9. Dynamik des Kristallgitters
|
|
|
- Eike Maier
- vor 9 Jahren
- Abrufe
Transkript
1 9. Dynamik des Kristallgitters Gitterschwingungen harmonische Näherung Phononen als Energiequanten TO TA [ WS 2013/14 1
2 9.1 Eigenschwingungen von Kristallgittern mit einatomiger Basis lineare Kette Dispersionsrelation Schallgeschwindigkeit [ D. Suter ] WS 2013/14 2
3 [ D. Suter ] WS 2013/14 3
4 [ D. Suter ] WS 2013/14 4
5 9.2 Eigenschwingungen von Kristallgittern mit zweiatomiger Basis akustischer Zweig optischer Zweig Frequenzlücke bei p Basisatomen gibt es 3 p Zweige, davon 3 akustische und 3(p-1) optische [ D. Suter ] WS 2013/14 5
6 Gitterschwingungen (Phononen) Dispersionskurve für ein Kristallgitter mit einatomiger Basis Dispersionskurve für ein Kristallgitter mit zweiatomiger Basis a) b) Darstellung einer akustischen (a) und einer optischen (b) Gitterschwingung WS 2013/14 6
7 [ WS 2013/14 7
8 9.3 Phononen als Teilchen Welle-Teilchen-Dualismus Phononen als Schallquanten Energie E = hf = ħ ω Impuls p = h/λ = ħ k Analogie zur Hohlraumstrahlung harmonischer Oszillator Nullpunktenergie Phonon-Photon-Stösse (Brillouinstreuung) unelastische Neutronenstreuung an Phononen WS 2013/14 8
9 Harmonischer Oszillator, [ D. Suter ] WS 2013/14 9
10 Orts-Wellenfunktionen [Wikipedia] WS 2013/14 10
11 Aufenthaltswahrscheinlichkeiten [Wikipedia] WS 2013/14 11
12 Unelastische Neutronenstreuung [G.Eckold] WS 2013/14 12
13 Inelastische Streuung [ Hunklinger ] WS 2013/14 13
14 3-Achsen-Neutronenspektrometer [ Hunklinger ] WS 2013/14 14
15 [ M. Müller ] WS 2013/14 15
16 [ M. Müller ] WS 2013/14 16
17 Phononendispersion Kupfer [ Hunklinger ] WS 2013/14 17
18 Brillouinzonen Kupfer [ Hunklinger ] WS 2013/14 18
19 Phononendispersion Silizium [ Hunklinger ] WS 2013/14 19
20 Phononendispersion WS 2013/14 20
21 Dispersionskurven amorpher Materialien [ Hunklinger ] WS 2013/14 21
22 Lichtstreuung Wechselwirkung ohne Phononenbeteiligung (Rayleigh- Streuung) Streuung an akustischen Phononen (Brillouin-Streuung) Streuung an optischen Phononen (Raman-Streuung) WS 2013/14 22
23 WS 2013/14 23
24 Phononerzeugung und - vernichtung [ Hunklinger ] WS 2013/14 24
25 John William Strutt, 3. Baron Rayleigh ( ) 1919) Trinity College Cambridge 1904 Nobelpreis für Physik für die Bestimmung der Dichte der wichtigsten Gase und für die Entdeckung des Argons [ Wikipedia ] WS 2013/14 25
26 C. V. Raman ( ) Kalkutta, Bangalore 1930 Nobelpreis für Physik "für seine Arbeiten über die Diffusion des Lichtes und die Entdeckung des nach ihm benannten Effekts" [ Wikipedia ] WS 2013/14 26
27 George Gabriel Stokes ( ) 1903) Irischer Mathematiker und Physiker Uni Cambridge Hydrodynamik Schallausbreitung Lichtstreuung [ Wikipedia ] WS 2013/14 27
28 Raman-Spektren Germanium [ Hunklinger ] WS 2013/14 28
29 Raman-Spektren Silizium [ Hunklinger ] WS 2013/14 29
30 Zustandsdichte der Phononen [ Bechstedt ] WS 2013/14 30
31 WS 2013/14 31
32 9.4 Anharmonische Effekte und Phonon-Phonon-Wechselwirkung Erst Anharmonizität bewirkt Einstellung des thermischen Gleichgewichtes Anharmonizität beeinflusst thermische Expansion, Wärmewiderstand, Ultraschallabsproption, Unterschied der adiabatischen und isothermen Konstanten Nicht-lineare Eigenschaften WS 2013/14 32
33 Anharmonische Effekte [ D. Suter ] WS 2013/14 33
10. Thermische Eigenschaften fester Körper
10. Thermische Eigenschaften fester Körper l T = l 0 1 + α T T 0 V T = V 0 1 + α V T T 0 α V 3α [ A. Melzer ] 1 Energie 10. Thermische Eigenschaften fester Harmonischer Oszillator Körper Ort Ort [ D. Suter
10. Thermische Eigenschaften fester Körper
10. Thermische Eigenschaften fester Körper [ A. Melzer ] WS 2013/14 1 10.1 Zustandsgleichung und thermische Ausdehnung Grüneisenparameter γ WS 2013/14 2 Eduard Grüneisen (1877 1949) Grüneisen, E.: Theorie
Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren
Methoden Spektroskopische Verfahren Mikroskopische Verfahren Streuverfahren Kalorimetrische Verfahren Literatur D. Haarer, H.W. Spiess (Hrsg.): Spektroskopie amorpher und kristalliner Festkörper Steinkopf
Photonen in Astronomie und Astrophysik Sommersemester 2015
Photonen in Astronomie und Astrophysik Sommersemester 2015 Dr. Kerstin Sonnabend I. EIGENSCHAFTEN VON PHOTONEN I.1 Photonen als elektro-magnetische Wellen I.3 Wechselwirkung mit Materie I.3.1 Streuprozesse
Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L
Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem
Einführung in die Festkörperphysik I Prof. Peter Böni, E21
Einführung in die Festkörperphysik I Prof. Peter Böni, E1 Lösung zum 9. Übungsblatt (Besprechung: 18. - 0. Dezember 006) P. Niklowitz, E1 Aufgabe 9.1: Neutronenstreuung an Phononen (a) Geben Sie die Dispersionsrelation
der Periodendauer ist die Frequenz der Schwingung = ω 1 (Masse mal Beschleunigung). Die Lösung dieser Differentialgleichung führt auf die
Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Werkstoffwissenschaften 6 / AlN Martensstr. 7, 9158 Erlangen orlesung Grundlagen der WET I Dr.-Ing. Matthias Bickermann, Prof. Dr. A. Winnacker
1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit
Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Eric Parzinger / Jens Repp Kontakt: [email protected] / [email protected] Blatt 3, Besprechung: 7. und 14.5.214
F-Praktikumsversuch: Kristallschwingungen und Raman - Spektroskopie
F-Praktikumsversuch: Kristallschwingungen und Raman - Spektroskopie Was ist Raman-Spektroskopie? Abteilung Physik der Mikro- und Nanostrukturen (Prof. Dr. P.J. Klar) I. Physikalisches Institut, Justus-Liebig-Universität
PROBLEME AUS DER PHYSIK
Helmut Vogel PROBLEME AUS DER PHYSIK Aufgaben und Lösungen zur 16. Auflage von Gerthsen Kneser Vogel Physik Mit über 1100 Aufgaben, 158 Abbildungen und 16 Tabellen Springer-Verlag Berlin Heidelberg New
Physikalisches Fortgeschrittenenpraktikum. Gitterschwingungen
Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Gruppe 22 Tobias Großmann Marc Ganzhorn Durchführung: 07.05.2007 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3 1.1 Kristallstruktur......................................
Thermische Eigenschaften von Kristallgittern
Kapitel 5 hermische Eigenschaften von Kristallgittern Wir haben gesehen, dass sich die 3rN Bewegungsgleichungen eines periodischen Festkörpers weitgehend entkoppeln lassen, wenn man die Kräfte harmonisch
4 Phononen I: Gitterschwingungen
101 4 Phononen I: Gitterschwingungen Schwingungen in Kristallen mit einatomiger Basis............... 102 Erste Brillouin-Zone............................ 105 Gruppengeschwindigkeit..........................
Festkörperphys i. Einführung in die Grundlagen
Harald Ibach Hans Lüth Festkörperphys i Einführung in die Grundlagen 1. Die chemische Bindung in Festkörpern 1 1.1 Das Periodensystem 1 1.2 Kovalente Bindung 4 1.3 DieIonenbindung 9 1.4 Metallische Bindung
3. Gitterschwingungen Gitterschwingungen
3. Gitterschwingungen 3.0 3. Gitterschwingungen 3 GITTERSCHWINGUNGEN 3.1 3 Gitterschwingungen 3.1 Harmonische Näherung; Eigenschwingungen Fig 3.1 Wechselwirkungspotential zweier Atome Wir werden uns im
Schwingungen (Vibrationen) zweiatomiger Moleküle
Schwingungen (Vibrationen) zweiatomiger Moleküle Das Molekülpotential ist die Potentialkurve für die Schwingung H 2 Molekül 0.0 2.5 4 5 6 H( 1s) + H( 3l ) Energie in ev 5.0 7.5 H( 1s) + H( 2l ) H( 1s)
Festkörperphysik. Einführung in die Grundlagen. 4y Springer. Siebte Auflage mit 277 Abbildungen, 18 Tafeln und 104 Übungen
Harald Ibach Hans Lüth Festkörperphysik Einführung in die Grundlagen Siebte Auflage mit 277 Abbildungen, 18 Tafeln und 104 Übungen r ^ 4y Springer Inhaltsverzeichnis 1. Die chemische Bindung in Festkörpern
Thermodynamik und Statistische Physik
Jürgen Schnakenberg Thermodynamik und Statistische Physik Einführung in die Grundlagen der Theoretischen Physik mit zahlreichen Übungsaufgaben 2., durchgesehene Auflage )WILEY-VCH Inhaltsverzeichnis 1
Moderne Physik. von Paul A.Tipler und Ralph A. Liewellyn
Moderne Physik von Paul A.Tipler und Ralph A. Liewellyn Aus dem Englischen von Dr. Anna Schleitzer Bearbeitet von Prof. Dr. Gerd Czycholl Prof. Dr. Cornelius Noack Prof. Dr. Udo Strohbusch 2., verbesserte
Achim Kittel. Energie- und Halbleiterforschung Fakultät 5, Institut für Physik Büro: W1A Tel.:
Festkörperphysik Achim Kittel Energie- und Halbleiterforschung Fakultät 5, Institut für Physik Büro: W1A 1-102 Tel.: 0441-798 3539 email: [email protected] Sommersemester 2005 Inhaltsverzeichnis
Inhaltsverzeichnis. 0 Einleitung... 1
0 Einleitung... 1 1 Periodische Strukturen... 5 1.1 Kristallstruktur, Bravais-Gitter, Wigner-Seitz-Zelle...... 5 1.1.1 Kristallisation von Festkörpern....... 5 1.1.2 Kristall-System und Kristall-Gitter...
3 Supraleiter Wie äußert sich Supraleitung?
3 upraleiter Wie äußert sich upraleitung? Widerstand des Materials verschwindet unterhalb einer kritischen Temperatur Tc Es dringt kein Magnetfeld (tief) in das Material ein 3 upraleiter Was ist supraleitend?
Physik für Naturwissenschaftler
Physik für Naturwissenschaftler I Mechanik und Wärmelehre Für Chemiker, Biologen, Geowissenschaftler von Hugo Neuert Prof. emer. an der Universität Hamburg 2., überarbeitete Auflage Wissenschaftsverlag
13.5 Photonen und Phononen
Woche 11 13.5 Photonen und Phononen Teilchen mit linearem Dispersionsgesetz: E = c p, c - Ausbreitungsgeschwindigkeit (Licht- oder Schallgeschwindigkeit). 13.5.1 Photonen Quantisierung der Eigenschwingungen
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen
Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik
13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.
Laserphysik. Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli. Oldenbourg Verlag München
Laserphysik Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Grundprinzipien des Lasers
Theoretische Festkörperphysik I, II. E. Schachinger H. Sormann
Theoretische Festkörperphysik I, II E. Schachinger H. Sormann 31. Mai 2005 Inhaltsverzeichnis 1 Gruppentheoretische Betrachtungen am starren Gitter I 1 1.1 Allgemeines............................ 1 1.2
Weber/Herziger LASER. Grundlagen und Anwendungen. Fachbereich S Hochschule Darmstad«Hochschulstraßa 2. 1J2QOI Physik Verlag
Weber/Herziger LASER Grundlagen und Anwendungen Fachbereich S Hochschule Darmstad«Hochschulstraßa 2 1J2QOI Physik Verlag Inhaltsverzeichnis 1. licht und Atome 1 1.1. Welleneigenschaften des Lichtes 1 1.1.1.
Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.
2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion
Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker
Quantenmechanik Eine Kurzvorstellung für Nicht-Physiker Die Quantenvorstellung Der Ursprung: Hohlraumstrahlung Das Verhalten eines Von Interesse: idealen Absorbers Energiedichte in Abhängigkeit zur Wellenlänge
T2 Quantenmechanik Lösungen 2
T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,
Raman- Spektroskopie. Natalia Gneiding. 5. Juni 2007
Raman- Spektroskopie Natalia Gneiding 5. Juni 2007 Inhalt Einleitung Theoretische Grundlagen Raman-Effekt Experimentelle Aspekte Raman-Spektroskopie Zusammenfassung Nobelpreis für Physik 1930 Sir Chandrasekhara
Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation. eine Einführung in die Quantenmechanik
Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation eine Einführung in die Quantenmechanik 1) Die Hohlraumstrahlung: Geburt der Quantenmechanik Die kosmische Hintergrundstrahlung
Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?
Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova
1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)
1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip
Inhalt Stöße Fallunterscheidung Stöße
Inhalt.. Stöße Fallunterscheidung Stöße Physik, WS 05/06 Literatur M. Alonso, E. J. Finn: Physik; dritte Auflage, Oldenbourg Verlag, 000. Paul A. Tipler: Physik für Wissenschaftler und Ingenieure; sechste
4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme
4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6
A. Versuchsanleitung: Seite
1Albert-Ludwigs-Universität Freiburg Fakultät für Physik Fortgeschrittenenpraktikum II FP II Dynamische Lichtstreuung Inhalt A. Versuchsanleitung: Seite 1. Kurzbeschreibung... 2 2. Vorkenntnisse... 2 3.
Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern
Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit An einigen Beispielen erläutern 5. Das Photon: Welle und Teilchen 5.4. Die Plancksche Strahlungsformel Wichtige Punkte: u( ν, T ) = 8πh c
Einführung in die Quantenphysik
Einführung in die Quantenphysik Klassische Optik Der lichtelektrische Effekt Effekte elektromagnetischer Strahlung Kopenhagen-Interpretation Elektronen Quantenphysik und klassische Physik Atomphysik Klassische
r r : Abstand der Kerne
Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner
6. Diffusion in kondensierter Materie: Quasielastische Neutronenbeugung (QENS)
6. Diffusion in kondensierter Materie: Quasielastische Neutronenbeugung () I. Krasnov under supervise of Prof. Dr. M. Müller 06.2007 IEAP, Uni-Kiel [email protected] Inhalt Allgemeines 1 Allgemeines
3. Struktur idealer Kristalle
3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,
Raman-Spektroskopie - Inhaltsverzeichnis II - 25
Raman-Spektroskopie Dennis Getzkow & Julian Bergmann 27. November 2011 Laser Monochromator drehbares Gitter Detektor Probe Polarisations- Filter Spiegel Laser- Filter Mikroskop Raman-Spektroskopie - Inhaltsverzeichnis
Elektrodynamik eines Plasmas
Elektrodynamik eines Plasmas Elektrodynamik eines Plasmas Klassifikation von Plasmen Klassisches Plasma / Quantenplasma nicht-relativistisches / relativistisches Plasma Schwach / stark wechselwirkendes
[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r
Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2 y 2 2 z 2 = 2 r 2 2 r r 1 2 L r 2 ħ 2 11. Das Wasserstoffatom H = p2 2 U r μ = Masse (statt m, da m später als Quantenzahl verwendet wird) U r = e2
9. Atomphysik und Quantenphysik 9.0 Atom (historisch)
9. Atomphysik und Quantenphysik 9.0 Atom (historisch) Atom: átomos (gr.) unteilbar. 5-4 Jh. v. Chr.: Demokrit und sein Lehrer Leukippos von Millet entwickeln Theorie der Atome Fragment 125 aus den Schriften
Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator
VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des
4.6.5 Dritter Hauptsatz der Thermodynamik
4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden
1. Was versteht man unter einer Symmetrieoperation? 2. Benennen Sie fünf Symmetrieoperationen und geben Sie je ein Beispiel dazu.
1. Was versteht man unter einer Symmetrieoperation? 2. Benennen Sie fünf Symmetrieoperationen und geben Sie je ein Beispiel dazu. Zeichnen Sie auch die entsprechenden Symmetrieelemente ein. 3. Was sind
Raman und seine Theorie der Gitterschwingungen
Raman und seine Theorie der Gitterschwingungen Von J. Brandmiiller und R. Claus, Miinchen*) Am 24. 11. 1970 ist Sir Chandrasekhara Venkataraman - alias C.V. Raman, wie er seinen Namen selbst fur die wissenschaftliche
Skript zur Vorlesung
Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für
Josephson Kontakt. Hauptseminar. Lehel Sabo und Marco Miller. 10. Februar / 24
Josephson Kontakt Hauptseminar Lehel Sabo und Marco Miller 10. Februar 2011 1 / 24 2 / 24 Inhaltsverzeichnis 1 Supraleitung 2 Josephson-Gleichungen 3 Josephson-Kontakt 3 / 24 4 / 24 Supraleitung Was ist
Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren
Methoden Spektroskopische Verfahren Mikroskopische Verfahren Streuverfahren Kalorimetrische Verfahren Literatur D. Haarer, H.W. Spiess (Hrsg.): Spektroskopie amorpher und kristtiner Festkörper Steinkopf
Das Jaynes-Cummings-Modell
Das Jaynes-Cummings-Modell Brem Samuel Hauer Jasper Lachmann Tim Taher Halgurd Wächtler Christopher Projekt in Quantenmechanik II - WS 2014/15 12. Februar 2015 Brem, Hauer, Lachmann, Taher, Wächtler Das
Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator
VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des
5 Anwendung der Dichtefunktionaltheorie
5 Anwendung der Dichtefunktionaltheorie Im Rahmen der Born-Oppenheimer-Näherung lässt sich der elektronische Grundzustand E g mithilfe der Dichtefunktionaltheorie berechnen, wobei das Einelektronenpotenzial
Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen
UNIVERSITÄT ZU KÖLN Institut für Theoretische Physik Wintersemester 005/006 Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II Musterlösungen 1. Welche experimentellen Tatsachen weisen
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Strahlungsgesetze - Beginn einer neuen Ära
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Strahlungsgesetze - Beginn einer neuen Ära Das komplette Material finden Sie hier: Download bei School-Scout.de 5. Die Strahlungsgesetze
Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael
Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky
Zwei neue Versuche für das Grundpraktikum
Zwei neue Versuche für das Grundpraktikum Ilja Rückmann Universität Bremen Bad Honnef 2012 Ilja Rückmann (Universität Bremen) Zwei neue Versuche Bad Honnef 2012 1 / 18 Gliederung 1 Polytropenexponent 2
Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung
Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen
8.1. Kinetische Theorie der Wärme
8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Eine träge Familie? - Die Edelgase im Gruppenpuzzle (Kl. 8/9) Materialien im PDF-Format Das komplette Material finden Sie hier: School-Scout.de
Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6
Physik I U Dortmund WS7/8 Gudrun Hiller Shaukat Khan Kapitel Carnotscher Kreisprozess Modell eines Kreisprozesses (Gedankenexperiment). Nicht nur von historischem Interesse (Carnot 84), sondern auch Prozess
Nanoplasma. Nano(cluster)plasmen
Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik
Nanostrukturphysik II: Inelastisches Tunneln
Nanostrukturphysik II: Inelastisches Tunneln Alex Wiederhold 07.07.2014 1 Inhalt Motivation Theorie Inelastische Elektronen-Tunnel-Spektroskopie NdBa 2 Cu 3 O 7-δ Metall-Molekül-Metall Kontakte Vergleich
1.2 Grenzen der klassischen Physik Michael Buballa 1
1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:
4. 3 Quantenmechanik & Phasenraum
4.2.7 Superposition unabhängiger Spektren Wichtig ist hier die Gap-Verteilung Z(S), ein Maß für die Wahrscheinlichkeit, ein Intervall der Länge S leer zu finden. Es gilt: für P(S) Poisson ist die komplementäre
Kosmische Hintergrundstrahlung
Kosmische Hintergrundstrahlung Clemens Adler Hauptseminar: der Urknall und seine Teilchen 8. Dezember 2006 1 Einführung Bedeutung für die Kosmologie Bestimmung der kosmologischen Konstanten Aussagen über
Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums
Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums Ein weiterer Zugang zur Physik der Atome, der sich als fundamental erweisen sollte, ergab sich aus der Analyse der elektromagnetischen
Kristallstruktur 1 Tetraederwinkel Die Millerschen Indizes Die hcp-struktur Bravais-Gitter 3
In ha Itsverzeichn is Vorwort V 1 ALl Al.2 A1.3 Al.4 Al.5 Al.6 Al.7 Al.8 Kristallstruktur 1 Tetraederwinkel.............................................................. 1 Die Millerschen Indizes......................................................
WAHRSCHEINLICHKEITSRECHNUNG
WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse
Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306
Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 [email protected]
Feynman Vorlesungen über Physik
Feynman Vorlesungen über Physik Band llhouantenmechanik. Definitive Edition von Richard R Feynman, Robert B. Leighton und Matthew Sands 5., verbesserte Auflage Mit 192 Bildern und 22Tabellen Oldenbourg
Festkörperphysik. Aufgaben und Lösun
Festkörperphysik. Aufgaben und Lösun von Prof. Dr. Rudolf Gross Dr. Achim Marx Priv.-Doz. Dr. Dietrich Einzel Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Kristallstruktur 1 ALI Tetraederwinkel
E2: Wärmelehre und Elektromagnetismus 6. Vorlesung
E2: Wärmelehre und Elektromagnetismus 6. Vorlesung 26.04.2018 Heute: - Kondensationskerne - Van der Waals-Gas - 2. Hauptsatz https://xkcd.com/1166/ Prof. Dr. Jan Lipfert [email protected] 26.04.2018 Prof.
Mechanische Schwingungen und Wellen
Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende
4 Gitterschwingungen und Phononen
Die Struktur eines Festkörpers ist dadurch definiert, dass die Atome sich an der Stelle befinden, welche die Gesamtenergie der Anordnung minimiert. Dies ist deshalb die Position, die sie - abgesehen von
9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators. Schrödinger-Gl.:
phys4.015 Page 1 9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators Schrödinger-Gl.: Normierung: dimensionslose Einheiten x für die Koordinate x und Ε für die Energie E somit
STATISTISCHE PHYSIK L. D. LANDAU E. M. LIFSCHITZ. Teil 1. In deutscher Sprache herausgegeben
L. D. LANDAU E. M. LIFSCHITZ STATISTISCHE PHYSIK Teil 1 In deutscher Sprache herausgegeben von Prof. Dr. habil. RICHARD LENK Sektion Physik der Technischen Universität Chemnitz 8., berichtigte, von E.
1.4. Die Wahrscheinlichkeitsinterpretation
1.4. Die Wahrscheinlichkeitsinterpretation 1.4.1. Die Heisenbergsche Unschärferelation Wie kann der Welle-Teilchen-Dualismus in der Quantenmechanik interpretiert werden? gibt die Wahrscheinlichkeit an,
Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012
9. April 2012 Inhalt Experimentelle Betrachtung 1 Experimentelle Betrachtung 2 Einleitung Experimentelle Betrachtung Photoelektrischer Effekt beschreibt drei verschiedene Arten von Wechselwirkung von Photonen
Anwendung der Ramanspektroskopie
Anwendung der Ramanspektroskopie Karsten Gorling Daniel Schmidt Inhaltsverzeichnis 1 Einleitung 1 Aufgabe 1 3 Aufgabe 3.1 Messung bei senkrechter Polarisation......................... 3. Messung bei paralleler
3. Kapitel Der Compton Effekt
3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen
2 Kinematik Weg, Geschwindigkeit und Beschleunigung Addition zweier Geschwindigkeiten Kreisbewegung...
Inhaltsverzeichnis 1 Hors d Oeuvre........................................... 1 1.1 Wissenschaftliche Revolution........................... 1 1.2 Physik im 20. Jahrhundert..............................
Standardmodell der Kosmologie
! "# $! "# # % & Standardmodell der Kosmologie Urknall und Entwicklung des Universums Inhalt Einleitung Experimentelle Hinweise auf einen Urknall Rotverschiebung der Galaxien kosmische Hintergrundstrahlung
Vorwort Wie benutze ich... dieses Buch? I Klassische Mechanik
Inhaltsverzeichnis Vorwort Wie benutze ich... dieses Buch? I Klassische Mechanik v xv l 1 Grundlagen 3 1.1 Einheiten, Größenordnungen, Zahlenwerte 4 1.2 Impuls 7 1.3 Kraft und die Newton'schen Gesetze
Vorlesung am 7. Juni 2010
Materialwissenschaften, SS 2008 Ernst Bauer, Ch. Eisenmenger-Sittner und Josef Fidler 1.) Kristallstrukturen 2.) Strukturbestimmung 3.) Mehrstoffsysteme 4.) Makroskopische Eigenschaften von Festkörpern
Opto-elektronische. Materialeigenschaften VL # 3
Opto-elektronische Materialeigenschaften VL # 3 Vladimir Dyakonov [email protected] Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte
