Potentialtöpfe und Potentialbarrieren
|
|
|
- Jasper Vogt
- vor 8 Jahren
- Abrufe
Transkript
1 Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L / V(x -L / L / -L/ L / x. Fall: V=-V, E< -V - lokalisierte, gebundene Zustände, die so ähnlich aussehen wie beim Potentialtopf mit unendlich hohen Wänden
2 Der endliche Potentialtopf: Gebundene Lösungen Die diskrete Natur der Lösungen ergibt sich jetzt wieder aus den Stetigkeitsbedingungen: ( L / = ( L / '( L / = '( L / I II I II ( L / = ( L / '( L / = '( L / II III II III 4 Gleichungen für die 4 Unbekannten + αβγ,,, γ (mit k bzw. κ als Parameter W in ev.5 Ψ W.5 Ψ W.5.5 x i n n m - L / L / Gleichungssystem hinschreiben Determinante = setzen Bedingungen für k bzw. κ kl κ = k tan für symm. (cosinusartig kl κ = k cot für antisymm. (sinusartig m V Weiterhin gilt: κ +k = ħ = C Der endliche Potentialtopf: Gebundene Lösungen Symmetrische (gerade Lösungen: cos( L A kx für x ug ( x = L L A cos( k e xp κ ( x L für x > W in ev.5 Ψ W Antisymmetrische (ungerade Lösungen: sin( L B kx für x uu ( x = L L B sin( k e x p κ ( x L für x > -Stetigkeitsbedingungen werden nur für -diskrete k erfüllt: endliche Anzahl von Wellenfunktionen mit diskreten Energiewerten.5 Ψ W L / L / x i n n m -im Gegensatz zur klassischen Lösung endliche Aufenthaltswahrscheinlichkeit ausserhalb der Topfes!! Quantenmechanischer Tunneleffekt Teilchen tunnelt aus dem Topf heraus
3 Potentialtopf: E>, Kontinuumslösungen Klassisch für E>: Teilchen rauscht über den Topf hinweg (wird beschleunigt und dann wieder abgebremst V(x - L / L / Quantenmechanisch für E>: L L Aus gedämpft ( x = B sin( k e x p κ ( x wird Kontinuum L L ( x = B sin( k s i n ( κ '( x Periodische Lösungen auch ausserhalb des Topfes. wobei - V mv κ = k ħ Qualitatives Bild der Lösungen: Potentialtopf: E>, instationäre Lösungen Ansatz für die Lösung also: + α exp( ikx + α exp( ikx : x < L / + + ( x = γ exp( ik ' x γ exp( ik ' x : -L/< x < L/ + β exp( ikx + β exp( ikx : x > L / R T..ergibt eine üble Rechnerei. V(x a Typischere Situation: Elektron kommt nur einer Seite: Ebene Welle läuft von links nach rechts Die Rechnerei ist damit immer noch heftig. - C Was interessiert uns denn eigentlich? Ähnlich zur Optik sind die Reflexions - und der Transmissionskoeffizienten (die Ströme relevant. (R+T=
4 Potentialtopf: E>, Kontinuumslösungen T + = β ; α R = α α + + R V(x T sin ( me ( + V / ħ a T ( E> = ( + 4( E / V ( E / V + a -C nπ Resonanzen für k ' = me a ε = ħ also immer dann, wenn die halbe Materiewellenlänge (oder ein ganzzahliges Vielfaches in den Potentialtopf hineinpasst Potentialtopf: E>, Kontinuumslösungen Ähnliches Verhalten wie beim Durchgang von Licht (=elektromagneti sche Welle durch ein Fabry-P erot-interferometer: 4
5 Potentialbarriere E<V : Tunneleffekt in Reinkultur d e n n : V Klassisch würde das Elektron an der Barriere mit %iger Wahrscheinlichkeit reflektiert werden. Quantenmechanisch durchtunnelt es mit einer gewissen Wahrschei nlichkeit die Barriere sinh ( mv ( E / ħ a T ( E < V = ( + 4( E / V ( E / V Potentialbarriere -hinter der Potentialstufe nach rechts laufende Welle mit räumlich konstanter Aufenthaltswahrscheilichkeit -vor der Potentialstufe bildet sich durch Interferenz von hinlaufender und reflektierter Welle eine räumlich periodische Aufenthaltswahrscheinlichkeit aus 5
6 Anwendung von Potentialtopf und -barriere: Die Tunneldiode Für die Stromdichte gilt dann: V F = d Sehr starke Feldabhängigkeit, hohe Nichtlinearität des Bauelementes 6
7 Anwendung von Potentialtopf und -barriere: Die Tunneldiode Für die Stromdichte gilt dann: V F = d Sehr starke Feldabhängigkeit, hohe Nichtlinearität des Bauelementes Anwendung von Potentialtopf und -barriere: Die Tunneldiode Metall-I solator-tunneldiode Tunneldiode in Mikrowellenschaltkreisen Z e n e r -Diode zur Spannungsstabilisierung 7
8 Anwendung von Potentialtopf und -barriere: Die resonante Tunneldiode Anwendung von Potentialtopf und -barriere: Die resonante Tunneldiode statt normaler Diodenkennlinie -Bereich mit negativem differentiellen Widerstand 8
9 Anwendung von Potentialbarriere: Das Rastertunnelmikroskop Die Potentialbarriere Gibt im Prinzip genau die Lösung wie beim Potentialtopf f ü r E > : E>V V sin ( me ( V / ħ a T ( E > V = ( + 4( E / V ( E / V V 9
10 Der harmonische Oszillator -ein weiteres exakt lösbares und immer wieder auftauchendes Problem. (Fast alle Potentiale können in erster Näherung als parabolisch beschrieben werden. - Oszillatoren... schwingende Gebilde auch eine Frage in diesem Zusammenhang: Was sind eigentlich Photonen und Phononen? - Wackelnde Atome in Kristallgittern - Oszillierende elektromagnetische Felder z.b. Si Der harmonische Oszillator: Klassisch Klassisch: Rückstellkraft ist proportional zur Auslenkung von der Ruheposition F ( x = Gx F = dv / dx oder wegen als Potential geschrieben G V ( x = x Klassische Bewegungsgleichung: d x + ω x = dt m i t ω = G m x
11 Der harmonische Oszillator:Quantenmechanisch Stationäre Schrödinger-Gleichung: ħ d ω + = mdx ( x x ( x E ( x...um eine handhabbare Differentialgleichung zu erzeugen, wird die Variable u eingeführt: mω u = x ħ x Damit ergibt sich dann d E ( u u ( u ( u du + = ħω Lösungen dieser DGL kann man suchen,... lässt man aber besser die Mathematiker finden... Der harmonische Oszillator:Quantenmechanisch Die Lösungen haben die Form u n ( u = An exp Hn ( u wobei H n die Hermite schen Polynome sind: H ( u = H ( u = u H u u ( = 4 H u u u ( = 8 H u u u 4 4 ( = mit dem rekursiven Bildungsgesetz: H ( u = uh ( u ( n H ( u n n n E,V u
12 Der harmonische Oszillator:Quantenmechanisch Die Lösungen haben die Form u n ( u = An exp Hn ( u wobei H n die Hermite schen Polynome sind:...wieder mal alternierend symmetrische und antisymmetrische Wellenfunktionen. E,V u Der harmonische Oszillator:Quantenmechanisch Die Lösungen haben die Form u n ( u = An exp Hn ( u wobei H n die Hermite schen Polynome sind: Für die Energieeigenwerte gilt: E = ( n+ ħω n=,,... E,V Im Gegensatz zu den rechteckigen Potentialtöpfen äquidistante Energieniveaus! u
13 Der harmonische Oszillator:Quantenmechanisch Eigenschaften der Lösungen: - nichtverschwindende Nullpunktsenergie -diskrete Energieniveaus (...diesmal ohne besondere Stetigkeitsbetrachtungen heraus gekommen -äquidistante Energieniveaus Sprechweise: Es werden Phononen der Energie ħω angeregt. E,V z.b. Si u Der harmonische Oszillator:Quantenmechanisch Aber: Befindet sich das System in einem Eigenzustand ist der Erwartungswert <x>=. Oszillationen ähnlich dem klassischen Verhalten ergeben sich wieder nur durch die Überlagerung von Eigenzuständen zu Wellenpaketen. E,V Dem klassischen Oszillator am nächsten kommen die kohärenten Zustände: En ( xt, = c exp i t n ( x nn n= ħ m i t c nn = n n exp( n n! Dies ergibt eine Poisson-Verteilung mit d e m M i t t e l n u n d d e r S t a n d a r d a b w e i c h u n g n. u
14 Quantisierung des elektromagnetischen Feldes Klassische Energie des harmonischen Oszillators: p mω E = H = + x m Eine ähnliche Relation gilt für das elektromagnetische Feld. Für die Energie einer stehenden elektromagnetischen Wellen in einem Hohlraum gilt: L W = ε E + B dx µ 4
15 Quantisierung des elektromagnetischen Feldes Klassisch: Feldstärke der Felder kann kontinuierlich erhöht werden Quantenmechanisch: Energie des Feldes kann wie beim harmonischen Oszillator nur in Portionen von ħω aufgenommen und abgegeben werden: E,V Photonen u Quantenmechanische Probleme in D zu lösen ist dann die dreidimensionale S.-Glg: ħ d ( x V ( x ( x E ( x mdx + = ħ ( r V ( r ( r E ( r m + = Nehmen wir den dreidimensionalen harm. Oszi.: m V ( r = ωix i = i Das Potential ist somit additiv V ( r = f ( x + g ( y + hz ( x y z 5
16 Quantenmechanische Probleme in D Bei einem additiven Potential ist die S.-Glg. separierbar: Produktansatz: = = i = ( xyz,, ( x ( y ( z ( x Einsetzen in die Schrödinger-Gleichung ergibt: i i V ( r = f ( x + f ( y + f ( z = fi ( xi i = ħ ( + + ( x ( y ( z + ( f ( x + f ( y + f ( z ( x ( y ( z = m x y z E ( x ( y ( z ħ ( ''( x ( y ( z + ( x ''( y ( z + ( x ( y ''( z + m ( f ( x + f ( y + f ( z ( x ( y ( z = E ( x ( y ( z Quantenmechanische Probleme in D ħ ''( x ''( y ''( z ( x + f ( y + f ( z = E = Ex + Ey + E m ( ( f ( x ( y ( z z Gleichung muss gelten für alle x,y,z. Daher muss auch einzeln gelten: ħ ''( x ħ + f ( x = E ''( x + f ( x ( x = E ( x m x x ( x m e t c. e t c. D.h. die Funktionen müssen die eindimensionalen S.-Glg. erfüllen. Die dreidimensionale Lösung ergibt sich dann als Produkt der D-Lösungen. Zustände: ( xy,, z = nx ( x ny ( y nz ( z Für die Energieeigenwerte gilt in diesem Fall: Enx, ny, nz = Enx + Eny + Enz = ħ ( ni + ωi i = Sprechweise: Zustand wird beschrieben durch die drei Quantenzahlen nx,ny,nz 6
17 Der dreidimensionale harmonische Oszillator Einfache Notation in Dirac-Schreibweise: = nx, ny, nz E Falls ω i fü r alle Raumrichtungen gleich ist, dann ergeben sich entartete Zustän d e : [ ħω] x 4,,,,,,,,,,,,,,,,,,,, -fach entartet nicht entartet 6 -fach entartet y z Ende 7.. 7
Der harmonische Oszillator anhand eines Potentials
Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags
ν und λ ausgedrückt in Energie E und Impuls p
phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)
Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:
Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1
. H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1
Vorlesung Physik für Pharmazeuten und Biologen
Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
5 Schwingungen und Wellen
5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung
Das quantenmechanische Atommodell
Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie
Experimentalphysik E1
Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +
I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische
I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte
8. Die Schrödinger-Gleichung und ein-dimensionale Potentiale
8.1 8. Die Schrödinger-Gleichung und ein-dimensionale Potentiale 8.1 Mathematische Form der Schrödinger-Gleichung Newton sche Bewegungsgleichungen: partielle Differential-Gleichungen für Ort und Impuls,
9. Vorlesung Wintersemester
9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen
6. Erzwungene Schwingungen
6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen
Übungen zur Quantenmechanik
Übungen zur Quantenmechanik SS11, Peter Lenz, 1. Blatt 13. April 011 Abgabe (Aufgabe ) bis 18.4.07, 1:00 Uhr, Übungskästen RH 6 Aufgabe 1: Gegeben sei ein Wellenpaket der Form Ψ( x, t) = 1 8π 3 Ψ( [ (
Der Tunneleffekt Jan Lukas Becker. Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I
Der Tunneleffekt Jan Lukas Becker Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I Übersicht 1) Herleitung des Tunneleffekts 2) Der Tunneleffekt in Metallen 3) Einzel-Elektronen-Tunneln
Motivation. Motivation 2
Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis
Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen
UNIVERSITÄT ZU KÖLN Institut für Theoretische Physik Wintersemester 005/006 Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II Musterlösungen 1. Welche experimentellen Tatsachen weisen
Ferienkurs Experimentalphysik 4
Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable
9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:
09. Wasserstoff-Atom Page 1 9. Das Wasserstoff-Atom 9.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums
2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten
Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,
Abb.15: Experiment zum Rutherford-Modell
6.Kapitel Atommodelle 6.1 Lernziele Sie kennen die Entwicklung der Atommodelle bis zum linearen Potentialtopf. Sie kennen die Bohrschen Postulate und können sie auch anwenden. Sie wissen, wie man bestimmte
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten
Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator
Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische
Physik 4, Übung 8, Prof. Förster
Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls
Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.
2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion
Klausur zum Modul PC-3-P - Matrie und Strahlung
Klausur zum Modul PC-3-P - Matrie und Strahlung Nils Bartels 8. September 008 Formaldehyd 1 Spektroskopischer Nachweis von Formaldehyd in der Raumluft 1.1 Rotationsspektrum Die übergeordnete Auswahlregel
4.2 Der Harmonische Oszillator
Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische
9 Periodische Bewegungen
Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum
Quantisierung des elektromagnetischen Feldes
18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das
7. Elektronendynamik
7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter
Mechanische Schwingungen und Wellen
Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende
Übungen zu Partielle Differentialgleichungen, WS 2016
Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,
Ferienkurs Teil III Elektrodynamik
Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................
Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael
Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky
Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1
Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit
Theoretische Physik I: Lösungen Blatt Michael Czopnik
Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin
0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf
1 15.11.006 0.1 119. Hausaufgabe 0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf (Siehe 118. Hausaufgabe.) 0.1. Exzerpt von B. S. 414: Wellenlängen der Wellenfunktion im Fall stehender Wellen
Experimentalphysik II Elektromagnetische Schwingungen und Wellen
Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung
2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ
7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand
Der Welle-Teilchen-Dualismus
Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
Ferienkurs Experimentalphysik 4
Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2
WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B
Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und
cos(kx) sin(nx)dx =?
3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
6 Eigenlösungen der eindimensionalen Wellengleichung
39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die
Das Rutherfordsche Atommodelle
Dieses Lernskript soll nochmals die einzelnen Atommodelle zusammenstellen und die Bedeutung der einzelnen Atommdelle veranschaulichen. Das Rutherfordsche Atommodelle Entstehung des Modells Rutherford beschoss
D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9
D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, [email protected]
Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),
UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c
Ferienkurs Experimentalphysik Probeklausur - Musterlösung
Ferienkurs Experimentalphysik 4 010 Probeklausur - Musterlösung 1 Allgemeine Fragen a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable eine Erhaltungsgröße darstellt? b) Was
Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin
Bohrsches Atommodell / Linienspektren Quantenstruktur der Atome: Atomspektren Emissionslinienspektren von Wasserstoffatomen im sichtbaren Bereich Balmer Serie (1885): 1 / λ = K (1/4-1/n 2 ) 656.28 486.13
Die Macht und Ohnmacht der Quantenwelt
Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik
De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik
Physikalisches Institut Albert- Ludwigs- Universität Freiburg De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik Thomas Filk Physikalisches Institut, Universität Freiburg Parmenides Center
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische
3. Vom Wasserstoffatom zum Periodensystem der Elemente
3. Vom Wasserstoffatom zum Periodensystem der Elemente Im vorangegangenen Kapitel haben wir uns mit den grundlegenden Konzepten der Quantenmechanik auseinandergesetzt. Ein weiteres Ziel dieser Vorlesung
Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern
Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit An einigen Beispielen erläutern 5. Das Photon: Welle und Teilchen 5.4. Die Plancksche Strahlungsformel Wichtige Punkte: u( ν, T ) = 8πh c
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung
34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis
Kleine Formelsammlung zu Mathematik für Ingenieure IIA
Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................
10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper
10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper
Photonische Kristalle
Kapitel 2 Photonische Kristalle 2.1 Einführung In den letzten 20 Jahren entwickelten sich die Photonischen Kristalle zu einem bevorzugten Gegenstand der Grundlagenforschung aber auch der angewandten Forschung
VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome)
VL 12 VL11. Das Wasserstofatom in der QM II 11.1. Energiezustände des Wasserstoffatoms 11.2. Radiale Abhängigkeit (Laguerre-Polynome) VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2
Formelzusammenstellung
Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,
Periodensystem, elektromagnetische Spektren, Atombau, Orbitale
Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem
Kapitel 16 : Differentialrechnung
Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen
Aufgabe 2.1: Wiederholung: komplexer Brechungsindex
Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: [email protected] / [email protected] Blatt 2, Besprechung: 23.04.2014 / 30.04.2014
12 Gewöhnliche Differentialgleichungen
12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit
Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung
Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden
Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder
DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/
4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.
4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet
2. Einmassenschwinger. Inhalt:
. Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten
3.2 Analyse von Drehstromwicklungen Seite 1. Die Fourierschen Koeffizienten sind durch folgende Integrale bestimmt:
3. Analyse von Drehstromwicklungen Seite 1 Srungstellenverfahren Jede Funktion f ( x)mit der Periode kann durch die unendliche Fourier-Reihe 10 f ( x) = a + acosx + b sin x (3.-1) dargestellt werden. =
Grundlagen der Physik 2 Schwingungen und Wärmelehre
Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti [email protected] Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.
Einführung in die Physik I. Schwingungen und Wellen 1
Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten
14 Lineare Differenzengleichungen
308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung
III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator
III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante
Fazit: Wellen haben Teilchencharakter
Die Vorgeschichte Maxwell 1865 sagt elektromagnetische Wellen vorher Hertz 1886 beobachtet verstärkten Funkenüberschlag unter Lichteinstrahlung Hallwachs 1888 studiert den photoelektrischen Effekt systematisch
Flüsse, Fixpunkte, Stabilität
1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher
1. Klausur: Experimentalphysik III - Quantenmechanik WS 04/05 Bearbeitungszeit: 120 min
. Klausur: Experimentalphysik III - Quantenmechanik WS 4/5 Bearbeitungszeit: min Aufgabe : Schwarzkörperstrahlung as Plancksche Strahlungsgesetz E.!; T /!3 4 c exp! gibt an, wie ie spektrale Strahlungsintensität
4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme
4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:
Quantumtransport in niedrigdimensionalen HL
Quantumtransport in niedrigdimensionalen HL Ermöglicht die Untersuchung außergewöhnlicher Eigenschaften wie: a) Shubnikov-de Haas (SdH) Effekt b) Quantum Hall Effekt (QHE) c) fraktionalen QHE d) Ballistischen
Materiewellen und Welle-Teilchen-Dualismus
Materiewellen und Welle-Teilchen-Dualismus Vortrag zur Vorlesung Nanostrukturphysik Saarbrücken, den Vortragender: Tobias Baur > Welle-Teilchen-Dualismus Quantenobjekte sind gleichzeitig Wellen und Teilchen
lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt
lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt Kanalstrahlexperimente hatten schwere, positiv geladene Teilchen beim Wasserstoff nachgewiesen Aufgrund von Streuexperimenten postulierte
III. Schwingungen und Wellen
III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage
Elektronen im Festkörper
Elektronen im Festkörper Inhalt 1. Modell des freien Elektronengases 1.1 Zustandsdichten 1.2 Fermi-Energie 1.3 Fermi-Gas bei endlicher Temperatur - Fermi-Dirac-Verteilung 1.4 Spezifische Wärme der Elektronen
[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.
Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------
Elektrische Schwingungen und Wellen
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen
4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5.
4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. Atomorbitale 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches
6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen
6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und
Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder
Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass
gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)
Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt
