7. Elektronendynamik
|
|
|
- Heidi Kaiser
- vor 9 Jahren
- Abrufe
Transkript
1 7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien
2 Grundprinzipien I Zweiter Teil der Born-Oppenheimer Näherung Hamiltonoperator: H = T e + V ek +V ee Bewegung der Elektronen im gitterperiodischen Potential mit fixierten Kernpositionen! Weitere Näherungen: Vernachlässigung von Elektron-Elektron-Wechselwirkung und Ersatz durch mittleres Potential Übergang zu Einelektronproblem
3 Grundprinzipien: Bloch-Elektronen Elektron spürt in jeder blbg. Elementarzelle dieselbe Umgebung und sollte damit dieselbe Aufenthaltswahrscheinlichkeit in jeder Zelle besitzen. Bloch-Theorem: Wellenfunktion eines Elektrons in einem periodischen Potential
4 Näherungsweise Lösung Schrödingergleichung für beliebige Potentiale immer noch sehr komplex Näherungsweise Behandlung: Quasifreie Elektronen: Freie Elektronen als Ausgangspunkt mit störungstheoretischer Behandlung des Potentials gut z.b. für hochenergetische Bänder Quasigebundene Elektronen: Start von Atomorbitalen, die durch Linearkombination zur Kristallorbitalen ausgebaut werden gut z.b. für tiefliegende Bänder Ergebnis: Energiebänder getrennt durch Lücken
5 Lösung: Bandstruktur E n (k) Bandstruktur entlang bestimmter Richtung im k- Raum 1. BZ ausreichend! Kramers-Entartung: Resultat der Zeitumkehrinvarianz des Hamiltonoperators
6 Quasifreie Elektronen I Ausgangspunkt: Freie Elektronen im reduzierten Zonenschema
7 Quasifreie Elektronen II Dann Einbau des Kristallpotentials, z.b. am Zonenrand mit seinen stehenden Wellen bindend antibindend
8 Quasifreie Elektronen III Resultierende Energiebandstruktur
9 Näherung stark gebundener Elektronen Ausgangspunkt: Atomare Orbitale V A atomares Potential am Gitterplatz R Kristallwellenfunktionen LCAO (Linear Combination of Atomic Orbitals)
10 Näherung stark gebundener Elektronen
11 Generelle Tendenzen in der Bandstruktur I Mit zunehmender Energie nimmt die Breite der Bänder zu! Breite der Bandlücken ab! Die Besetzung der Bänder erfolgt dann nach dem Pauliprinzip beginned von niedrigster Energie bis hin zur Maximalenergie, der so genannten Fermi- Energie. Der Füllstand der Bänder bestimmt die Leitfähigkeit des Kristalls!
12 Generelle Tendenzen in der Bandstruktur II Wieviele Elektronen passen in ein Band? Siehe LCAO-Methode: Zu einem Band trägt jedes Atom mit einem Orbital mit zwei möglichen Spinorinetierungen bei. Bei N Atomen führt das zu 2N möglichen Zuständen im Band! Kristalle mit gerader (ungerader) Zahl von Elektronen in äußerster Schale sind Isolatoren (Metalle).
13 Besetzung der Bänder x
14 Ge Experimentelle Bandstukturen
15 Al Experimentelle Bandstukturen
16 Bewegung von Kristallelektronen
17 Experimentelle Bandstukturen Aluminium Um das Bandminimum herum besitzt das Band eine parabolische Dispersionsrelation so wie bei freien Elektronen, aber oft mit modifizierter Masse durch Wechselwirkung mit dem Kristallhintergrund Näherung des freien Elektrongases in Metallen nach Drude und Sommerfeld!
18 Bewegungsgleichungen Effektive Masse I Damit:
19 Effektive Masse II Effektiver Massentensor Isotrope Näherung
20 Effektive Masse III
21 Metalle: Freies Elektronengas I Elektronen sind Teilchen in einer Box (3-dimensionaler, isotroper Potentialtopf)
22 Metalle: Freies Elektronengas II Maximal besetzte Energie: Fermi-Energie (T=0) N Elektronenzahl n Elektrondichte
23 Freies Elektronengas III
24 Freies Elektronengas IV
25 Freies Elektronengas V Gesamtenergie des Elektrongases bei T=0 Endliche Temperatur: Anregung von Elektronen über thermische Energie k B T gemäß Fermi-Dirac-Verteilung µ chemische Potential: Mittlere Energie zur Hinzufügung eines Elektrons
26 Fermi-Dirac-Verteilung
27 Spezifische Wärme der Elektronen Bruchteil anregbarer Elektronen: k B T/ k B T F Anregungsenergie: k B T: Gesamtenergie: Nk B T 2 /T F Wärmekapazität: 2Nk B T/T F
28 Spezifische Wärme von Metallen Elektronischer Beitrag Gitterbeitrag
29 Bewegung in externen Feldern
30 Elektrische Leitfähigkeit Ladungstransport Drude-Modell im stationären Fall Driftgeschwindigkeit v D Mittlere Stoßzeit Beweglichkeit: Elektrische Leitfähigkeit
31 Elektrische Leitfähigkeit Modell nach Drude und Sommerfeld geben Verschiebung der Fermi-Kugel an!
32 Elektrischer Widerstand Auf dem bisherigen Niveau (Elektron in perfekt periodischem Gittepotential) bewegt sich ein Elektron ohne jeglichen Widerstand, aber führt auch keinen Strom: Bloch-Oszillationen! Streuprozesse Phononen (T-abhg.) Defekte/Verunreinigungen Oberflächen
33 Temperaturabhängigkeit des Widerstands
34 Lorentzkraft Bewegung von Elektronen im (zusätzlichen) Magnetfeld Bewewgung auf Zyklotronbahnen um das Magnetfeld herum mit Zyklotronfrequenz
35 Hall-Effekt Bewegung der Elektronen in gekreuzten elektrischen und magnetischen Feldern Messung der Ladungsträgerkonzentrationen
Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz. Sommersemester Physik der kondensierten Materie
Physik der kondensierten Materie Kapitel 8 Elektronen im periodischen Potential Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz In Vertretung von Carsten Deibel Optik & Photonik
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um
Elektronen im Festkörper
Elektronen im Festkörper Inhalt 1. Modell des freien Elektronengases 1.1 Zustandsdichten 1.2 Fermi-Energie 1.3 Fermi-Gas bei endlicher Temperatur - Fermi-Dirac-Verteilung 1.4 Spezifische Wärme der Elektronen
Opto-elektronische. Materialeigenschaften VL # 4
Opto-elektronische Materialeigenschaften VL # 4 Vladimir Dyakonov [email protected] Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte
Ferromagnetismus: Heisenberg-Modell
Ferromagnetismus: Heisenberg-Modell magnetische Elektronen nehmen nicht an der chemischen Bindung teil lokalisierte Beschreibung (4f und 5f Systeme seltene Erden) 4f-Ferromagnete nahe am atomaren Wert!
Inhaltsverzeichnis. 0 Einleitung... 1
0 Einleitung... 1 1 Periodische Strukturen... 5 1.1 Kristallstruktur, Bravais-Gitter, Wigner-Seitz-Zelle...... 5 1.1.1 Kristallisation von Festkörpern....... 5 1.1.2 Kristall-System und Kristall-Gitter...
Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:
Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen
Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik
Werkstoffe der lektrotechnik im Studiengang lektrotechnik - Bändermodell der lektronen im Kristall - Prof. Dr. Ulrich Hahn WS 2008/2009 Orbitale für lektronen im Kristall Kristall: regelmäßige Anordnung
Die chemische Bindung
Die chemische Bindung Die Valenz-Bond Theorie Molekülorbitale Die Bänder Theorie der Festkörper bei einer ionischen Bindung bildet bildet sich ein Dipol aus ('Übertragung von Elektronen') Eine kovalente
Elektrische und Thermische Leitfähigkeit von Metallen
Elektrische und Thermische Leitfähigkeit von Metallen Virtueller Vortrag von Andreas Kautsch und Andreas Litschauer im Rahmen der VO Festkörperphysik Grundlagen Outline elektrische Leitfähigkeit Gründe
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter WS 2013/14
Höhere Experimentalphysik 1
Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 3. Vorlesung 10.11.2017 Zusammenfassung der letzten Vorlesung Ladungen können auch bewegt werden dann aber gilt eine gänzlich andere
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter 1 11.4 Metalle,
Opto-elektronische. Materialeigenschaften VL # 3
Opto-elektronische Materialeigenschaften VL # 3 Vladimir Dyakonov [email protected] Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte
"Einführung in die Festkörperphysik" Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons
Inhalt der Vorlesung "Einführung in die Festkörperphysik" für Dezember 2009 ist geplant: 5. Energiebänder 5.1 Motivation 5.2 Das Modell des fast freien Elektrons 5.3 Das stark gebundene Elektron 5.4 Das
1.17eV exp eV exp Halbleiter
7.6 Halbleiter Nichtleiter Die Bandstruktur eines Halbleiters ist gleich der Bandstruktur eines Nichtleiters. Der Hauptunterschied besteht in der Breite der Energielücke: Für einen Halbleiter ist die Energielücke
Welche Zustände sind denn eigentlich besetzt?
elche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? ( 0 ) 12 9 -im Prinzip sollte das Ganze ähnlich wie beim Atom erfolgen 6 - Besetzung von unten nach oben 3 -...wie
Aufbau der Materie II Festkörperphysik für LA nicht vertieft. neue Folien WS 09/10
Aufbau der Materie II Festkörperphysik für LA nicht vertieft neue Folien WS 09/10 Literaturempfehlungen 1. Charles Kittel: Einführung in die Festkörperphysik (Oldenbourg Verlag) 2. Konrad Kopitzki: Einführung
Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den
Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte
Theoretische Festkörperphysik
Gerd Czycholl Theoretische Festkörperphysik Von den klassischen Modellen zu modernen Forschungsthemen 3., aktualisierte Auflage Mit über 60 Übungsaufgaben mit vollständigen Lösungen im Internet unter www.springer.com
Inhaltsverzeichnis. Vorwort. Wie man dieses Buch liest. Periodensystem der Elemente
Inhaltsverzeichnis Vorwort Wie man dieses Buch liest Periodensystem der Elemente v vii xiv 1 Flüssigkristalle 1 1.1 Motivation und Phänomenologie.................. 1 1.2 Was ist ein Flüssigkristall?.....................
Festkörperphys i. Einführung in die Grundlagen
Harald Ibach Hans Lüth Festkörperphys i Einführung in die Grundlagen 1. Die chemische Bindung in Festkörpern 1 1.1 Das Periodensystem 1 1.2 Kovalente Bindung 4 1.3 DieIonenbindung 9 1.4 Metallische Bindung
Elektronische Eigenschaften von Halbleitern
Elektronische Eigenschaften von Halbleitern In der Vorlesung Elektronische Schaltungen lernen Sie das Verhalten verschiedener Halbleiterbauelemente kennen: Dioden, Bipolare Transistoren, Feldeffekttransistoren
Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.
12 Moleküle Slide 267 Vorbemerkungen Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. Je 2 Elektronen
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen
Das Bohrsche Atommodell
Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung
Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung
Funktionswerkstoffe Elektronische Eigenschaften - Einleitung Bandstruktur Elektronenverteilung (Fermi-Dirac) Elektronenbeweglichkeit und Leitfähigkeit Metalle Elektronenanregung Leitfähigkeitsänderungen
Halbleiterphysik. Von Reinhold Paul VEB VERLAG TECHNIK BERLIN
Halbleiterphysik Von Reinhold Paul VEB VERLAG TECHNIK BERLIN INHALTSVERZEICHNIS Schreibweise und Formelzeichen der wichtigsten Größen 13 1. Halbleiter 19 1.1. Festkörper 19 1.2. Eigenschaften elektronischer
ELEKTRONEN IN FESTKÖRPERN
118 6. ELEKTRONEN IN FESTKÖRPERN 6.11 Feriflächen I bisher betrachteten eindiensionalen Fall wird der Grundzustand von der Ferienergie und de Feri-Niveau bestit. Das Feri-Niveau stellt den Zustand it der
11. Quantenchemische Methoden
Computeranwendung in der Chemie Informatik für Chemiker(innen) 11. Quantenchemische Methoden Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL11 Folie 1 Grundlagen Moleküle
Warum Halbleiter verstehen?
7.1 Warum Halbleiter verstehen? In der Vorlesung Elektronische Schaltungen haben Sie die Kennlinien verschiedener Halbleiterbauelemente kennen gelernt: Dioden, Bipolare Transistoren, Feldeffekttransistoren
5 Elektronenübergänge im Festkörper
5 Elektronenübergänge im Festkörper 5.1 Übersicht und Lernziele Übersicht Die Bindung in einem Molekül erfolgt durch gemeinsame Elektronenpaare, die jeweils zwei Atomen angehören (Atombindung, Elektronenpaarbindung).
2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ
7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand
Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband
8.1 Berechnung der eitfähigkeit Quantitativ wird die eitfähigkeit σ berechnet durch: adung des Elektrons Beweglichkeit der adungsträger im eitungsband ( ) σ = e µ n + µ p n Anzahl der adungsträger im eitungsband
Floquet-Theorie Differentialgleichungen mit periodischen Koeffizienten
Floquet-Theorie Differentialgleichungen mit periodischen Koeffizienten [1] Januar 2011 Institut für Angewandte Physik Nichtlineare Optik/Quantenoptik Friederike Fassnacht 1 Motivation Grundgleichung der
6. Fast freie Elektronen: Bandstrukturen
Prof. Dieter Suter Festkörperphysik WS 01 / 02 6. Fast freie Elektronen: Bandstrukturen 6.1. Periodisches Potenzial 6.1.1. Probleme des Modells freier Elektronen Im Modell der freien Elektronen werden
Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen
1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen
Versuch 40: UV-Photoelektronenspektroskopie
Versuch 40: UV-Photoelektronenspektroskopie Ort: MZG (Technische Physik), Zi. 0.175 hω k k ϑ ϕ k Probe worum geht s? Messung der elektronischen Bandstruktur E(k) eines 2D-Festkörpers (Graphit) mittels
Kapitel 6: Freie Elektronen im Festkörper
Kapitel 6: Freie Elektronen im Festkörper Doktorandenseminar 2004 Festkörperphysik Stefan E. Müller 12. Juli 2004 Inhalt: Ein-Elektron-Näherung im Potentialtopf Fermi-Gas bei T = 0K Fermi-Gas bei T > 0K
Grundlagen-Vertiefung PW10. Ladungstransport und Leitfähigkeit Version
Grundlagen-Vertiefung PW10 Ladungstransport und Leitfähigkeit Version 2007-10-11 Inhaltsverzeichnis 1 1.1 Klassische Theorie des Ladungstransports.................. 1 1.2 Temperaturabhängigkeit der elektrischen
Kristallstruktur 1 Tetraederwinkel Die Millerschen Indizes Die hcp-struktur Bravais-Gitter 3
In ha Itsverzeichn is Vorwort V 1 ALl Al.2 A1.3 Al.4 Al.5 Al.6 Al.7 Al.8 Kristallstruktur 1 Tetraederwinkel.............................................................. 1 Die Millerschen Indizes......................................................
Hall-Eekt von Germanium
Hall-Eekt von Germanium Fortgeschrittenen Praktikum II Zusammenfassung Äuÿere Felder (elektrische Felder, Magnetfelder oder Temperaturgradienten-Felder) beeinussen das elektronische System eines Festkörpers
Festkörperphysik. Aufgaben und Lösun
Festkörperphysik. Aufgaben und Lösun von Prof. Dr. Rudolf Gross Dr. Achim Marx Priv.-Doz. Dr. Dietrich Einzel Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Kristallstruktur 1 ALI Tetraederwinkel
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen 1 Theorien zur elektrischen Leitung in Metallen Um 1900 unabhängig
5 Anwendung der Dichtefunktionaltheorie
5 Anwendung der Dichtefunktionaltheorie Im Rahmen der Born-Oppenheimer-Näherung lässt sich der elektronische Grundzustand E g mithilfe der Dichtefunktionaltheorie berechnen, wobei das Einelektronenpotenzial
Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5
Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt
In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter.
II.2: Erinnerung an die Halbleiterphysik II.2.1: Kristalline Festkörper In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches
Anorganische Chemie III
Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2013/14 Christoph Wölper Universität Duisburg-Essen # Elektronengas # Bändermodell Bindungsmodelle Metallbindung > Bindungsmodelle Elektronengas
Chemische Bindung zweiatomiger Moleküle
Die Born Oppenheimer Näherung vernachlässigt Elektronenimpulse gegenüber Kernimpulsen und erlaubt die Gesamtwellenfunktion als ein Produkt aus einer Kernwellenfunktion F q ( R) und der einer Elektronenwellenfunktion
Das H + 2 -Molekülion
Das Näherungen für das elektronische Problem und Kernbewegungen 7. Dezember 2011 Schrödinger-Gleichung des s Abbildung: Arthur Beiser; Atome, Moleküle, Festkörper; Vieweg, Braunschweig 1983 ( K/E 2 2 +
Hochtemperatur - Supraleiter
Hochtemperatur - Supraleiter Vergleich: Leiter - Supraleiter Elektrischer Leiter: R ändert sich proportional mit T Supraleiter: unterhalb von Tc schlagartiger Verlust des Widerstands Supraleitung Sprungtemperatur
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1
5. Freie Elektronen. Zeichnung: Drude-Modell
Prof. Dieter Suter Festkörperphysik WS 95 / 96 5. Freie Elektronen Das Modell der freien Elektronen ist ein sehr einfaches Modell für die Beschreibung der Valenzelektronen in Metallen. Trotz seiner extremen
Quantenphysik I SS Gerhard Franz hm.edu
Quantenphysik I SS 2017 Gerhard Franz mailto:gerhard.franz @ hm.edu Kompetenzzentrum Nanostrukturtechnik Hochschule München http://www.gerhard-franz.org Gerhard Franz, Quantenphysik I, SS 2017 p. 1/7 Quantenmechanik
Vorlesung Nanophysik Nanoelektronik
Vorlesung Nanophysik Nanoelektronik Inhalt: 1. Vorbemerkungen, Literatur 2. Nanostrukturen: Einteilung, Herstellung, Beispiele 3. Grundlagen des elektrischen Transports 4. Zweidimensionales Elektronensysteme
Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften
Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften Markus Gräfe Physikalisch-Astronomische Fakultät Jena 18. Juni 2009 Inhaltsverzeichnis 1 Motivation 2 Grundlagen Leitungsmechanismen
Klassischer Ladungstransport. Faouzi Saidani. Auf dem Weg zur Nanoelektronik. Faouzi Saidani. Universität Freiburg
Auf dem Weg zur Nanoelektronik Universität Freiburg 12. Mai 2010 Inhalt Das Drudemodell und seine Grundannahmen Gleichstromleitfähigkeit Halleffekt und Magnetwiderstand Wechselstromleitfähigkeit Wärmeleitfähigkeit
Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur?
Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Wie berechnet man die innere Energie, wie die spezifische Wärme?
Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt
Atom- und Molekülbau Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt Von Peter C. Schmidt und Konrad G. Weil 147 Abbildungen, 19 Tabellen Georg Thieme Verlag Stuttgart New York 1982 Vorwort
Physik 4 Praktikum Auswertung Hall-Effekt
Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........
Dirac Fermionen in Graphen und Topologischen Isolatoren. Prof. Dr. Patrik Recher, 21. Mai 2012
Dirac Fermionen in Graphen und Topologischen Isolatoren Prof. Dr. Patrik Recher, 21. Mai 2012 Inhalt Dirac Gleichung in der relativistischen Quantenmechanik Elektronen in Graphen und topologischen Isolatoren
4. Fehleranordnung und Diffusion
4. Fehleranordnung und Diffusion 33 4. Fehleranordnung und Diffusion Annahme: dichtes, porenfreies Oxid Materialtransport nur durch Festkörperdiffusion möglich Schematisch: Mögliche Teilreaktionen:. Übergang
Festkörperphysik. Einführung in die Grundlagen. 4y Springer. Siebte Auflage mit 277 Abbildungen, 18 Tafeln und 104 Übungen
Harald Ibach Hans Lüth Festkörperphysik Einführung in die Grundlagen Siebte Auflage mit 277 Abbildungen, 18 Tafeln und 104 Übungen r ^ 4y Springer Inhaltsverzeichnis 1. Die chemische Bindung in Festkörpern
TC1 Grundlagen der Theoretischen Chemie
TC1 Grundlagen der Theoretischen Chemie Irene Burghardt ([email protected]) Praktikumsbetreuung: Sarah Römer ([email protected]) Simona Scheit ([email protected]) Juanma
ORGANISCHE CHEMIE 1. Stoff der 15. Vorlesung: Atommodell, Bindungsmodell...
Stoff der 15. Vorlesung: Atommodell, Bindungsmodell... ORGANISCHE CHEMIE 1 15. Vorlesung, Dienstag, 07. Juni 2013 - Einelektronensysteme: H-Atom s,p,d Orbital - Mehrelektronensysteme: He-Atom Pauli-Prinzip,
Auswertung. C16: elektrische Leitung in Halbleitern
Auswertung zum Versuch C16: elektrische Leitung in Halbleitern Alexander FufaeV Partner: Jule Heier Gruppe 434 Einleitung In diesem Versuch sollen wir die elektrische Leitung in Halbleitern untersuchen.
Hall Effekt und Bandstruktur
Hall Effekt und Bandstruktur Themen zur Vorbereitung (relevant im Kolloquium zu Beginn des Versuchstages und für den Theorieteil des Protokolls): Entstehung von Bandstruktur. Halbleiter Bandstruktur. Dotierung
Oktett-Theorie von Lewis
Oktett-Theorie von Lewis Oktettregel Atome versuchen durch die Nutzung gemeinsamer Elektronenpaare möglichst ein Elektronenoktett zu erlangen. allgemeiner: Edelgasregel Atome streben durch Vereinigung
ν und λ ausgedrückt in Energie E und Impuls p
phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 29. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 29. 05.
2.4. Atome mit mehreren Elektronen
2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der
Dies ist die Sammlung des Materials von Dienstag, bis Freitag Zustandsdichte für Elektronen und Photonen, 1D,2D,3D
Exp. Phys. 5, WS16/17 Denninger skript_3_1_016_b Dies ist die Sammlung des Materials von Dienstag, 16.1. bis Freitag 3.1.016. Inhalt: 1. fcc_struktur.pdf Seite Bilder von ausgewählten Oberflächen. bragg_beugung.pdf
2.4. Atome mit mehreren Elektronen
2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der
Mott-Isolator-Übergang
-Übergang Patrick Paul Denis Kast Universität Ulm 5. Februar 2009 Seminar zu Theorie der kondensierten Materie II WS 2008/09 Gliederung Festkörper-Modelle 1 Festkörper-Modelle Bändermodell Tight-Binding-Modell
Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt
Optische Eigenschaften von Metallen und Legierungen
Reine und angewandte Metallkunde in Einzeldarstellungen Herausgegeben von W. Köster Band 22 Optische Eigenschaften von Metallen und Legierungen Mit einer Einführung in die Elektronentheorie der Metalle
Der Tunneleffekt Jan Lukas Becker. Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I
Der Tunneleffekt Jan Lukas Becker Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I Übersicht 1) Herleitung des Tunneleffekts 2) Der Tunneleffekt in Metallen 3) Einzel-Elektronen-Tunneln
8.3 Die Quantenmechanik des Wasserstoffatoms
Dieter Suter - 409 - Physik B3 8.3 Die Quantenmechanik des Wasserstoffatoms 8.3.1 Grundlagen, Hamiltonoperator Das Wasserstoffatom besteht aus einem Proton (Ladung +e) und einem Elektron (Ladung e). Der
Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)
Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im
VL 21 VL Periodensystem VL Röntgenstrahlung VL Homonukleare Moleküle VL Heteronukleare Moleküle
VL 21 VL 19 20.1. Periodensystem VL 20 21.1. Röntgenstrahlung VL 21 22.1. Homonukleare Moleküle VL 22 23.1. Heteronukleare Moleküle Wim de Boer, Karlsruhe Atome und Moleküle, 02.07.2013 1 Vorlesung 22:
