Hochtemperatur - Supraleiter
|
|
|
- Franziska Hummel
- vor 8 Jahren
- Abrufe
Transkript
1 Hochtemperatur - Supraleiter
2 Vergleich: Leiter - Supraleiter Elektrischer Leiter: R ändert sich proportional mit T Supraleiter: unterhalb von Tc schlagartiger Verlust des Widerstands Supraleitung Sprungtemperatur T c
3 Supraleitfähige Materialien Hochtemperatursupraleiter
4 BCS - Theorie Bardeen, Cooper, Schriefer, 1957 Attraktive WW zwischen Elektron und Atomrümpfe (Coulomb WW) Durch Massenträgheit bedingte langsame Reaktion der Atomrümpfe lokale Gitterpolarisation attraktive WW auf ein weiteres Elektron starke Elektron Phonon WW durch Gitterschwingung vermittelte WW zwischen e - mit entgegengesetztem Spin Cooper Paare (nur bis ca. 40 K)
5 BCS - Theorie Quantenmechanische Interpretation: Ganzzahliger Spin eines Cooper-Paares (Boson) Pauli-Prinzip gilt nicht mehr Cooper-Paare folgen Bose-Einstein-Statistik wechselwirkungsfreier Teilchen Ein gemeinsamer quantenmechanischer Zustand Beschreibung durch eine einzige Wellenfunktion Durch Kopplung der Elektronen tiefer gelegenes Energieniveaus im Vergleich zu einzelnen Elektronen Energiedifferenz entspricht benötigter Energie zur Spaltung eines Cooper-Paares diese ist größer als durch Streuung vermittelbare Energie kein Energieverlust durch Streuprozesse verlustfreier Stromfluss
6 Grenzen der Supraleitung Supraleitung ist abhängig von: Temperatur T c Stromdichte I c überschreitet Strom kritischen Wert I c bricht Supraleitung zusammen magnetische Feldstärke Zusammenbruch bei Überschreitung der kritischen Magnetfeldstärke H c (entweder äußeres Feld oder Feld erzeugt durch Suprastrom)
7 Meissner-Ochsenfeld-Effekt
8 Meissner-Ochsenfeld-Effekt Supraleiter 1. Art Magnetisierung wird proportional zur Magnetfeldstärke immer negativer H c überschritten Normalleiter Supraleiter 2. Art schleppender Übergang nach H c1, zwischen H c1 und H c2 dringt magnetischer Fluss in Form von Flussschläuchen ein Vortex/Shubnikov-Phase
9 Josephson-Effekt zwei Supraleiter sind durch dünne Isolierschicht voneinander getrennt: Cooper-Paare tunneln mit Phasendifferenz SQUID ohne äußeres Magnetfeld befinden sich beide Supraströme in Phase Phasendifferenz durch äußeres Magnetfeld Interferenz beider Ströme (konstruktiv/destruktiv) empfindliche Messung des äußeren Magnetfeldes möglich
10 Hochtemperatur-Supraleiter 3 x Perowskit YBa 2 Cu 3 O 8 YBa 2 Cu 3 O 7 Ba Y Ba
11 YBa 2 Cu 3 O x Hochtemperatur-Supraleiter CuO-Ketten Anzahl von O in Ketten kann genau eingestellt werden (O1) x=7: voll besetzt x<7: teilweise besetzt (Fehlstellen) x=6: völlig unbesetzt CuO 2 -Ebenen (Cu 2+ ) Supraleitung parallel zu CuO 2 Ebenen CuO-Ketten B. W. Veal et al., Physica C 184 (1991), 321.
12 Hochtemperatur-Supraleiter Statistische Anordung der O-Atome a und b-achse nicht mehr unterscheidbar Tetragonale Struktur Ausbildung regelmäßiger orthorhombischer Überstrukturen B. W. Veal et al., Physica C 184 (1991), 321.
13 Hochtemperatur-Supraleiter Sauerstoffdotierung Position 1: 2 Cu 1+ 2 Cu 2+ (lokaler Ladungsausgleich) Position 2: 1 Cu 1+ 1 Cu 2+ 1 Cu 2+ 1 Cu 3+ (instabiler als Cu 2+ ) Entstehung von 1 Loch in CuO 2 - Ebene Position 3: Cu 2+ Cu 3+ (instabiler als Cu 2+ ) Entstehung von 2 Löchern in CuO 2 Ebene AF Ordnung verschwindet Lochkonzentration für beliebige O-Konzentration abhängig von Anordnung der O-Atome B. W. Veal et al., Physica C 184 (1991), 321.
14 Plateau bei 60 K??? Annahme: Ausbildung einer O2-Phase Besetzung nur Gitterplätze des O2- Untergitters bei x=6 danach statistisches Auffüllen restlicher Plätze (x>6.5) Berechnung liefert plateau-ähnliches Verhalten für 6.5 < x < 6.6 T c steigt mit zunehmender Lochkonzentration B. W. Veal et al., Physica C 184 (1991), 321.
Naturwissenschaft und Technik (NwT) Festkörperphysik Supraleitung, Cooper-Paare, Meißner-Ochsenfeld Effekt, Sprungtemperatur, flüssiger Stickstoff
Supraleitung Eine Unterrichtsidee von Dr. Matthias Hauck Das im Folgenden dargestellte Unterrichtsmaterial wurde zur Einbindung des Artikels Harte Nuss für Theoretiker aus der Zeitschrift Physik in unserer
Anorganische Chemie VI Materialdesign
Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie VI Materialdesign Heute: Supraleitung-II
7. Elektronendynamik
7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter
F-Praktikum Physik: Widerstand bei tiefen Temperaturen
F-Praktikum Physik: Widerstand bei tiefen Temperaturen David Riemenschneider & Felix Spanier 11. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Grüneisen-Theorie...............................
Rätsel in der Welt der Quanten. Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften
Rätsel in der Welt der Quanten Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften 1. Februar 2012 Die Klassische Physik Bewegung von Objekten Lichtwellen Bewegung von Objekten Newtonsche
DIE ROLLE DER THEORIE IN DER MATEIALFORSCHUNG am Beispiel der Supraleitung
Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden DIE ROLLE DER THEORIE IN DER MATEIALFORSCHUNG am Beispiel der Supraleitung Was ist Supraleitung Historische Entwicklung Technische
Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten.
Elektrizitätslehre I: Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elementarladung: Ladung: Q Einheit: 1 Coulomb = 1C = 1 Amperesekunde Stromstärke: I Einheit: 1 A = 1 Ampere elektrische
Functional Materials Saarland University
Supraleitung Entdeckung des widerstandslosen Stromtransport Elektrischen Widerstandes bei tiefen Temperaturen. Vorstellungen um 1900 Entdeckung des widerstandslosen Stromtransport Kamerlingh-Onnes: langsam
Elektrischer Strom S.Alexandrova 1
Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches
Kritische Dimensionen
Kritische Dimensionen Vortrag im Rahmen der Vorlesung Nanostrukturphysik I von Annika Diehl 7. Januar 2012 1 Inhaltsverzeichnis 1. Strukturelle Korrelationen und kooperative Phänomene 2. Ladung und Ladungstransport
Supraleitung. eine Einführung. von. Michael Kathke. Seminarleitung: Prof. Dr. rer. Nat. Samm. Eine Ausarbeitung zum Seminarvortrag im
Supraleitung eine Einführung von Michael Kathke Seminarleitung: Prof. Dr. rer. Nat. Samm Eine Ausarbeitung zum Seminarvortrag im Seminar Festkörperphysik Veranstaltet im WS 97/98 vom Fachbereich 5 Elektrotechnik
Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen
Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem
3.4. Leitungsmechanismen
a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie
Faszination Supraleitung
Faszination Supraleitung Florian Gebhard arbeitsgruppe vielteilchentheorie fachbereich physik philipps-universität marburg Von Wasserburg nach Marburg Vorab ein kurzer Lebenslauf... Florian Gebhard : Faszination
allgemeiner Josephson Kontakt Magnetfeldmessung superfluides Helium Zusammenfassung Josephson Effekt Paul Seyfert 5. Dezember 2008
Josephson Effekt Paul Seyfert 5. Dezember 2008 1 allgemeiner Josephson Kontakt Motivation Theorie Standardbeispiel 2 Magnetfeldmessung SQUID 3 superfluides Helium Aufbau Ergebnis 4 Zusammenfassung Zusammenfassung
Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen
1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen
Ferienkurs Experimentalphysik 4
Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable
πάντα ῥεῖ alles fließt
Regionale Lehrerfortbildung des Regierungspräsidiums Karlsruhe 6. Dezember 2010 KIT-Gastdozentenhaus Heinrich Hertz πάντα ῥεῖ alles fließt Supraströme Friedrich Herrmann Institut für Theoretische Festkörperphysik
VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome)
VL 12 VL11. Das Wasserstofatom in der QM II 11.1. Energiezustände des Wasserstoffatoms 11.2. Radiale Abhängigkeit (Laguerre-Polynome) VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2
Elektrische Einheiten und ihre Darstellung
Die Messung einer physikalischer Größe durch ein Experiment bei dem letztlich elektrische Größen gemessen werden, ist weit verbreitet. Die hochpräzise Messung elektrischer Größen ist daher sehr wichtig.
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz
Vorlesung 3: Elektrodynamik
Vorlesung 3: Elektrodynamik, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2015/16 Der elektrische Strom Elektrodynamik:
Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld
Simon Lewis Lanz 2015 simonlanzart.de Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Zeeman-Effekt, Paschen-Back-Effekt, Fein- und Hyperfeinstrukturaufspaltung Fließt elektrischer Strom
Magnetisierung der Materie
Magnetisierung der Materie Das magnetische Verhalten unterschiedlicher Materialien kann auf mikroskopische Eigenschaften zurückgeführt werden. Magnetisches Dipolmoment hängt von Symmetrie der Atome und
2.4. Atome mit mehreren Elektronen
2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der
Begriffe zur Elektrik und Elektrochemie
Staatsinstitut für Schulqualität und Bildungsforschung Begriffe zur Elektrik und Elektrochemie Akkumulator Atom Atomkern Batterie Ein Akkumulator ist eine Energiequelle, die wie eine Batterie Gleichstrom
Tieftemperaturphysik und Supraleitung
Tieftemperaturphysik und Supraleitung Versuch zum Fortgeschrittenenpraktikum AG Prof. Dr. U. Hartmann Institut für Experimentalphysik, Universität des Saarlandes 2 Gliederung 0 Kurzfassung, Vorbemerkungen
Strukturaufklärung (BSc-Chemie): Einführung
Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme
1. Theorie: Kondensator:
1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und
Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld
37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld
Das quantenmechanische Atommodell
Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie
Supraleitung (SUP) Fortgeschrittenen Praktikum, SS 2008
Fortgeschrittenen Praktikum, SS 28 29. April 28 Supraleitung (SUP) Fortgeschrittenen Praktikum, SS 28 Philipp Buchegger, Tobias Müller, Alexander Seizinger, Michael Ziller Betreuer: Matthias Kemmler Tübingen,
Darstellung und Charakterisierung des Hochtemperatursupraleiters Yttrium-Barium-Cuprat (YBa 2 Cu 3 O 7-x = YBCO-123)
Versuch F1 Darstellung und Charakterisierung des Hochtemperatursupraleiters Yttrium-Barium-Cuprat (YBa 2 Cu 3 O 7-x = YBCO-123) Einleitung Das Phänomen der Supraleitung hat schon seit langer Zeit eine
Der Welle-Teilchen-Dualismus
Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.
4.2 Gleichstromkreise
4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()
Grundwissen. Physik. Jahrgangsstufe 7
Grundwissen Physik Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Seite 1 1. Aufbau der Materie 1.1 Atome Ein Atom besteht aus dem positiv geladenen Atomkern und der negativ geladenen Atomhülle aus
Josephson-Kontakt (JKO) Fortgeschrittenen Praktikum, SS 2008
Josephson-Kontakt (JKO) Fortgeschrittenen Praktikum, SS 28 Philipp Buchegger, Tobias Müller, Alexander Seizinger Betreuer: Prof. Dieter Koelle Tübingen, den 6. Mai 28 1 Einführung Trennt man zwei Supraleiter
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723
2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten
Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,
Elektrotechnik für MB
Elektrotechnik für MB Gleichstrom Elektrische und magnetische Felder Wechsel- und Drehstrom Grundlagen und Bauelemente der Elektronik Studium Plus // IW-MB WS 2015 Prof. Dr. Sergej Kovalev 1 Ziele 1. Gleichstrom:
Vortrag im Seminar zum Fortgeschrittenenpraktikum Physik. Supraleitung. Oliver Neumann, Sebastian Wilken. 6. Juli 2009
Vortrag im Seminar zum Fortgeschrittenenpraktikum Physik Supraleitung Oliver Neumann, Sebastian Wilken 6. Juli 2009 1 / 45 Inhalt 1 Einführung Motivation Historie 2 Theorie BCS-Theorie Eigenschaften Supraleiter
10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper
10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper
2.4. Atome mit mehreren Elektronen
2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der
Elektrostatik. 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab
Elektrostatik 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab Beschreibe und erkläre die Exp. stichpunkartig. Ergebnis: - Es gibt
2. Magnetresonanztomographie (MRT, MRI) 2.2. Supraleitung
2. Magnetresonanztomographie (MRT, MRI) 2.2. Supraleitung Supraleitung Anwendung der Supraleitung in Methoden der Bildgebung in der Hirnforschung (f)mri: Erzeugung sehr stabiler, sehr hoher statischer
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.
Der elektrische Strom
Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei
v q,m Aufgabensammlung Experimentalphysik für ET
Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen
4. Strukturänderung durch Phasenübergänge
4. Strukturänderung durch Phasenübergänge Phasendiagramm einer reinen Substanz Druck Phasenänderung durch Variation des Drucks und/oder der Temperatur Klassifizierung Phasenübergänge 1. Art Phasenübergänge
Versuchsvorbereitung P1-80: Magnetfeldmessung
Versuchsvorbereitung P1-80: Magnetfeldmessung Kathrin Ender Gruppe 10 5. Januar 2008 Inhaltsverzeichnis 1 Induktivität einer Spule 2 1.1 Entmagnetisieren des Kerns............................ 2 1.2 Induktiver
Kühlung: Verdampfer-Kühlschrank: Das Arbeitsgas muss sich bei der gewünschten Temperatur verflüssigen lassen. (Frigen, NH 3, SO 2, Propan)
Kühlung: Verdampfer-Kühlschrank: Das Arbeitsgas muss sich bei der gewünschten Temperatur verflüssigen lassen. (Frigen, NH 3, SO 2, Propan) Ein Kompressor komprimiert das Gas. Bei Abkühlung auf Raumtemperatur
Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht.
1. Problem n diesem Versuch lernen Sie die Kraftwirkung eines -Feldes auf eine bewegte Ladung kennen. ies untersuchen sie an zwei Beispielen: unächst untersuchen sie die Auslenkung eines Elektronenstrahls
Praktikum II TR: Transformator
Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein [email protected] Florian Jessen [email protected] 30. März 2004 Made with L A TEX and Gnuplot Praktikum
Magnetismus. Vorlesung 5: Magnetismus I
Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I
Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.
Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Physikalisches Fortgeschrittenenpraktikum Versuchsprotokoll SQUID. Andreas Liehl Maximilian Russ. Universität Konstanz. Betreuer: Florian Strigl
Physikalisches Fortgeschrittenenpraktikum Versuchsprotokoll SQUID Andreas Liehl Maximilian Russ Universität Konstanz Betreuer: Florian Strigl Konstanz, den 10.01.2014 ii Abstract In this work we study
Systematisierung Felder und Bewegung von Ladungsträgern in Feldern
Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des
Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld
1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu
Die Macht und Ohnmacht der Quantenwelt
Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik
Der Tunneleffekt Jan Lukas Becker. Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I
Der Tunneleffekt Jan Lukas Becker Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I Übersicht 1) Herleitung des Tunneleffekts 2) Der Tunneleffekt in Metallen 3) Einzel-Elektronen-Tunneln
Das Periodensystem der Elemente
Q34 LK Physik 17. November 2015 Aufbau Die ermittelten Zusammenhänge der Elektronenzustände in der Atomhülle sollen dazu dienen, den der Elemente zu verstehen. Dem liegen folgende Prinzipien zugrunde:
6.1 Elektrodenpotenzial und elektromotorische Kraft
6.1 Elektrodenpotenzial und elektromotorische Kraft Zinkstab Kupferstab Cu 2+ Lösung Cu 2+ Lösung Zn + 2e Cu Cu 2+ + 2e Cu 2+ Eine Elektrode ist ein metallisch leitender Gegenstand, der zur Zu oder Ableitung
n = e D n x D p + j diff + j drift p = e(nµ n + pµ p )E x (6.43) V (x) x n D n V x. (6.47) D n = k BT e µ n. (6.48)
Um nun die weiter oben angesprochene Balance zwischen Drift- und Diffusionsstrom näher zu betrachten, beschaffen wir uns nun Ausdrücke für beide Anteile: j diff = j diff n + j diff p ( n = e D n x D p
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,
Elektrische und ^magnetische Felder
Marlene Marinescu Elektrische und ^magnetische Felder Eine praxisorientierte Einführung Zweite, vollständig neu bearbeitete Auflage * j Springer I nhaltsverzeichnis 1 Elektrostatische Felder 1 1.1 Wesen
Einblick in neue Magnettechnologien
Einblick in neue Magnettechnologien Daniel Baumann Bruker Biospin AG Schweiz 08. November 2016 Karlsruhe Innovation with Integrity Innovation with Integrity 1 GHz Aeon im NZN Bayreuth Niob-Titan Drahtherstellung
Terahertz-Mikroskopie mit supraleitenden Sensoren
Terahertz-Mikroskopie mit supraleitenden Sensoren C. Brendel, F. Stewing, M. Schilling Institut für elektrische Messtechnik und Grundlagen der Elektrotechnik TU Braunschweig Christian Brendel 25. Juni
Einführung in die Quantentheorie der Atome und Photonen
Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich
Eigenschaften des Photons
Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben
1 Allgemeine Grundlagen
1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die
Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen.
Das stationäre Magnetfeld 16 4 Stationäre Magnetfelder 4.1 Potentiale magnetischer Felder 4.1 Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. a) Berechnen Sie mit
Elektrische Eigenschaften von Festkörpern
Elektrische Eigenschaften von n Quellennachweis zu den Abbildungen R. Müller, Grundlagen der Halbleiter-Elektronik. C.R. Bolognesi, Vorlesungsunterlagen. W.C. Dash, R. Newman, Phys. Rev., 99, 1955, 1151.
4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters
4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder
4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse
4.2 Metallkristalle - 75 % aller Elemente sind Metalle - hohe thermische und elektrische Leitfähigkeit - metallischer Glanz - Duktilität (Zähigkeit, Verformungsvermögen): Fähigkeit eines Werkstoffs, sich
Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete
Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar
Eigenschaften des Photons
Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben
Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen
UNIVERSITÄT ZU KÖLN Institut für Theoretische Physik Wintersemester 005/006 Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II Musterlösungen 1. Welche experimentellen Tatsachen weisen
13. Elektromagnetische Wellen
13. Elektromagnetische Wellen 13.1 Erzeugung elektromagnetischer Wellen 13.2 Eigenschaften elektromagnetischer Wellen 13.3 Ausbreitung elektromagnetischer Wellen 13.4 Reflexion und Brechung 13.5 Interferenz
Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung
Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze
Vorbereitung: Eigenschaften elektrischer Bauelemente
Vorbereitung: Eigenschaften elektrischer Bauelemente Marcel Köpke & Axel Müller 15.06.2012 Inhaltsverzeichnis 1 Grundlagen 3 2 Aufgaben 7 2.1 Temperaturabhängigkeit............................ 7 2.2 Kennlinien....................................
Fragen zur Vorlesung Licht und Materie
Fragen zur Vorlesung Licht und Materie SoSe 2014 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Themenkomplex Lorentz-Modell : Vorlesung 1: Lorentz-Modell
Elektrische Leitung von Metallen und Supraleitern
c Doris Samm 2008 1 Elektrische Leitung von Metallen und Supraleitern 1 Der Versuch im Überblick Legt man an einen Leiter eine elektrische Spannung, so fließt ein elektrischer Strom. Der Strom I steigt
3.1 Allgemeine Eigenschaften des He 3.1.1. p-t-phasenübergang 121
3.1 Allgemeine Eigenschaften des He 3.1.1. p-t-phasenübergang 121 3. Helium Im Sommersemester befassen wir uns generell mit Tieftemperaturphysik. Beginnen wollen wir mit einer Temperaturskala (Fig. 3.1),
6.4.8 Induktion von Helmholtzspulen ******
V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment
Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN
Praktische Aktivität: Messung der Planck-Konstante mit LEDs 1 Quantenphysik Die Physik der sehr kleinen Teilchen mit großartigen Anwendungsmöglichkeiten Teil 3: PRAKTISCHE AKTIVITÄTEN Messung der Planck-Konstante
Leiter, Halbleiter, Isolatoren
eiter, Halbleiter, Isolatoren lektronen in Festkörpern: In einzelnem Atom: diskrete erlaubte nergieniveaus der lektronen. In Kristallgittern: Bänder erlaubter nergie: gap = Bandlücke, pot Positionen der
Inelastische Lichtstreuung. Ramanspektroskopie
Inelastische Lichtstreuung Ramanspektroskopie Geschichte / Historisches 1920er Forschung von Wechselwirkung der Materie mit Elektromagnetischer-Strahlung 1923 Compton Effekt (Röntgen Photonen) Hypothese
Abbildung 3.1: Kraftwirkungen zwischen zwei Stabmagneten
Kapitel 3 Magnetostatik 3.1 Einführende Versuche Wir beginnen die Magnetostatik mit einigen einführenden Versuchen. Wenn wir - als für uns neues und noch unbekanntes Material - zwei Stabmagnete wie in
Elektrischer Widerstand als Funktion der Temperatur
V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2
Ferienkurs Experimentalphysik 4
Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2
PN 2 Einführung in die Experimentalphysik für Chemiker
PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:
Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ
Grundwissen. Physik. Jahrgangsstufe 9
Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich
3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann.
Fragen zur Vorlesung Einführung in die Physik 3 1. Was ist ein quantenmechanischer Zustand? 2. Wenn die Messung eines quantenmechanischen Systems N unterscheidbare Ereignisse liefern kann, wie viele Parameter
Supraleitung - Ginzburg-Landau-Theorie
Supraleitung - Ginzburg-Landau-Theorie Stefan Nagel 11.05.006 Zusammenfassung Die Ginzburg-Landau-Theorie zur Beschreibung der Supraleitung ist eine phänomenologische Theorie, welche die makroskopischen
Von Nanometer Größe zu Megawatt Leistung - Hochtemperatur-Supraleiter für die Energietechnik
chemistry meets energy Dr. Michael Bäcker Deutsche Nanoschicht GmbH Von Nanometer Größe zu Megawatt Leistung - Hochtemperatur-Supraleiter für die Energietechnik Deutsche Nanoschicht GmbH Heisenbergstr.
Magnetfeld in Leitern
08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife
Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung
Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik Problem Thermisches Strahlungsspektrum Photoelektrischer Effekt, Compton Effekt Quantenmechanische Lösung Planck sche Strahlungsformel:
