV ( ˆ Q). i d dt ψ(t) = Ĥ ψ(t) lautet dann im Ortsraum (d.h. für die Wellenfunktion) (3.31) i t ψ( x, t) = 2 2m 2 ψ( x, t) + V ( x) ψ( x, t). Wir behandeln die Schrödingergleichung, indem wir zunächst die Eigenwertgleichung von Ĥ (stationäre Schrödingergleichung 3.36) Ĥ ψ n = E n ψ n lösen. Die stationäre Schrödingergleichung im Ortsraum erhalten wir, indem wir in obiger zeitabhängiger Schrödingergleichung ψ( x, t) durch ψ n (x) ersetzen und i t durch E n. 81

2 4.1. Randbedingungen für die Wellenfunktion STATIONÄRE SCHRÖDINGERGLEICHUNG IM ORTSRAUM ( 2 2m 2 ) + V ( x) ψ n ( x) = E n ψ n ( x) (4.1) (Man beachte, dass E n, der Eigenwert des Hamilton-Operators zum Eigenzustand ψ n, nicht vom Ort abhängen kann.) Diese Gleichung werden wir im Folgenden in einigen einfachen eindimensionalen Fällen lösen. Wie wir in Kap. 3.4 gesehen haben, besitzen die Eigenzustände die einfache Zeitabhängigkeit ψ n (t) = e i Ent ψ n (0), d.h. im Ortsraum ψ n ( x, t) = e i Ent ψ n ( x, 0). (4.2) Die allgemeine Lösung der Schrödingergleichung ist eine Linearkombination der Eigenfunktionen, im Allgemeinen mit unterschiedlichen Energien und somit unterschiedlichen Zeitentwicklungen (s.s. 68). Diese Linearkombination ist so zu wählen, dass die jeweiligen Anfangsbedingungen erfüllt sind. Die Gesamtenergie E des Zustands erhält man als Erwartungswert des Hamiltonoperators. 4.1 Randbedingungen für die Wellenfunktion Zuerst leiten wir Randbedingungen der Ortsraum-Wellenfunktion für die Eigenzustände von Ĥ her Normierbarkeit, Spektrum In der klassischen Mechanik ist ein Teilchen gebunden, wenn seine Energie kleiner ist als der Wert V (x ) des Potentials im Unendlichen (wenn dieser Grenzwert existiert). Seine Bewegung ist dann auf einen endlichen räumlichen Bereich beschränkt. Wenn die Energie größer ist, kann das Teilchen ins Unendliche entkommen. 82

3 Kapitel 4. Eindimensionale Potentialprobleme In der Quantenmechanik ist die Situation im Wesentlichen dieselbe, man muss sie aber etwas anders formulieren. Gebundene Zustände Bei gebundenen Zuständen ist die Wahrscheinlichkeit, das Teilchen im Unendlichen anzutreffen Null. Genauer: Gebundene Zustände sind normierbare Eigenzustände von Ĥ. Wegen der unitären Zeitentwicklung ψ( x, t) = e i Ĥt ψ( x, 0) bleibt die Normierung für alle Zeiten erhalten. Aus der Normierbarkeit folgt 1 = ψ ψ = d D x ψ x x ψ = ψ( x) 2 d D x = dω dr ( ψ( x) 2 r D 1, 0 wobei D für die Dimension des jeweiligen Problems steht (D=1,2,3). Weil das Integral über den Radialanteil konvergiert, gilt: Die Wahrscheinlichkeitsdichte ψ( x) 2, ein Teilchen in einem gebundenen Zustand anzutreffen, fällt bei großen r schneller als r D ab. Man kann zeigen: Das Energiespektrum von gebundenen Zuständen ist diskret. Beispiel: Die gebundenen Zustände von Elektronen in einem Atom. Spezialfall: Ein Eigenzustand, dessen Wellenfunktion auf ein endliches Volumen beschränkt ist. In einem endlichen Volumen ist der Hilbertraum abzählbar (diskrete Wellenzahlen). Deswegen folgt dann sofort, dass das Energiespektrum diskret sein muss. Man kann auch zeigen, dass der Erwartungswert des Impulsoperators in einem gebundenen (Eigen-)Zustand Null ist. Dies ist plausibel, weil gebundene Zustände im Wesentlichen in einem endlichen Volumen lokalisiert sind. 83

4 4.1. Randbedingungen für die Wellenfunktion Ungebundene Zustände (Streuzustände) Ungebundene Zustände sind nicht normierbare Eigenzustände von Ĥ. Sie beschreiben Teilchen, die sich ausbreiten, zum Beispiel in der Art einer (nicht normierbaren) ebenen Welle. Diese Streuzustände selber sind nicht physikalisch realisierbar. Durch Linearkombination von ebenen Wellen kann man normierbare Wellenpakete konstruieren, die physikalisch realisierbar sind. Diese Linearkombinantionen sind aber keine Eigenzustände von Ĥ. Rechnungen kann man oft leichter mit ebenen Wellen durchführen als mit Wellenpaketen. Es gilt: Das Energiespektrum von ungebundenen Zuständen ist kontinuierlich. Beispiel: die Ionisationszustände eines Atoms. Wir werden ungebundene Zustände später näher besprechen Stetigkeit Wir behandeln zunächst den eindimensionalen Fall. Die Aussagen gelten entsprechend auch in drei Dimensionen (s.u.). 1) Die Wellenfunktion ψ(x) ist immer stetig. Beweis per Widerspruch: Wir betrachten x 0 +ε x 0 ε ( ) d dx ψ(x) dx = ψ(x 0 + ε) ψ(x 0 ε). Wir lassen zunächst auch unstetige Wellenfunktionen wie z.b. ψ(x) = Θ(x) mit der Ableitung ψ (x) = δ(x) zu. Die Verwendung der Ableitung in der Gleichung impliziert selber daher noch nicht die Stetigkeit von ψ(x). 84

5 Kapitel 4. Eindimensionale Potentialprobleme Wäre ψ unstetig bei x 0, so würde die rechte Seite für ε 0 nicht verschwinden. Dann müsste in der Tat d ψ(x) δ(x x dx 0) gelten, wodurch aber die kinetische Energie divergieren würde: E kin = ψ ˆP 2 = = + 2 2m 2m ψ ( ) d dx ψ (x) ( ) d dx ψ(x) dx = 2 2m δ(x x 0 ) δ(x x 0 ) dx = δ(0) =. d dx ψ(x) 2 dx Einen Zustand mit unendlicher kinetischer Energie kann man nicht erzeugen, daher muss für alle physikalisch realisierbaren Zustände die Wellenfuntion ψ(x) überall stetig sein. 2) Die Ableitung dψ dx ist bei endlichen Potentialen stetig. Wir integrieren die Schrödingergleichung von x 0 ε bis x 0 + ε 2 2m x 0 +ε x 0 ε d 2 dx 2 ψ n(x) dx + x 0 +ε x 0 ε V (x)ψ n (x) dx = E n x 0 +ε x 0 ε ψ n (x) dx. Die rechte Seite ist von der Ordnung O(ε), da ψ(x) keine δ-beiträge besitzt, denn sonst würde die kinetische Energie erst recht divergieren. Somit gilt ( ) lim ψ n (x 0 + ε) ψ n (x 0 ε) ε 0 = + 2m 2 lim ε 0 x 0 +ε x 0 ε V (x) ψ n (x) dx. Wenn V (x) überall endlich ist, verschwindet hier die rechte Seite. Daher ist x ψ n(x) stetig. Ein unendlich großes Potential ist physikalisch eigentlich nicht realisierbar. Um Rechnungen wesentlich zu vereinfachen, betrachtet man aber oft statt eines realisierbaren sehr großen Potentials in der Rechnung einen unendlich großen Wert (Beispiel in Kapitel 4.3.1). 85

6 4.1. Randbedingungen für die Wellenfunktion 3) Sprung der Ableitung von ψ bei Potentialen mit δ-anteil Wenn V (x) einen δ-funktionsbeitrag V (x) = C δ(x x 0 ) + (endliche Anteile) enthält, dann gilt x 0 +ε x 0 ε V (x) ψ(x) dx x 0 +ε x 0 ε C δ(x x 0 ) ψ(x) dx = C ψ(x 0 ) Ein solches Potential wird z.b. verwendet, um Potentialbarrieren auf rechnerisch einfach Art zu beschreiben. Damit erhalten wir einen Sprung in der Ableitung von ψ(x): ( ) lim ψ (x 0 + ε) ψ (x 0 ε) ε 0 = 2m 2 C ψ(x 0) (4.3) 4) Die Wellenfunktion verschwindet bei unendlichem Potential Wenn V (x) = in einem Intervall x (x a, x b ), dann verschwindet die Wellenfunktion in diesem Intervall, da sonst die potentielle Energie des Teilchens unendlich wäre. 5) Unstetigkeit von dψ dx am Rand eines unendlichen Potentials Wenn V (x) = in einem Intervall x (x a, x b ), dann ist zwar die Wellenfunktion Null im Intervall, und überall stetig, aber die Ableitung wird in der Regel an den Grenzen des Intervalls unstetig sein. Randbedingungen dreidimensionaler Probleme Aus ähnlichen Überlegungen folgt ebenso in drei Dimensionen, dass die Wellenfunktion und deren partielle Ableitungen überall stetig sein müssen, wenn das Potential überall endlich ist. Weitere allgemeine Eigenschaften der Wellenfunktion werden wir später besprechen. 86

7 4.2 Konstantes Potential Kapitel 4. Eindimensionale Potentialprobleme Besonders wichtig bei Potentialproblemen ist der Fall, dass das Potential in einem Intervall konstant ist. Wir behandeln das eindimensionale Problem. Es sei also V (x) = V 0 = konst. für a < x < b. In diesem Intervall wird dann die Schrödingergleichung Gl. (4.1) zu 2 2m ψ (x) = (E V 0 ) ψ(x) (4.4) (Schwingungsgleichung), mit der allgemeinen Lösung LÖSUNG DER SCHRÖDINGERGLEICHUNG FÜR KONSTANTES POTENTIAL ψ(x) = a 1 e κ x + b 1 e κ x (4.5a) = a 2 e i k x + b 2 e i k x (4.5b) = a 3 cos(kx) + b 3 sin(kx), (4.5c) mit 2 k 2 2m = E V 0, d.h. k 2 = κ 2 = 2m 2 (E V 0) (4.5d) Diese drei Lösungen sind äquivalent! Wenn E < V 0, dann ist κ reell, und die Formulierung der ersten Zeile ist bequem. Die Wellenfunktion ψ(x) hat dann im Intervall [a, b] i.a. exponentiell ansteigende und abfallende Anteile! Wenn E > V 0, dann ist k reell, und die zweite oder dritte Zeile sind, je nach Randbedingugen, bequeme Formulierungen. Die Wellenfunktion zeigt dann im Intervall [a, b] oszillierendes Verhalten. 87

8 4.3. Gebundene Zustände im Potentialtopf 4.3 Gebundene Zustände im Potentialtopf Ein Potentialtopf beschreibt in idealisierter Form eine Region, in der ein Teilchen gefangen ist, z.b. einen dotierten Bereich in einem Halbleiter Potentialtopf mit unendlich hohen Wänden Wir behandeln zunächst einen Potentialtopf mit unendlich hohen Wänden: Abbildung 4.1: Potentialtopf mit unendlich hohen Wänden V (x) = { V0 für 0 < x < L sonst Es gibt hier die drei skizzierten, qualitativ verschiedenen Teilgebiete. Eine oft sinnvolle Strategie bei solchen Potentialproblemen ist, zuerst allgemeine Lösungen für die Wellenfunktion in den Teilgebieten zu finden, und diese dann mit den Randbedingungen geeignet zusammenzusetzen. Die Energie E, d.h. der Eigenwert von Ĥ, ist nicht ortsabhängig! Für den unendlich hohen Potentialtopf finden wir: Gebiete I & III: Hier ist V (x) = und daher ψ(x) 0, da sonst E pot = V (x) ψ(x) 2 dx = Gebiet II: Hier ist das Potential konstant. 88

9 Kapitel 4. Eindimensionale Potentialprobleme 1. Versuch: Wir setzen E < V 0 = 0 an und verwenden Gl. (4.5a): ψ(x) = a e κx + b e κx 2m mit reellem κ = (V 2 0 E). Die Stetigkeit der Wellenfunktion bei x = 0 verlangt ψ(0) = 0, also a = b. Die Stetigkeit bei x = L verlangt ψ(l) = 0, somit e κl e κl = 0. Daraus folgt κ = 0 und damit ψ(x) = a(e 0 e 0 ) 0. Wir finden also keine Lösung mit E < V 0! Später werden wir allgemein sehen, dass bei gebundenen Zuständen die Energie E immer größer als das Minimum des Potentials sein muss. 2. Versuch: Wir setzen E > V 0 an und verwenden (wegen der Randbedingungen) Gl. (4.5c): ψ(x) = a sin kx + b cos kx (4.6) mit k = 2m(E V0 ) 2, a, b C. Die Wellenfunktion muss mehrere Bedingungen erfüllen: 1. Die Stetigkeit der Wellenfunktion ergibt hier die Randbedingungen ψ(0) = 0 und ψ(l) = 0, und daher b = 0 a sin(kl) = 0. Die zweite Bedingung zusammen mit der Normierung kann nur mit sin(kl) = 0 erfüllt werden, da mit a = 0 die Wellenfunktion wieder identisch verschwinden würde. Also muss k = nπ mit einer ganzzahligen Quantenzahl n gelten, die den gebundenen Zustand charak- L terisiert. Der Wert n = 0 ist ausgeschlossen, da dann wieder ψ 0 wäre. Wir können uns auf positive n beschränken, denn negative n ergeben mit sin( nkx) = sin(nkx) bis auf die Phase ( 1) dieselbe Wellenfunktion. 2. Die Ableitung der Wellenfunktion darf bei x = 0 und x = L beliebig unstetig sein, da dort das Potential unendlich ist. Hieraus erhalten wir im vorliegenden Fall keine weiteren Bedingungen an ψ. 89

10 4.3. Gebundene Zustände im Potentialtopf 3. Normierung der Wellenfunktion: Zum einen muss ψ(x) überhaupt normierbar sein, was in dem endlichen Intervall [0, L] kein Problem ist. Zum anderen können wir die Normierungskonstante a in Abhängigkeit von der Quantenzahl n berechnen: 1 = ψ ψ = dx ψ(x) 2 L = a 2 dx sin 2 ( nπ L x) 0 = a 2 L nπ = a 2 L nπ nπ 0 nπ 2 dy sin 2 y = a 2 L 2. mit y = nπ L x Also a 2 = 2, mit beliebiger Phase für a, welches wir reell wählen. L Insgesamt erhalten wir die LÖSUNG FÜR EIN TEILCHEN IM UNENDLICH HOHEN POTENTIALTOPF ψ n (x) = 2 L sin(k nx), 0 < x < L ; (ψ(x) = 0 sonst) (4.7) k n = nπ L ; n = 1, 2,... (4.8) E n = 2 k 2 n 2m + V 0 = 2 π 2 2mL 2 n2 + V 0 (4.9) Es sind somit hier Energie und Wellenzahl quantisiert, mit nur diskreten möglichen Werten, in Abhängigkeit von der Quantenzahl n. Die Energie nimmt hier mit n 2 zu und mit 1/L 2 ab. Interessanterweise bewirkt die L-Abhängigkeit der Energie eine nach außen gerichtete Kraft F = de auf die Wände. dl 90

11 Kapitel 4. Eindimensionale Potentialprobleme In Abbildung (4.2) sind Wellenfunktionen zu den drei tiefsten Eigenwerten dargestellt. Man erkennt, dass die Wellenfunktion des Grundzustands nur am Rand Null wird. Bei jeder Anregung kommt ein weiterer Nulldurchgang ( Knoten, englisch node ) hinzu. Abbildung 4.2: Eigenfunktionen von Ĥ zu den drei niedrigsten Energie- Eigenwerten. Dies ist eine kombinierte Darstellung. Es sind dünn die Eigenenergien gezeichnet (rechte Achse, V 0 = 0), und auf Höhe der Eigenenergien jeweils die Wellenfunktionen. Man beachte, dass für jede Eigenfunktion ein Phasenfaktor (insbesondere das Vorzeichen) beliebig gewählt werden kann. Die Aufenthaltswahrscheinlichkeit ψ(x, t) 2 ist in jedem Eigenzustand wegen der globalen Phase in ψ n (x, t) = e i Ent ψ n (x) zeitlich konstant. Bei einem allgemeinen Zustand ψ(x, t) = n c nψ n (x, t) gibt es dagegen zeitliche Oszillationen in der Aufenthaltswahrscheinlichkeit (und in anderen Observablen) wegen der auftretenden Phasendifferenzen. 91

12 4.3. Gebundene Zustände im Potentialtopf Potentialtopf mit endlicher Tiefe Wir betrachten nun einen Potentialtopf mit endlicher Tiefe V (x) = { V0 < 0 für x L 2 0 sonst, (4.10) wie er in Abbildung (4.3) skizziert ist. Wir haben hier den Koordinatenur- Abbildung 4.3: Potentialtopf endlicher Tiefe. sprung im Vergleich zum vorherigen Beispiel um L verschoben. Dadurch wird das Potential in x symmetrisch, V (x) = V ( x), und die Rech- 2 nungen vereinfachen sich. Wir behandeln in diesem Abschnitt gebundene Zustände, das heißt im Fall des vorliegenden Potentials E 0. Der andere Fall (E > 0) wird anschließend besprochen. Wir werden bald allgemein zeigen, dass die Energie eines gebundenen Zustands größer als das Potential-Minimum sein muss, insgesamt also hier V 0 < E 0. Wir unterscheiden wieder die drei Bereiche konstanten Potentials, wie in Abbildung (4.3) skizziert. Die Schrödingergleichung lautet bei konstantem Potential 2 2m ψ (x) = (E V ) ψ(x), 92

13 Kapitel 4. Eindimensionale Potentialprobleme wie in Abschnitt 4.2 besprochen. In den Bereichen I und III ist V = 0. Im endlich tiefen Topf ist die Wellenfunktion dort nicht Null! Die allgemeine Lösung hat jeweils die Form ψ(x) = A 1 e κx + A 2 e +κx 2m( E) (4.11) mit κ = 2 und E < 0. Im Bereich I muss A I 1 = 0 sein, da die Wellenfunktion ansonsten für x exponentiell anwachsen würde und somit nicht normierbar wäre. Im Bereich III ist analog A III 2 = 0. Im Bereich II gilt V = V 0 < 0 und die allgemeine Lösung lautet ψ(x) = B 1 e ikx + B 2 e ikx 2m mit k = (E V0 ) 2. (4.12) Die gesamte Wellenfunktion ist somit A I 2 e κx ; x < L 2 ψ(x) = B 1 e ikx + B 2 e ikx ; L 2 x L 2 A III 1 e κx ; x > L 2. (4.13) Den Grenzfall E = 0 müssen wir vorab separat diskutieren. Hierbei ist κ = 0. Die Wellenfunktion ist dann in den äußeren Bereichen I und III konstant. Die Konstante muss Null sein, da die Wellenfunktion sonst nicht normierbar wäre. Die Ableitung der Wellenfunktion ist dann in den Bereichen I und III ebenfalls Null. Bei x = ± L müssen beide stetig sein. Damit 2 ist das Problem im Bereich II so wie beim Potentialtopfproblem mit unendlich hohen Wänden. Von den Lösungen dieses Problems wissen wir bereits, dass nur die Wellenfunktionen an den Potentialwänden verschwinden, nicht aber ihre Ableitungen. Wenn auch die Ableitung verschwindet, ist die Wellenfunktion komplett Null. Dies ist aber keine physikalisch akzeptable Lösung. Daher gibt es keine Lösung zu E = 0. Wir haben deshalb die Einschränkung V 0 < E < 0. 93

14 4.3. Gebundene Zustände im Potentialtopf Wie wir bald zeigen werden, kann man bei einem symmetrischen Potential (V (x) = V ( x)) die Eigenfunktionen von H in symmetrische und antisymmetrische Funktionen trennen. Die Wellenfunktionen lauten dann symmetrisch: A s e κx ; x L 2 ψ s (x) = ψ s ( x) = B s cos(kx) ; L 2 x L 2 A s e κx ; x L 2 (4.14a) anti-symm.: A a e κx ; x L 2 ψ a (x) = ψ a ( x) = B a sin(kx) ; L 2 x L 2 A a e κx ; x L 2 (4.14b) Nun werten wir die Stetigkeitsbedingungen zur Bestimmung der Konstanten aus ψ s ( L 2 ) : A s e κ( L 2 ) = B s cos(k L 2 ) ψ s( L 2 ) : A s e κ( L 2 ) = k κ B s sin(k L 2 ) ψ a ( L 2 ) : A a e κ( L 2 ) = B a sin(k L 2 ) tan(k L 2 ) = κ k (4.15a) ψ a( L 2 ) : A a e κ( L 2 ) = k κ B a cos(k L 2 ) tan(k L 2 ) = k κ (4.15b) (Bei x = L ergeben sich keine neuen Beziehungen, weil die Symmetrie 2 der Wellenfunktion schon in den Ansätzen für ψ s und ψ a genutzt wurde.) Diese beiden Gleichungen liefern die Quantisierungsbedingungen für die erlaubten Energieeigenwerte. Es gibt allerdings keine direkte algebraische Lösung für die Eigenenergien. Man kann sie numerisch bestimmen. Sehr viel mehr ersieht man aber aus einer graphischen Darstellung. Dazu ist es sinnvoll, zu dimensionslosen Größen überzugehen. Wir definieren η = k L 2 94

15 Kapitel 4. Eindimensionale Potentialprobleme und drücken die Energie E durch η aus, mittels Gl. (4.12) und E V 0 = V 0 E : η = k L = L 2m 2 2 E 2 V0 ( ) 4 η 2 2m = V L E ( 2m 4 ml 2 V 0 E = 2 L 2 } 2 {{ 2 } κl 2 (4.11) L 2 =:Ṽ0 2m E = 2 η 2 ) Ṽ 0 η 2. Die Größe Ṽ0 ist ebenfalls dimensionslos. Sie spezifiziert die Tiefe des Potentials in natürlichen Einheiten des Systems. Die zur Wellenzahl proportionale Variable η parametrisiert die Lösungen. Der Bereich der erlaubten Energien, V 0 E < 0, korrespondiert zum Wertebereich 0 < η < Bei η = Ṽ 0 wird κ = 0. Ṽ 0. Zusammen mit Gl. (4.11) wird aus den Bedingungsgleichungen (4.15a) und (4.15b) symmetrisch: anti-symmetrisch: tan(η) tan(η)! = κ L 2 k L 2! = k L 2 κ L 2 = Ṽ 0 η 2 η η =. Ṽ 0 η 2 Die graphische Lösung dieser Gleichungen erhält man aus den Schnittpunkten der in Abbildung (4.4) dargestellten Kurven κ bzw. k mit der k κ Kurve zu tan(η) im Bereich 0 < η < Ṽ 0. Symmetrische Lösungen: Wenn η von 0 bis Ṽ 0 variiert, nimmt κ k die Werte bis Null an. Daher tritt unabhängig von Ṽ0 immer ein Schnittpunkt mit tan η auf. Es existiert somit immer mindestens ein symmetrischer, gebundener Zustand!. Wir können leicht die Zahl der gebundenen Zustände bei gegebenem Potentialparameter Ṽ0 bestimmen: Der Tangens hat Nullstellen bei η = nπ. Die Zahl der Schnittpunkte von κ mit tan(η) nimmt k immer um Eins zu, wenn der Maximalwert von η, also Ṽ 0, die Werte 95

16 4.3. Gebundene Zustände im Potentialtopf 10 tan(η) 5 0 κ/k 5 k/κ η Abbildung 4.4: Graphische Bestimmung der Energie-Eigenwerte im Potentialtopf. Aufgetragen ist tan(η) über η (0, Ṽ 0 ) und außerdem die Funktionen k κ und κ k. Es wurde Ṽ0 = 100 gewählt. nπ überschreitet. Die Zahl der symmetrischen Eigenwerte ist somit N + = int(ṽ0 π + 1). Antisymmetrische Lösungen: Die Zahl der Schnittpunkte von k mit tan(η) κ wächst um Eins, wenn Ṽ 0 die Werte nπ + π/2 überschreitet. Die Zahl der anti-symmetrischen Eigenwerte ist demnach N = int(ṽ0 π + 1/2). Zur Festlegung der Wellenfunktion Gl. (4.14) nutzen wir die Stetigkeitsbedingungen Gl. (4.15a) und Gl. (4.15b) A s = B s e κ L 2 cos(k L 2 ) A a = B a e κ L 2 sin(k L 2 ) aus und erhalten daraus mit der dimensionslosen Länge ξ = x/( L 2 ) und η = k L 2 : 96

17 Kapitel 4. Eindimensionale Potentialprobleme Abbildung 4.5: Wellenfunktionen ψ n (ξ) zu allen drei gebundenen Eigenzuständen des Potentialtopfes mit einer Potentialhöhe Ṽ0 = 13. ψ s (ξ) = B s cos(η) e κ L 2 (ξ+1), ξ < 1 cos(ηξ), 1 ξ +1 cos(η) e κ L 2 (ξ 1), ξ > +1 (4.16a) sin(η) e κ L 2 (ξ+1), ξ < 1 ψ a (ξ) = B a sin(ηξ), 1 ξ +1 sin(η) e κ L 2 (ξ 1), ξ > +1. (4.16b) Die Parameter B a,s ergeben sich aus der Normierung. Ein Beispiel ist in der Abbildung (4.5) dargestellt. Die Wellenfunktion zur tiefsten Energie ist symmetrisch. Sie hat keine Nullstelle. Die Zahl der Nullstellen ist n 1, wobei die Quantenzahl n = 1, 2, 3... die erlaubten Energien E n durchnumeriert. In Abbildung (4.5) gibt die Null-Linie der Wellenfunktionen wieder gleichzeitig auf der rechten Achse die zugehörige Eigenenergie E n an. In den verwendeten Einheiten befinden sich die Potentialwände bei ±1. Im Gegensatz zur klassischen Mechanik ist die Aufenthaltswahrscheinlichkeit außerhalb des Topfes nicht Null. Man erkennt, dass stattdessen die Wellenfunktion mit steigender Quantenzahl n zunehmend aus dem Potentialbereich hinausragt. 97

18 4.4. Unabhängige Freiheitsgrade: Produktansatz 4.4 Unabhängige Freiheitsgrade: Produktansatz Oft hat das betrachtete physikalische System voneinander unabhängige Freiheitsgrade, zum Beispiel bei räumlich getrennten Teilsystemen, oder bei einem Potential der Form V ( x) = V 1 (x) + V 2 (y) + V 3 (z) (siehe unten). Ob die Freiheitsgrade unabhängig sind, hängt von den Wechselwirkungen ab, d.h. vom jeweiligen Hamiltonoperator. Wir betrachten zwei Freiheitsgrade A und B, mit zugehörigen Basisvektoren { ϕ A } und { ϕ B } (Beispiel: { x } und { y }, die zueinander paarweise orthonormal sein sollen. Der zugehörige Produktraum wird von den Basisvektoren ϕ A, ϕ B = ϕ A ϕ B aufgespannt. Die Freiheitsgrade A und B sind unabhängig, wenn der Hamiltonoperator aus zwei Teilen ĤA und Ĥ B besteht, die getrennt auf die Freiheitsgrade A bzw. B wirken: Ĥ = Ĥ A + ĤB, mit (4.17) Ĥ A ϕ A, ϕ B (ĤA = ϕ ) A ϕ B und (4.18) Ĥ B ϕ A, ϕ B (ĤB = ϕ A ϕ ) B. (4.19) Dann gilt auch [ĤA, ĤB ] = 0. Die Lösungen der Eigenwertgleichung für den Gesamt-Hamiltonoperator Ĥ ψ = E ψ bekommt man nun durch den Produktansatz ψ n,m = ψ A n ψ B m, (4.20) wobei ψ A n und ψ B m jeweils Linearkombinationen von { ϕ A } bzw. { ϕ B } sind und Lösungen der Eigenwertgleichungen zu ĤA bzw. Ĥ B : Ĥ A ψ A n = E A n ψ A n (4.21) Ĥ B ψ B m = E B m ψ B m. (4.22) 98

19 Kapitel 4. Eindimensionale Potentialprobleme Beweis: Ĥ ψ n,m = = (ĤA ) ( ) + ĤB ψn A ψm B (ĤA ) ψn A ψm B + ψn A = E A n ψ n,m + E B m ψ n,m = (E A n + E B m) ψ n,m = E n,m ψ n,m (ĤB ) ψm B Die Eigenenergie E n,m ist somit die Summe der Einzelenergien, und man schreibt sie am einfachsten mit einem doppelten Index. Beispiel 1: Ein Teilchen in einem Potential V ( x) = V 1 (x)+v 2 (y)+v 3 (z). Der Ortsraum wird von den Basisvektoren x = x y z aufgespannt. Der Hamiltonoperator ist Ĥ = ˆ p 2 2m + ˆV ( ˆQ) (4.23) = ˆp2 x 2m + ˆV 1 ( ˆQ x ) }{{} Ĥ x + ˆp2 y 2m + ˆV 2 ( ˆQ y ) }{{} Ĥ y + ˆp2 z 2m + ˆV 3 ( ˆQ z ) }{{} Ĥ z. (4.24) Ĥ x wirkt nur auf x, etc. Die Eigenvektoren von Produkt Ĥ kann man dann als Ψ = ψ x ψ y ψ z (4.25) schreiben, wobei ψ ν = dν ψ ν (ν) ν (ν = x, y, z) (4.26) Eigenvektoren von Ĥν sein müssen, d.h. zum Beispiel Ĥ y ψ y = E y ψ y. (4.27) 99

20 4.4. Unabhängige Freiheitsgrade: Produktansatz Beispiel 2: Ein Teilchen mit Spin 1, das sich in einem räumlich konstanten Magnetfeld B und einem ortsabhängigen Potential V ( x) bewegt. Das 2 Teilchen hat Ortsfreiheitsgrade mit Basisvektoren x, und einen Spinfreiheitsgrad mit Basisvektoren σ = + z und z. Der Produktraum wird von den Basisvektoren x, σ = x σ aufgespannt. Der Hamiltonoperator ist, wie schon in Kap. 3.2 erwähnt, Ĥ = ˆ p 2 2m + ˆV ( ˆ Q) }{{} =: Ĥ x µ B ˆ S }{{}. (4.28) =: Ĥ σ Ĥ x wirkt nur auf x und Ĥσ wirkt nur auf σ. Die Eigenvektoren von Ĥ kann man deshalb als Produkt Ψ = ψ x χ (4.29) schreiben, wobei ψ x = d 3 x ψ( x) x und χ = σ=±z χ σ σ (4.30) Eigenvektoren von Ĥ x bzw. Ĥ σ sein müssen, d.h. Ĥ x ψ x = E x ψ x und Ĥ σ χ = E χ χ. 100

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Quantentheorie für Nanoingenieure Klausur Lösung

Quantentheorie für Nanoingenieure Klausur Lösung 07. April 011 PD Dr. H. Kohler Quantentheorie für Nanoingenieure Klausur Lösung K1. Ja Nein Fragen (8P) Jede richtige Antwort liefert einen Punkt, jede falsche Antwort liefert einen Minuspunkt. Eine nicht

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

Eindimensionale Potentialprobleme

Eindimensionale Potentialprobleme Kapitel 3 Eindimensionale Potentialprobleme 3.1 Problemstellung Fragestellung. Es soll die quantenmechanische Beschreibung eines Teilchens in einer Dimension, das ein Potential V sieht (Abbildung 3.1),

Mehr

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.

Mehr

Die Lösungen der Gleichung b x = log b (x)

Die Lösungen der Gleichung b x = log b (x) Die Lösungen der Gleichung b = log b () wgnedin@math.uni-koeln.de 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Potentialtöpfe und Potentialbarrieren

Potentialtöpfe und Potentialbarrieren Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /

Mehr

2.6. Der endliche Potentialtopf

2.6. Der endliche Potentialtopf .6. Der endliche Potentialtopf Anhand des unendlichen Potentialtopfes können nahezu alle grundsätzlichen Eigenschaften von elektronischen Eigenzuständen diskutiert werden. Aufgrund der Einfachheit der

Mehr

8 Das Bohrsche Atommodell

8 Das Bohrsche Atommodell 8 Das Bohrsche Atommodell 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse,

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Exakte Lösungen der stationären Schrödingergleichung

Exakte Lösungen der stationären Schrödingergleichung Teil III Exakte Lösungen der stationären Schrödingergleichung Inhaltsangabe 6 Eindimensionale Probleme 43 6.1 Das Teilchen im unendlich tiefen Kasten.......... 44 6.1.1 Modell und Lösung der Schrödingergleichung...

Mehr

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jonas Lübke 7. November 013 Inhaltsverzeichnis 1 Einführung 1 Beziehung zwischen klassischer

Mehr

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

1 Die Schrödinger Gleichung

1 Die Schrödinger Gleichung 1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Die Zylinderfunktionen

Die Zylinderfunktionen Die Zylinderfunktionen Betrachten Schwingungen einer Pauke. Auslenkung v = v(t, x, y) des Trommelfells ist Lösung der Wellengleichung 2 v t = v := 2 v 2 x + 2 v 2 y 2 als Produkt aus zeitabhängiger und

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 9 Quantenmechanik mit Näherungsmethoden, oder: Wie rechne ich etwas aus? Vorlesungskript für den 6. August 9 Max Knötig Inhaltsverzeichnis Einführung Zeitunabhängige, nicht-entartete

Mehr

Zeichnen Sie qualitativ jeweils das dahinter und das seitlich aufgenommene Spektrum im Vergleich zum Spektrum der Quelle für die Fälle, dass i) die

Zeichnen Sie qualitativ jeweils das dahinter und das seitlich aufgenommene Spektrum im Vergleich zum Spektrum der Quelle für die Fälle, dass i) die UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Elke Scheer (Experimentalphysik) Raum P 1007, Tel. 4712 E-mail: elke.scheer@uni-konstanz.de Prof. Dr. Guido Burkard (Theoretische Physik) Raum P 807, Tel.

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9 8 KAPITEL. ELEKTROSTATIK.3 Das Coulombsche Gesetz, elektrostatisches Feld Zur Einführung verschiedener Grundbegriffe betrachten wir zunächst einmal die Kraft, die zwischen zwei Ladungen q an der Position

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

Quantenmechanik I Sommersemester QM Web Page  teaching/ss13/qm1.d.html Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Zusätzliche Übung: Aufgrund des großen Andrangs bieten wir eine zusätzliche

Mehr

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses 1 Drehimpuls Wir werden im folgenden dreidimensionale Probleme der Quantenmechanik behandeln. Ein wichtiger Begriff dabei ist der Drehimpuls. Wir werden zuerst die Definition des quantenmechanischen Drehimpulses

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

LMU Fakultät für Physik. T2p Quantenmechanik. Dr. Michael Haack

LMU Fakultät für Physik. T2p Quantenmechanik. Dr. Michael Haack LMU Fakultät für Physik T2p Quantenmechanik Dr. Michael Haack zuletzt erstellt am 1. Dezember 2013 Inhaltsverzeichnis 1. Einführung 1 1.1. Die Quantenmechanik im Alltag................................

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

8 Euklidische Vektorräume und Fourierreihen

8 Euklidische Vektorräume und Fourierreihen Mathematik für Ingenieure II, SS 9 Dienstag 7.7 $Id: fourier.te,v 1.6 9/7/7 13:: hk Ep $ $Id: diff.te,v 1. 9/7/7 16:13:53 hk Ep $ 8 Euklidische Vektorräume und Fourierreihen 8.4 Anwendungen auf Differentialgleichungen

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. 12 Moleküle Slide 267 Vorbemerkungen Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. Je 2 Elektronen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: 09. Wasserstoff-Atom Page 1 9. Das Wasserstoff-Atom 9.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

r r : Abstand der Kerne

r r : Abstand der Kerne Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner

Mehr

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf 1 15.11.006 0.1 119. Hausaufgabe 0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf (Siehe 118. Hausaufgabe.) 0.1. Exzerpt von B. S. 414: Wellenlängen der Wellenfunktion im Fall stehender Wellen

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Übungen zur Theoretischen Physik 1. Übungsblatt

Übungen zur Theoretischen Physik 1. Übungsblatt 1. Übungsblatt 1. In kartesischen Koordinaten gilt: grad Φ( r) = ( Φ x, Φ y, Φ ), div A x A = z x + A y y + A z z rot A = ( A z y A y z, A x z A z x, A y x A x ) y Berechnen Sie: (a) grad Φ( r) für Φ(

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Zur Struktur der Quantenmechanik

Zur Struktur der Quantenmechanik Kapitel 1 ur Struktur der Quantenmechanik 1.1 Der quantenmechanische Hilbert Raum Linearer ustandsraum Die quantenmechanischen ustände (z.b. ψ( x,t) für 1 Teilchen) bilden einen linearen Raum. Sind ψ 1

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0)

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0) Skript zur 6. Vorlesung Quantenmechanik, Freitag den. Juni,.. Störungstheorie für einen entarteten Energie-Eigenwert E () n Sei E n () eing-fachentartetet Eigenwert desoperatorsĥ undsei ψ nα, () α =,...,g

Mehr

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v.

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v. Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe 24.06.09 Abgabe 01.07.09 Besprechung n.v. Aufgabe 1 (Auswahlregeln) Die Wechselwirkung (engl. interaction)

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Zeitunabhängige. Schrödinger-Gleichung: Kapitel Stationäre Zustände. Wir wollen die Schrödinger-Gleichung. i h Ψ t = h2 2 Ψ.

Zeitunabhängige. Schrödinger-Gleichung: Kapitel Stationäre Zustände. Wir wollen die Schrödinger-Gleichung. i h Ψ t = h2 2 Ψ. Kapitel 2 Zeitunabhängige Schrödinger-Gleichung 2.1 Stationäre Zustände Wir wollen die Schrödinger-Gleichung für ein vorgegebenes Potential lösen. i h Ψ t = h2 2 Ψ 2m x 2 +VΨ Weiter V(x,t) V(x), d.h. V

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.

Mehr

Einführung in die Theoretische Physik: Quantenmechanik

Einführung in die Theoretische Physik: Quantenmechanik Einführung in die Theoretische Physik: Quantenmechanik teilweise Auszug aus dem Skript von H.G. Evertz und W. von der Linden überarbeitet von Enrico Arrigoni Version vom 22. Juni 2009 Das bedeutet, dass

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ 8 Gruppentheorie 1 Lie-Gruppen 1.1 Endliche kontinuierliche Gruppe Definition 1.1. Eine Menge G mit einer Verknüpfung m heißt Gruppe, falls folgende Axiome erfüllt sind: (i) Die Operation m, genannt Multiplikation,

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

1.3 Mehrelektronensysteme

1.3 Mehrelektronensysteme .3 Mehrelektronensysteme.3. Helium Dies ist ein Drei-Teilchen-System. Hamilton-Operator: Näherung: unendlich schwerer Kern nicht relativistisch Ĥ = ˆ p m + ˆ p m e e + e 4πɛ 0 r 4πɛ 0 r }{{ 4πɛ } 0 r }{{

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

Übungen zur Quantenmechanik

Übungen zur Quantenmechanik Übungen zur Quantenmechanik SS11, Peter Lenz, 1. Blatt 13. April 011 Abgabe (Aufgabe ) bis 18.4.07, 1:00 Uhr, Übungskästen RH 6 Aufgabe 1: Gegeben sei ein Wellenpaket der Form Ψ( x, t) = 1 8π 3 Ψ( [ (

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Übungen zur Quantentheorie (Lehramt) WS 2006/07

Übungen zur Quantentheorie (Lehramt) WS 2006/07 Übungen zur Quantentheorie Lehramt) WS 2006/07 Lesender: Prof. M. Müller-Preußker Übungen: Dr. J. Käppeli Lösungsbeispiele zur 1. Serie Marcus Petschlies 1 Ebene Wellen 1 1.a) Allgemeine Lösung der Wellengleichung

Mehr