Elektronische Eigenschaften von Halbleitern
|
|
|
- Claus Lang
- vor 8 Jahren
- Abrufe
Transkript
1 Elektronische Eigenschaften von Halbleitern In der Vorlesung Elektronische Schaltungen lernen Sie das Verhalten verschiedener Halbleiterbauelemente kennen: Dioden, Bipolare Transistoren, Feldeffekttransistoren Source: ES-Skript Warum verhalten sich die Bauelemente so? Wie designt man neuartige Bauelemente? Elektronische Eigenschaften von Halbleitern Das vollständige Ersatzschaltbild einer Diode (benutzt z.b. für Schaltungssimulationen mit PSPICE): Source: ES-Skript Hier: woher kommen die Ersatzschaltbilder wie gut stimmen diese mit der Realität überein
2 Beweglichkeit von Kristallelektronen Wie bewegen sich Elektronen in Kristallen? HL E makroskopisch: j = se bzw. j = se Wie berechnet man σ?? Geschwindigkeit von Materiewellen E Gruppengeschwindigkeit: v g dω = dk ω bzw. k Abb.: Wellenpaket im periodischen Potential Dieser Zusammenhang gilt auch für Blochelektronen! Lassen wir also einmal ein elektrisches Feld auf ein Wellenpaket einwirken...
3 Beschleunigung von Materiewellen Für die Gruppengeschwindigkeit gilt: v g ω 1 Ek ( ) = = ; k ħ k Ziel: Ableitung einer Bewegungsgleichung für ein Elektron im Kristall: Klassische Änderung der Energie pro infinitesimaler Zeiteinheit: de = F v dt für ein Blochelektron:...um E zu ändern, muss k geändert werden de 1 Ek ( ) d( ħk) = dt ħ k dt vg F D.h. äußere Kraft verschiebt den k-vektor des Wellenpaketes gemäß dk 1 F dt = ħ Beschleunigung von Materiewellen Wie sieht es mit der Beschleunigung aus? dvg 1 d E 1 2 E dk 1 2 E a = = = = F dt ħdt k ħ k dt ħ k Analog zum klassischen F=ma kann also eine Masse des Blochelektrons definiert werden: Ek k ( ) m = ħ * 2 2 bzw. 2 * 2 Ek ( ) m = ħ 2 k -1 Masse des Kristallelektrons wird bestimmt durch die Bandstruktur!!!
4 Elektronen in Kristallen Transporteigenschaften von Kristallelektronen werden bestimmt durch die Bandstruktur (Gruppen)Geschwindigkeit ist gegeben durch 1 Ek ( ) vg = ; ħ k Die effektive Masse dieser Elektronen ist: 2 * 2 Ek ( ) m = ħ 2 k Kristallelektronen benehmen sich bei Beschleunigung wie Teilchen der Masse m eff! -1 W Beispiel: Kosinusförmiges Band I (W(k)=E(k)) Bsp.: kosinusförmiges Band
5 Beispiel: Kosinusförmiges Band II Eine konst. Kraft F bewirkt das folgende k(t): in v g (t)..und in x(t) Nach diesem Modell erwarten wir eine oszillierende Bewegung der Elektronen (Bloch-Oszillationen) mit einer Periode von ca. 0,8 ps. Aber: Einfluss von Störungen In einem realen Kristall wird die Bewegung des Elektrons unterbrochen durch z.b. Stöße mit Gitterschwingungen (Wechselwirkung mit Phononen) Streuung an Defekten Elektron-Elektron-Streuung Die Zeit τ für diese Störungen ist typischerweise viel kürzer als die Periode der Bloch-Oszillation. Bloch-Oszillationen können nur in speziell hergestellten künstlichen Kristallen beobachtet werden. THz-Technik
6 Ströme in Halbleitern Strom im Halbleiter: Abfolge von Phasen der Beschleunigung und abrupten Stößen Elektronen werden durch den Halbleiter getrieben Drift ströme Elektronenbahn ohne/mit Feld Driftströme Elektronen werden im Mittel nach der Zeit τ Stoß mit Atomrumpf abrupt abgebremst. durch Damit ergibt sich als mittlere Geschwindigkeit: Damit ergibt sich eine zentrale Größe der Halbleiterelektronik, die Beweglichkeit µ: F qeτ eeτ v = τ = = µ E * * m m m eτ µ = * m Sie ist ein Maß dafür, wie schnell sich ein Elektron im Halbleiter unter Einwirkung des elektrischen Feldes bewirkt
7 Driftströme Stromdichte durch ein Volumenelement: Ladung pro Teilchen (Einheit: C) j = qnv Dichte der Ladungen (Einheit: m -3 bzw cm -3 ) mittlere Geschwindigkeit Einheit: m/s Die Stromdichte ist direkt proportional zur Beweglichkeit: j = qnv = qnµ F -hohe Beweglichkeiten -hohe Stromdichten -geringe Schaltzeiten Beweglichkeit in Si, Ge und GaAs Elektronen hoher Energie haben z.b. eine geringere Beweglichkeit Source:[5]
8 GaAs Bandstruktur und Beweglichkeit Die effektive Masse der Ladungsträger ist eine Funktion des k-wertes und des Bandes. Die Zeitkonstante τ ist ebenfalls nicht konstant. Deshalb ist die Beweglichkeit nicht für alle Elektronenzustände gleich. Si Bandstruktur und Beweglichkeit Die Träger relaxieren durch Stöße zu den niedrig gelegenen Zuständen im Band. Deshalb heißt τ auch Intrabandimpulsrelaxationszeit. Die Elektronenbeweglichkeit im Leitungsband ist bei Si kleiner als bei GaAs. Dies sieht man an der geringeren Bandkrümmung im Minimum. µ = e t m eff
9 Chipfabrik Frankfurt/Oder: Halbleiter mit hoher Beweglichkeit Für Hochfrequenzbauelemente (optische Nachrichtentechnik, Mobilfunk) sind die Si-Elektronen u. U. nicht schnell genug. Erforschung und Einsatz von anderen Halbleitermaterialien z.b. GaAs, SiGe Aus für Frankfurter Chipfabrik - Communicant AG geht in Liquidation Beweglichkeiten Die Beweglichkeit ist nicht naturgegeben: Wird bestimmt durch: - Reinheit des Halbleiters (wenige Streuprozesse) - Wahl des Materials - den k-zustand (Energie) des Elektrons
10 Beweglichkeiten in anderen Materialien A typical device consists of 3 layers - Beweglichkeiten: teilweise nur 10-8 cm 2 /Vs Beweglichkeit in Si, Ge und GaAs v = µ E e t µ = m eff Source:[5] Für kleine Feldstärken ist die Beweglichkeit der Ladungsträger und damit die effektive Masse ungefähr konstant. In diesem Bereich ist die Parabelnäherung zur Bandstruktur anwendbar.
11 Parabolische Näherung Da die Bandstruktur in diesen Bereichen symmetrisch ist, können wir sie durch eine Parabel annähern. Die Elektronen verhalten sich wie freie Elektronen mit einer konstanten effektiven Masse. Direkter Halbleiter z.b. GaAs Indirekter Halbleiter z.b. Si, Ge Parabolische Näherung m e,h : Effektive Elektron(Loch)masse qe a = m En( k) = 2 2 m ħ k e eh,
12 Parabelnäherung: Löcherbewegung - Strombeiträge einzelner Elektronen in einem vollbesetzten Band kompensieren sich paarweise: - Strom wird nur getragen von teilweise gefüllten Bändern Autobahn-Analogie Wir wollen Pakete per Auto von Karlsruhe nach Frankfurt bringen. Jedes Auto kann ein Paket mitnehmen. Wenn wir kein Auto haben, können wir nichts transportieren. Je mehr Autos wir auf die Straße schicken, desto mehr Pakete können wir transportieren. Aber wenn alles voll ist, geht auch nichts mehr!
13 Primitives Bändermodell Für die meisten Berechnungen in Halbleiterbauelementen sind nur wenige Bänder wichtig: die (fast) gefüllten Bänder mit der höchsten Energie die (fast) leeren Bänder mit der niedrigsten Energie Die Bandstruktur wird dann in einem vereinfachten Bändermodell dargestellt: E C E G E V Primitives Bändermodell Für die meisten Berechnungen in Halbleiterbauelementen sind nur wenige Bänder wichtig: die (fast) gefüllten Bänder mit der höchsten Energie die (fast) leeren Bänder mit der niedrigsten Energie Die Bandstruktur wird dann in einem vereinfachten Bändermodell dargestellt: E C : Minimum des Leitungsbands (Conduction band) E V : Maximum des Valenzbandes (Valence band) E G E C E V E G : Energielücke (Energy gap)
14 Besetzung der Bänder mit Elektronen Die Verteilung von Elektronen auf die Bänder sieht bei Metallen, Halbleitern und Isolatoren bei Raumtemperatur folgendermaßen aus: Source: B. Van Zeghbroeck Defektelektronen (Löcher) im Valenzband Anstatt die vielen unbeweglichen (im Stau stehenden) Elektronen im Valenzband zu betrachten, ist es einfacher die wenigen beweglichen Defektelektronen (Löcher) zu analysieren.
15 Berechnung der Leitfähigkeit Quantitativ wird die Leitfähigkeit σ berechnet durch: Ladung des Elektrons Beweglichkeit der Ladungsträger im Leitungsband Anzahl der Ladungsträger im Leitungsband Anzahl der Defektelektronen im Valenzband Beweglichkeit der Ladungsträger im Valenzband Wie kommen die Elektronen bei Halbleitern eigentlich ins Leitungsband und wie viele gibt es dort?
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen
Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann
Abb. 1 Solarzellen PHOTOVOLTAIK Stefan Hartmann 1 Gliederung Einführung Grundlegendes zu Halbleitern Generation und Rekombination pn-übergang Zusammenfassung: Was läuft ab? Technisches 2 Einführung Abb.
7. Elektronendynamik
7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter
Elektrische Eigenschaften von Festkörpern
Elektrische Eigenschaften von n Quellennachweis zu den Abbildungen R. Müller, Grundlagen der Halbleiter-Elektronik. C.R. Bolognesi, Vorlesungsunterlagen. W.C. Dash, R. Newman, Phys. Rev., 99, 1955, 1151.
6/2 Halbleiter Ganz wichtige Bauteile
Elektronik 6/2 Seite 1 6/2 Halbleiter Ganz wichtige Bauteile Erforderlicher Wissensstand der Schüler Begriffe: Widerstand, Temperatur, elektrisches Feld, Ionen, Isolator Lernziele der Unterrichtssequenz
E 2 Temperaturabhängigkeit elektrischer Widerstände
E 2 Temperaturabhängigkeit elektrischer Widerstände 1. Aufgaben 1. Für die Stoffe - Metall (Kupfer) - Legierung (Konstantan) - Halbleiter (Silizium, Galliumarsenid) ist die Temperaturabhängigkeit des elektr.
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,
Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen
1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen
Technische Grundlagen der Informatik
Technische Grundlagen der Informatik WS 2008/2009 3. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Kapazität, Induktivität Halbleiter, Halbleiterdiode Wechselspannung
Halbleiter und Transistoren - Prinzip und Funktionsweise
Halbleiter und Transistoren - Prinzip und Funktionsweise Reine Halbleitermaterialien, wie Silizium (Si) oder Germanium (Ge) sind bei Zimmertemperatur fast Isolatoren: bzw. bei sinkender Temperatur HL Isolator
Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:
Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen
-Q 1 Nach Aufladen C 1
Verschaltung von Kondensatoren a) Parallelschaltung C 2 Knotensatz: Q 2 -Q 2 Q 1 -Q 1 Nach Aufladen C 1 U Die Kapazitäten addieren sich b) Reihenschaltung C 1 C 2 Q -Q Q -Q Maschenregel: U Die reziproken
= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden
2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte
2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ
7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand
Die kovalente Bindung
Die kovalente Bindung Atome, die keine abgeschlossene Elektronenschale besitzen, können über eine kovalente Bindung dieses Ziel erreichen. Beispiel: 4 H H + C H H C H H Die Wasserstoffatome erreichen damit
Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik
Mechanische Eigenschaften Die Matrix der Verzerrungen ε ij und die Matrix der mechanischen Spannungen σ ij bilden einen Tensor 2. Stufe und werden durch den Tensor 4. Stufe der elastischen Koeffizienten
Fragen zur Vorlesung Licht und Materie
Fragen zur Vorlesung Licht und Materie SoSe 2014 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Themenkomplex Lorentz-Modell : Vorlesung 1: Lorentz-Modell
Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente
E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom
Elektrische Leitung. Strom
lektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) igen- und Fremdleitung in Halbleitern iii) Stromtransport in Isolatoren iv)
8. Halbleiter-Bauelemente
8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung
Anorganische Chemie III
Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2013/14 Christoph Wölper Universität Duisburg-Essen # Elektronengas # Bändermodell Bindungsmodelle Metallbindung > Bindungsmodelle Elektronengas
Grundlagen der Halbleiterphysik
Rolf Enderlein Andreas Schenk Grundlagen der Halbleiterphysik Mit 125 Abbildungen und 15 Tabellen Akademie Verlag / VII INHALTSVERZEICHNIS ALLGEMEINE CHARAKTERISIERUNG DER HALBLEITER 1.1 Einführung 1.2
3.4. Leitungsmechanismen
a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie
Leistungsbauelemente
I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen
Leistungsbauelemente
I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen
ELEKTRONEN IN FESTKÖRPERN
118 6. ELEKTRONEN IN FESTKÖRPERN 6.11 Feriflächen I bisher betrachteten eindiensionalen Fall wird der Grundzustand von der Ferienergie und de Feri-Niveau bestit. Das Feri-Niveau stellt den Zustand it der
Induktion. Bewegte Leiter
Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor
Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik
Halbleiter Das Herz unserer multimedialen Welt Inhalt Bisherig Bekanntes Das Bändermodell Halbleiter und ihre Eigenschaften Dotierung Anwendungsbeispiel: Funktion der Diode Bisher Bekanntes: Leiter Isolatoren
Transport-Phänomene: Bewegung von Elektronen
Kapitel 8 Transport-Phänomene: Bewegung von Elektronen Transport von elektrischer Ladung ist ein zeitabhängiger Prozess. Im Prinzip muss die zeitabhängige Schrödingergleichung gelöst werden. Bis jetzt
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,
3 Elektrische Leitung
3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung
Grundlagen-Vertiefung PW10. Ladungstransport und Leitfähigkeit Version
Grundlagen-Vertiefung PW10 Ladungstransport und Leitfähigkeit Version 2007-10-11 Inhaltsverzeichnis 1 1.1 Klassische Theorie des Ladungstransports.................. 1 1.2 Temperaturabhängigkeit der elektrischen
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger
Halbleitergrundlagen
Halbleitergrundlagen Energie W Leiter Halbleiter Isolator Leitungsband Verbotenes Band bzw. Bandlücke VB und LB überlappen sich oder LB nur teilweise mit Elektronen gefüllt Anzahl der Elektronen im LB
Elektronen im Festkörper
Elektronen im Festkörper Inhalt 1. Modell des freien Elektronengases 1.1 Zustandsdichten 1.2 Fermi-Energie 1.3 Fermi-Gas bei endlicher Temperatur - Fermi-Dirac-Verteilung 1.4 Spezifische Wärme der Elektronen
Elektrischer Strom S.Alexandrova 1
Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches
Leiter, Halbleiter, Isolatoren
eiter, Halbleiter, Isolatoren lektronen in Festkörpern: In einzelnem Atom: diskrete erlaubte nergieniveaus der lektronen. In Kristallgittern: Bänder erlaubter nergie: gap = Bandlücke, pot Positionen der
Anwendungen. Halbleitermaterialien. Integrierte Schaltkreise. Leistungselektronik. Halbleiterlaser. Sensoren und Aktoren
Halbleiterphysik Anwendungen Integrierte Schaltkreise Leistungselektronik Halbleiterlaser LED-Lichtquellen Lichtquellen und Displays Sensoren und Aktoren Optische Netzwerkkomponenten: Modulatoren, Switches,
INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11
INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Halleffekt 1 Ziel Durch Messungen des Stroms und der Hallspannung
Formelsammlung Werkstoffkunde
Werkstoffkunde.nb Formelsammlung Werkstoffkunde Diese Formelsammlung wurde von Jan Peters (www.jan-peters.net) erstellt und hat vielen Studenten durch ihr Vordiplom geholfen. Den Autoren wuerde ein Link
Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte
Aufgabe 1: Halbleiterphysik I 1.1) Skizzieren Sie (ausreichend groß) das Bändermodell eines n-halbleiters. Zeichnen Sie das Störstellenniveau, das intrinsische Ferminiveau und das Ferminiveau bei Raumtemperatur,
Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben.
Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben. Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines p-halbleiters.
2 Grundgrößen und -gesetze der Elektrodynamik
Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:
Dioden und Transistorkennlinien
PG 68-III 3. Mai 001 Dioden und Transistorkennlinien Zur intensiveren Auseinandersetzung mit Elementen elektronischer Schaltungen wurden, mit Hilfe des Computers, einige Kennlinien einer Diode und eines
VERSUCH 1 TEIL A: SPANNUNGSTEILUNG, SPANNUNGSEINSTELLUNG, GESETZE VON OHM UND KIRCHHOFF
6 VERSUCH TEIL A: SPANNUNGSTEILUNG, SPANNUNGSEINSTELLUNG, GESETZE VON OHM UND KIRCHHOFF Oft ist es notwendig, Strom-, Spannungs- und Leistungsaufnahme eines Gerätes regelbar einzustellen.ein solches "Stellen"
Potentialtöpfe und Potentialbarrieren
Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /
Elektrische Eigenschaften von Graphen
Elektrische Eigenschaften von Graphen Seminarvortrag, 14.07.2014 Florian Bansemer Nanostrukturphysik II SS2014 Universität des Saarlandes http://bilder.t-online.de/b/70/17/29/84/id_70172984/610/tid_da/der-ball-im-tor.jpg
Hans M. Strauch. Thermoelement und Peltierelement
Hans M. Strauch Thermoelement und Peltierelement Thermoelement und Peltierelement Ein Stoff mehrere Energieträger Elektrische Energiequellen Schwache Kopplung zwischen zwei Strömen Thermoelement Halbleiter
Seebeck-/Peltier-Effekt: thermoelektrische Materialien
Seebeck-/Peltier-Effekt: thermoelektrische (Seebeck-Effekt) [1] Matthias Neumann, Sebastian Paulik Folie 1 1. Seebeck-Effekt 1.1 Einführung 1.2 Theorie 1.3 Anwendung Thomas Johann Seebeck (1770-1831) 2.
Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte
Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines mit Bor (dritte Hauptgruppe) dotierten Halbleiters. Zeichnen Sie das Störstellenniveau (ca. 100meV oberhalb der Valenzbandenergie),
Aufgabe I: Fusionsreaktor und Sonne
Europa-Gymnasium Wörth Abiturprüfung 2012 Leistungskurs Physik LK2 Aufgabe I: Fusionsreaktor und Sonne Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Tabelle
Eigenleitung von Germanium
Eigenleitung von Germanium Fortgeschrittenen Praktikum I Zusammenfassung In diesem Versuch wird an einem undotierten Halbleiter die Temperaturabhängigkeit der elektrischen Leitfähigkeit bestimmt. Im Gegensatz
1 Metallisierung. 1.1 Der Metall-Halbleiter-Kontakt Kontaktierung von dotierten Halbleitern. 1.1 Der Metall-Halbleiter-Kontakt
1 isierung 1.1 Der -Halbleiter-Kontakt 1.1.1 Kontaktierung von dotierten Halbleitern Nach der Herstellung der Transistoren im Siliciumsubstrat müssen diese mittels elektrischer Kontakte miteinander verbunden
d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )=
Übung zur Vorlesung PN II Physik für Chemiker Sommersemester 2012 Prof. Tim Liedl, Department für Physik, LMU München Lösung zur Probeklausur (Besprechungstermin 08.06.2012) Aufgabe 1: Elektrostatik Elektrische
Versuch 28: Hall-Effekt
Versuch 28: Hall-Effekt Die Eigenleitung von Germanium wird untersucht, um auf die Bandlücke zu schließen. An reinem und n- bzw. p-ge soll der Hall-Effekt untersucht werden. Dazu wird die Abhängigkeit
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723
Feldeffekttransistoren
Feldeffekttransistoren ortrag im Rahmen des Seminars Halbleiterbauelemente on Thomas Strauß Gliederung Unterschiede FET zu normalen Transistoren FET Anwendungsgebiete und orteile Die Feldeffekttransistorenfamilie
Elektrische Leistung und Joulesche Wärme
lektrische eistung und Joulesche Wärme lektrische eistung: lektrische Arbeit beim Transport der adung dq über Spannung U: dw el = dq U Wenn dies in einer Zeit dt geschieht (U = const.), so ist die eistung
Elektrischer Widerstand als Funktion der Temperatur
V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2
E13 PhysikalischesGrundpraktikum
E13 PhysikalischesGrundpraktikum Abteilung Elektrizitätslehre Hall-Effekt und Ladungstransport in Halbleitern 1 Vorbereitung Themen: 1. Leitungsmechanismen in Metallen und Halbleitern (Drude-Modell; Bändermodell,
Elektrizitätslehre 2.
Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig
Physik 4 Praktikum Auswertung Hall-Effekt
Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........
Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente
Friedrich-Alexander-Universität Prof. Dr.-Ing. H. Ryssel vhb-kurs Halbleiterbauelemente Übungsaufgaben Teil 3: Feldeffekttransistoren Übung zum vhb-kurs Halbleiterbauelemente Seite 15 Feldeffekttransistoren
Ferromagnetismus: Heisenberg-Modell
Ferromagnetismus: Heisenberg-Modell magnetische Elektronen nehmen nicht an der chemischen Bindung teil lokalisierte Beschreibung (4f und 5f Systeme seltene Erden) 4f-Ferromagnete nahe am atomaren Wert!
Transistorkennlinien 1 (TRA 1)
Physikalisches Praktikum Transistorkennlinien 1 (TRA 1) Ausarbeitung von: Manuel Staebel 2236632 Michael Wack 2234088 1. Messungen, Diagramme und Auswertungen Der Versuch TRA 1 soll uns durch das Aufstellen
Medizinische Biophysik
2. Gasförmiger Aggregatzustand a) Makroskopische Beschreibung b) Mikroskopische Beschreibung Medizinische Biophysik c) Kinetische Deutung der Temperatur d) Maxwell-Boltzmann-Verteilung e) Barometrische
14. November Silizium-Solarzelle. Gruppe 36. Simon Honc Christian Hütter
14. November 25 Silizium-Solarzelle Gruppe 36 Simon Honc [email protected] Christian Hütter [email protected] 1 I. Inhaltsverzeichnis I. Inhaltsverzeichnis... 2 II. Theoretische Grundlagen... 3 1. Das
...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters...
...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... 1 Temperaturerhöhung Je größer die Gitterkonstante, desto kleiner die Bandlücke. Temperaturerhöhung führt
11. Vorlesung Wintersemester
11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y
An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?
An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter
= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also
Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht
Elektrischer Widerstand von Metallen und Halbleitern
- C01.1 - Versuch C1: Elektrischer Widerstand von Metallen und Halbleitern 1. Literatur: Demtröder, Experimentalphysik, Bd. II Bergmann-Schaefer, Experimentalphysik, Bd. II Walcher, Praktikum der Physik
2.2 Eine Interpretation der Materiewellen
Auszug aus Kap. 2: Materiewellen 2.2 Eine Interpretation der Materiewellen Die Interpretation der Materiewellen geht auf einen Vorschlag von Max Born aus dem Jahr 1926 zurück. Eine direkte experimentelle
Hochtemperatur - Supraleiter
Hochtemperatur - Supraleiter Vergleich: Leiter - Supraleiter Elektrischer Leiter: R ändert sich proportional mit T Supraleiter: unterhalb von Tc schlagartiger Verlust des Widerstands Supraleitung Sprungtemperatur
Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung
Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze
Vorlesung 3: Elektrodynamik
Vorlesung 3: Elektrodynamik, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2015/16 Der elektrische Strom Elektrodynamik:
Der Hall-Effekt. Abbildung 1: potentielle Energie eines Leitungselektrons im Feld der Atomkerne [1].
Der Hall-Effekt Gruppe 5: Mirjam Eisele Rahel Eisele, Matthias Jasch, Sarah Löwy ([email protected]) Versuchsdatum: 22.06.2011 Betreuer: Pascal Gehring 1.) Aufgabenstellung In diesem Versuch werden die
Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik
Werkstoffe der lektrotechnik im Studiengang lektrotechnik - Bändermodell der lektronen im Kristall - Prof. Dr. Ulrich Hahn WS 2008/2009 Orbitale für lektronen im Kristall Kristall: regelmäßige Anordnung
Klassische Theoretische Physik: Elektrodynamik
Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 [email protected] Website: www.astro.uni-bonn.de/tp-l
Elektrischer Widerstand von Metallen und Halbleitern
Versuch C1: I, jda dq A dt - C1.1 - Elektrischer Widerstand von Metallen und Halbleitern 1. Literatur: Bergmann-Schaefer, Experimentalphysik, Bd. II Walcher, Praktikum der Physik Westphal, Physikalisches
Inhaltsverzeichnis. Vorwort. Wie man dieses Buch liest. Periodensystem der Elemente
Inhaltsverzeichnis Vorwort Wie man dieses Buch liest Periodensystem der Elemente v vii xiv 1 Flüssigkristalle 1 1.1 Motivation und Phänomenologie.................. 1 1.2 Was ist ein Flüssigkristall?.....................
Hall Effekt und Bandstruktur
Hall Effekt und Bandstruktur Themen zur Vorbereitung (relevant im Kolloquium zu Beginn des Versuchstages und für den Theorieteil des Protokolls): Entstehung von Bandstruktur. Halbleiter Bandstruktur. Dotierung
3. Halbleiter und Elektronik
3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden
E5 Gleichrichterschaltungen
E5 Gleichrichterschaltungen 28. Oktober 2010 Marcel Lauhoff - Informatik BA Matnr: xxxxxxx [email protected] 1 Einleitung 2 2 Theoretische Grundlagen 3 2.1 Das Bändermodell der Festkörper...............................
Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid
R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Halbleiter Widerstandsbestimmung durch Strom - Spannungsmessung Versuch: Widerstandsbestimmung durch Strom und Spannungsmessung. 1. Leiter : Wendel
Formelsammlung Baugruppen
Formelsammlung Baugruppen RCL-Schaltungen. Kondensator Das Ersatzschaltbild eines Kondensators C besteht aus einem Widerstand R p parallel zu C, einem Serienwiderstand R s und einer Induktivität L s in
Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten
Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2010/11 Fach: Elektronik,
2. Klausur in K1 am
Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60
Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen
Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle
Praktikum Materialwissenschaft II. Wärmeleitung
Praktikum Materialwissenschaft II Wärmeleitung Gruppe 8 André Schwöbel 1328037 Jörg Schließer 1401598 Maximilian Fries 1407149 e-mail: [email protected] Betreuer: Markus König 21.11.2007 Inhaltsverzeichnis
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden
Die Diode. Roland Küng, 2009
Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter
9. Dynamik des Kristallgitters
9. Dynamik des Kristallgitters Gitterschwingungen harmonische Näherung Phononen als Energiequanten TO TA [http://www.chembio.uoguelph.ca/educmat/chm729/phonons/optmovie.htm] WS 2013/14 1 9.1 Eigenschwingungen
Modell der Punktmasse
Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und
Das Ohmsche Gesetz. Selina Malacarne Nicola Ramagnano. 1 von 15
Das Ohmsche Gesetz Selina Malacarne Nicola Ramagnano 1 von 15 21./22. März 2011 Programm Spannung, Strom und Widerstand Das Ohmsche Gesetz Widerstandsprint bestücken Funktion des Wechselblinkers 2 von
