Formelsammlung Werkstoffkunde
|
|
|
- David Auttenberg
- vor 9 Jahren
- Abrufe
Transkript
1 Werkstoffkunde.nb Formelsammlung Werkstoffkunde Diese Formelsammlung wurde von Jan Peters ( erstellt und hat vielen Studenten durch ihr Vordiplom geholfen. Den Autoren wuerde ein Link zu seiner Downloadseite sehr freuen!
2 Werkstoffkunde.nb
3 Werkstoffkunde.nb 3
4 Werkstoffkunde.nb 4
5 Werkstoffkunde.nb 5
6 Werkstoffkunde.nb 6
7 Werkstoffkunde.nb 7
8 Werkstoffkunde.nb 8
9 Werkstoffkunde.nb 9
10 Werkstoffkunde.nb 0 Aufbau der Materie Diskretes Energiespektrum : E n hf n n Energie Emission : n n, Absorption : n n M x 0 Photonenmasse : m ph c aus E m ph c Photonenimpuls : p ph m ph c c Absorption : E photon E photon 0, p photon h k p photon 0 p Atom p p Atom p h k I Emission : E Atom I E Atom, p Atom Materiewellen de Broglie : r, t C e j t k r Ebene Materialwelle : x, t C e j t kx Dispersionsbeziehung : Gruppengeschwindigkeit : v gr k k p Atom h k m k, Phasengeschw. : v ph f d v c dk E Atom E 0 E Atom E 0, k k m v c Heisenbergs Unschärferelation : x p und E t Schrödingergleichung : j t r, t m div grad r, t Allg. Schrödingergleichung : j t Bei V r, t V r r, t r t j t t m r V r r r, t r m Zeitunabh. S.Gl. : r V r r E r m Aufenthaltswahrscheinlichkeit : dw r r, t r, t dx dy dz Mittlere Ladungsdichte eines Elektrons : r e Gebundenes Elektron im Potentialtopf : SGl : m r, t V r, t r, t t e j t e j t bei E x V x x E x U I U III I III 0, U II 0 II Ae jkx Be jkx mit k m 0 E Diskrete Energiewerte : E n m 0 a n Eigenwertfkt. : n x a sin n a x
11 Werkstoffkunde.nb Ladungstransport in Festkörpern Elektronen im periodischen Gitterpotential V x a 0 V x, Gitterkonstante a 0 a b, Potentialtöpfe V 0 Breite a und Barrieren V V 0 Breite b. d m Schödingergl. : I : 0 II : dx dx Lösungen : I : x Ae j x Be j x bei 0 x a d m E V 0 0 II : x Ce j x Be j x bei b x 0 x e jka 0 Ce j x a 0 De j x a 0 bei a x a b A, B, C, D aus der Stetigkeit von x und d x bei x 0 und x a. dx m Barrierenstärke P P P E, ma m V 0 0 : Barriere verschwindet, es gilt E Elektrische Bandstruktur E V 0 b, P 3 groß und P 0 klein. k m freie Elektronen : Unendlich hohe Barrieren, diskrete Energieniveaus, Effektive Masse freier Elektronen : m k d E k dk E k m, Teilchengeschwindigkeit v gr Elektrische Eigenschaften von Materie d dk n a de k dk m k Elektrische Leitfähigkeit der Metalle : en p x m E x e m n Reibung Streuung an Gitterschw. ph und an Fremdatomen i Gesamtreibung ph i Mathiessche Regel Spez. Widerstände : ph i Temperaturabh. : 0 T, Tiefe Temperaturen T 5 i Leiterwerkstoffe Werte auf S.96, Widerstandswerkstoffe S Kontaktwerkstoffe : Austrittsarbeit i, Kontaktpotential E c, E c Kontaktspannung U e Elektrochemische Spannung, Korrosion Fe 0 H Fe OH O H 0 FeOOH
12 Werkstoffkunde.nb Halbleiter Ladungsträger in intrinsischen Halbleitern Lochwahrscheinlichkeitf h E, T f E, T Elektronendichten dn de n D L E f E, T, Lochdichte dn e E E F de E L D L E f E, T E, p D L E M L m n 3 3 E V E und D V E In E V E E L gilt D E 0. Im Leitungsband mit E E F n M L m n 3 e E L E F D L E f E, T gilt : und p m p E VDV E f E, T E m p 3 3 E E V 3 e E F E V N L N V Zahlenwerte S. 07 D. therm. Anregung entstandene n i p i E F E V E L ln N V N L
13 Werkstoffkunde.nb 3 Dotierte Halbleiter Ladungsträgerkonzentrationindotierten Halbleitern dn dp A T B T n p dt dt Gleichgewicht dn dp A T 0 np N L N V e E g dt dt B T Dichte der Donatoren N D N D 0 N D 0 N D, der Akzeptoren : N A N A 0 N D f E F, T N D e E D E F N A, N A N A f E A, T N A e E A E F Ladungsneutralität n N A p N D n N D e E L E D n N L E L E D n N D N L e E L E D Ladungstransporteigenschaften j ne v n pe v p Ladungsträgerbeweglichkeit : v E, i T 3 N i, ph T, 3 ges i ph e m
14 Werkstoffkunde.nb 4 Ausgleichsvorgänge Ladungsträger dn dt Lebensdauer n n 0 dp n dt n Dotierte HL. : n N D, p p Dotierte HL. : p N A, n Ausgleich der Minoritätsträgerdichte Gesamtgenerationsrate G Beleuchtet G L dn dt p p 0, n n 0 p p 0, n p Zahlen S.0 p n i N D n i N A G T Therm. r T np n i n p G L Opt., G T r T n i, dp dt r T np n i dp Abschalten bei t 0 : G L R n i r T N D p r T R p p 0 N D r T dt Rekombinationsrate R r T np Abklingen der übersch. Minoritätsladung : p analog f. n, N A r T N D Ausgleich der Majoritätsträgerdichte : div j D 0, j D, div D R Ausdehnung der Störungen dn diff j n ed n dx, j p diff Kontinuitätsgleichung : Stationärer Fall dp dt ed p dp dx, D n dp dt e 0 : p x p 0 p 0 e Diffusionslängen L p D p L p, L n D n L n, n, D p e d p D p p p 0 dx p p x n i Lp p 0, p 0 N D L n,p D n,p L n,p e n,p n,p v x n,p L D D R e e N D mit n e, n N D
15 Werkstoffkunde.nb 5
16 Werkstoffkunde.nb 6
17 Werkstoffkunde.nb 7 Dielektrische Eigenschaften von Festkörpern Verallg. Permittivität D E 0 r E, 0 8, 85 0 As Vm D 0 E P 0 E, r j, tan, r I r I e j Dipolmoment : p 0 E a, P 0 N E a, Claudius Mosotti Gleichung : Elekr. Polarisation im mikroskopischen Bild N 3 r r Elektr. Pol. : Dipol : p 4 0 R 3 E 0 E, Pol. : 4 R 3 q q Ion.Pol. : u u I E I, p c c E 0 E, Orientierungspol. : U p E pi E Icos, P 0 E p q N c 0 cos 0 I E I Frequenzabh. der Polarisation Ionische bzw. elektrische Polarisation P P 0, Thermodyn. Zeitkonstante j j 0 N 3 j p 3 0 Dipol Ion 0 El 0, Dipol stat stat C Ferroelektr., Curie Weiss Gesetz :, T C T Piezoelektr. : D 0 r E e, c e E p p, stat 0 l l Eindimensionaler Fall : D 0 r E x k p, xx c l l k p E x Elektrostriktion l l k p I E I, Pyroelektr. P T, 0 8 As cm K Optische Eigenschaften Phasengeschw. : v ph, Brechzahl n c 0 0 r n n jn n n, n n v ph r
1.17eV exp eV exp Halbleiter
7.6 Halbleiter Nichtleiter Die Bandstruktur eines Halbleiters ist gleich der Bandstruktur eines Nichtleiters. Der Hauptunterschied besteht in der Breite der Energielücke: Für einen Halbleiter ist die Energielücke
Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung
Funktionswerkstoffe Elektronische Eigenschaften - Einleitung Bandstruktur Elektronenverteilung (Fermi-Dirac) Elektronenbeweglichkeit und Leitfähigkeit Metalle Elektronenanregung Leitfähigkeitsänderungen
2. Durch welche physikalischen Größen wird der Zustand eines Systems in der klassischen Mechanik definiert?
Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 28. Juli 2006 100 Fragen zur Festkörperelektronik
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter WS 2013/14
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter 1 11.4 Metalle,
Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur?
Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Wie berechnet man die innere Energie, wie die spezifische Wärme?
Die Potentialbarriere. Bardeen - Shockley - Brattain (Bell Labs.)
Die Bardeen - Shockley - Brattain (Bell Labs.) Wiederholung Bsp.: Si: E F =560meV-12meV Übersicht Generation und Rekombination Direkte Rekombination Kontinuitätsgleichung Haynes Shockley Experiment Der
Lage des Ferminiveaus beim intrinsischen HL
9.1 Lage des Ferminiveaus beim intrinsischen HL n W L W F = NL exp exp kt B kt B W V W F = p = NV exp exp kt B kt B Auflösen nach der exp-funktion: Mit Auflösen nach W F : 3 * N 2 V m h = * NL me 2W F
Maxwell- und Materialgleichungen. B rote t. divb 0 D roth j t divd. E H D B j
Maxwell- und Materialgleichungen B rote t divb D roth j t divd E H D B j elektrische Feldstärke magnetische Feldstärke elektrischeverschiebungsdichte magnetische Flussdichte elektrische Stromdichte DrE
PN Übergang. Sebastian Schwerdhöfer. Hauptseminar zu Grundlagen der Experimentellen Physik im SS Einstieg. Ladungsträgerdichte.
PN Übergang Sebastian Schwerdhöfer der Shockley Hauptseminar zu Grundlagen der Experimentellen Physik im SS. 2012 Gliederung Ziel: Shockley der Diodenkennlinie ) ) U I U) = I S exp 1 n U T Weg: Dichte
1 Leitfähigkeit in Festkörpern
1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.
...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters...
...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... 1 Temperaturerhöhung Je größer die Gitterkonstante, desto kleiner die Bandlücke. Temperaturerhöhung führt
Das elektrochemische Potential
11.1 Das elektrochemische Potential Die Trennung von Drift und Diffusionsströmen ist nur ein Hilfsmittel zur quantitativen Modellierung (ähnlich wie bei der Überlagerung von verschiedenen Kräften)! Woher
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger
UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen
Opto-elektronische. Materialeigenschaften VL # 4
Opto-elektronische Materialeigenschaften VL # 4 Vladimir Dyakonov [email protected] Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte
Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren
Wechselwirkung geladener Teilchen in Materie Physik VI Sommersemester 2008 Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Szintillationsdetektoren
Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes
Grundlagen der Rechnertechnologie Sommersemester 2010 5. Vorlesung Dr.-Ing. Wolfgang Heenes 18. Mai 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Aufbau der Materie 2. Energiebändermodell
Elektrische Eigenschaften von Festkörpern
Elektrische Eigenschaften von n Quellennachweis zu den Abbildungen R. Müller, Grundlagen der Halbleiter-Elektronik. C.R. Bolognesi, Vorlesungsunterlagen. W.C. Dash, R. Newman, Phys. Rev., 99, 1955, 1151.
Stromdichten in Halbleitermaterialien
Stromdichten in Halbleitermaterialien Berechnung der Leitfähigkeit: j = qnµ E ρ(w), ρ(w), Mögliche Sprachverwirrungen und Fallstricke: Energien: E bzw. W Bandindizies: C bzw. L Zustandsdichten: N(W), ρ(w),
Name:... Vorname: Matrikelnummer:...
Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer Kaiserstrasse 1 76131 Karlsruhe Festkörperelektronik Klausur 1. September 006 Name:.....................................................
(a) Skizzieren und benennen Sie die Kristallstruktur von Silizium. [2P]
Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer Kaiserstrasse 1 76131 Karlsruhe Festkörperelektronik Klausur Musterlösung 0. September 005 1. Silizium (a) Skizzieren und
Leistungskurs Physik (Bayern): Abiturprüfung 2000 Aufgabe III Atomphysik
Leistungskurs Physik (Bayern): Abiturprüfung 000 Aufgabe III Atomphysik 1. Laserbremsung eines Atomstrahls In einem Atomofen befindet sich Cäsium-Gas der Temperatur T. Die mittlere m Geschwindigkeit der
Realisation eines 2D-Elektronengases
Realisation eines 2D-Elektronengases Gezeigt am Beispiel einer Heterojunction und eines MOS-FET T. Baumgratz J. Rosskopf Univerität Ulm Seminar zu Theorie der Kondensierten Materie II Gliederung 1 2 3
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um
Übungen zur Vorlesung Photoelektronenspektroskopie
Übungen zur Vorlesung Photoelektronenspektroskopie PES an Metall-Halbleiter-Kontakten Grundlagen: Dotierung von Halbleitern Der Metall-Halbleiter-Kontakt (Schottky-Kontakt) PES an Schottky-Kontakten Kurvenzerlegung
VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik
VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen
Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den
Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte
PROBLEME AUS DER PHYSIK
Helmut Vogel PROBLEME AUS DER PHYSIK Aufgaben und Lösungen zur 16. Auflage von Gerthsen Kneser Vogel Physik Mit über 1100 Aufgaben, 158 Abbildungen und 16 Tabellen Springer-Verlag Berlin Heidelberg New
TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA
TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...
Übungen Quantenphysik
Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf
Maxwell- und Materialgleichungen. B rote = t. divb = 0 D t. j=σ E+ E H D B j
Maxwell- und Materialgleichungen B rote t divb D roth + j t divd ρ E H D B j elektrische Feldstärke magnetische Feldstärke elektrischeverschiebungsdichte magnetische Flussdichte elektrische Stromdichte
Der pn-übergang. Bardeen - Shockley - Brattain (Bell Labs.)
Der Bardeen - Shockley - Brattain (Bell Labs.) Übersicht Generation und Rekombination Direkte Rekombination Kontinuitätsgleichung Haynes Shockley Experiment Elektrisches Feld im Halbleiter Aufbau Ladungsträgertransport
32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen.
Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 13. Juli 2006 Möglicher Abgabetermin:
Durch welchen Schlitz ist das Teilchen geflogen? Beobachtung
) Grundlagen der Quantenmechanik Welle-Teilchen-Dualismus: das Doppelspaltexperiment Teilchen Welle Durch welchen Schlitz ist das Teilchen geflogen? Beobachtung Welle-Teilchen-Dualismus: 1) P =... Wahrscheinlichkeitsamplitude
13. Ionenleitung in Festkörpern
13. Ionenleitung in Festkörpern 1. Defekte in Ionenkristallen 2. Prinzip und Beschreibung Ionenleitung 3. Schnelle Ionenleitung durch homogene Dotierung durch Unordnung durch Grenzflächeneffekte 4. Impedanzspektroskopie
Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:
Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen
Leistungsbauelemente
I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen
15. Vom Atom zum Festkörper
15. Vom Atom zum Festkörper 15.1 Das Bohr sche Atommodell 15.2 Quantenmechanische Atommodell 15.2.1 Die Hauptquantenzahl n 15.2.2 Die Nebenquantenzahl l 15.2.3 Die Magnetquantenzahl m l 15.2.4 Die Spinquantenzahl
In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter.
II.2: Erinnerung an die Halbleiterphysik II.2.1: Kristalline Festkörper In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches
Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.
E 2 Temperaturabhängigkeit elektrischer Widerstände
E 2 Temperaturabhängigkeit elektrischer Widerstände 1. Aufgaben 1. Für die Stoffe - Metall (Kupfer) - Legierung (Konstantan) - Halbleiter (Silizium, Galliumarsenid) ist die Temperaturabhängigkeit des elektr.
Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen
Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen III.1 Halbleiter: Einzelne Atome eines chemischen Elements besitzen nach dem Bohrschen Atommodell einen positiv geladenen
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 05. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 05.
E2: Wärmelehre und Elektromagnetismus 14. Vorlesung
E2: Wärmelehre und Elektromagnetismus 14. Vorlesung 07.06.2018 Wissenschaftliche Instrumente aus dem 18. und 19. Jahrhundert aus der Sammlung des Teylers Museum in Haarlem, Niederlande http://www.teylersmuseum.nl
VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik
VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,
Elektrischer Strom S.Alexandrova 1
Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches
Elektrische Leistung und Joulesche Wärme
lektrische eistung und Joulesche Wärme lektrische eistung: lektrische Arbeit beim Transport der adung dq über Spannung U: dw el = dq U Wenn dies in einer Zeit dt geschieht (U = const.), so ist die eistung
Temperaturabhängigkeit der elektrischen Leitfähigkeit von Metallen und Halbleitern
Temperaturabhängigkeit der elektrischen Leitfähigkeit von Metallen und Halbleitern Gruppe 24: Alex Baumer, Axel Öland, Manuel Diehm 17. Februar 2005 Inhaltsverzeichnis 1 Einleitung 1 2 Grundlagen 1 2.1
16 Festkörper Physik für E-Techniker. 16 Festkörper
16 Festkörper 16.1 Arten der Festkörper 16.2 Kristalle 16.3 Bindungskräfte im Festkörper 16.3.1 Van der Waals-Bindung 16.3.2 Ionenbindung 16.3.3 Atombindung 16.3.4 Metallbindung 16.4 Vom Atom zum Festkörper
Formelsammlung Baugruppen
Formelsammlung Baugruppen RCL-Schaltungen. Kondensator Das Ersatzschaltbild eines Kondensators C besteht aus einem Widerstand R p parallel zu C, einem Serienwiderstand R s und einer Induktivität L s in
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,
Physik für Ingenieure
Friedhelm Kuypers Helmut Hummel Jürgen Kempf Ernst Wild Physik für Ingenieure Band 2: Elektrizität und Magnetismus, Wellen, Atom- und Kernphysik Mit 78 Beispielen und 103 Aufgaben mit ausführlichen Lösungen
Festkörperelektronik 3. Übung
Festkörperelektronik 3. Übung Felix Glöckler 02. Juni 2006 1 Übersicht Themen heute: Motivation Ziele Rückblick Quantenmechanik Aufgabentypen/Lösungsmethoden in der QM Stückweise konstante Potentiale Tunneln
2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ
7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand
Gitterschwingungen in Festkörpern
in Festkörpern Gitterschwingungen Wie bei den Molekülen wollen wir im folgenden die Dynamik der Festkörper, also Schwingungen des Kristallgitters behandeln Erklärung, Beschreibung Elastische Eigenschaften
Kapitel 2 Leiterwerkstoffe und ihre Bauelemente
Kapitel 2 Leiterwerkstoffe und ihre Bauelemente [http://www.ionotec.com/] Kapitel 2 - V 5, Folie: 1, 16.11.2015 Kapitel 2 Leiterwerkstoffe und ihre Bauelemente 2.1 2.2 2.3 2.4 2.5 2.6 Einführung Klassische
Halbleiterphysik. Von Reinhold Paul VEB VERLAG TECHNIK BERLIN
Halbleiterphysik Von Reinhold Paul VEB VERLAG TECHNIK BERLIN INHALTSVERZEICHNIS Schreibweise und Formelzeichen der wichtigsten Größen 13 1. Halbleiter 19 1.1. Festkörper 19 1.2. Eigenschaften elektronischer
Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann
Abb. 1 Solarzellen PHOTOVOLTAIK Stefan Hartmann 1 Gliederung Einführung Grundlegendes zu Halbleitern Generation und Rekombination pn-übergang Zusammenfassung: Was läuft ab? Technisches 2 Einführung Abb.
3 Elektrische Leitung
3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung
Wellen und Dipolstrahlung
Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander
Teil I Werkstoffe der Elektrotechnik
Formelsammlung Werkstoffe der Elektrotechnik www.ei-studium.de Erstelldatum:. Februar 05 Inhaltsverzeichnis I Werkstoffe der Elektrotechnik Aufbau der Materie. Quanten und Wellen.................. Schrödingergleichung..............
Lichtemittierende Dioden (LED)
@ Einführung in die optische Nachrichtentechnik LED/1 Lichtemittierende Dioden (LED) Lumineszenzdioden und Halbleiterlaser werden in der optischen Nachrichtentechnik überwiegend als Doppel-Heterostrukturdioden
5 Elektrizität und Magnetismus
5.1 Elektrische Ladung q Ursprung: Existenz von subatomaren Teilchen Proton: positive Ladung Elektron: negative Ladung besitzen jeweils eine Elementarladung e = 1.602 10 19 C (Coulomb) Ladung ist gequantelt
Elektrische und Thermische Leitfähigkeit von Metallen
Elektrische und Thermische Leitfähigkeit von Metallen Virtueller Vortrag von Andreas Kautsch und Andreas Litschauer im Rahmen der VO Festkörperphysik Grundlagen Outline elektrische Leitfähigkeit Gründe
Potentialstufen. Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen.
Potentialstufen Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen. Stetigkeit von ψ(x, ψ (x für stückweise stetiges Potential betrachte
Kapitel 10. Potentiale Elektronen im Potentialtopf
Kapitel 10 Potentiale 10.1 Elektronen im Potentialtopf Mit dem Aufstellen der Schrödinger-Gleichung ist man der realistischen Beschreibung von Quantenobjekten ein großes Stück nähergekommen. Unser Interesse
Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz. Sommersemester Physik der kondensierten Materie
Physik der kondensierten Materie Kapitel 8 Elektronen im periodischen Potential Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz In Vertretung von Carsten Deibel Optik & Photonik
Elektrotechnik II Formelsammlung
Elektrotechnik II Formelsammlung Achim Enthaler 20.03.2007 Gleichungen Allgemeine Gleichungen aus Elektrotechnik I siehe Formelsammlung Elektrotechnik I, SS2006 Maxwell Gleichungen in Integralform Durchutungsgesetz
Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie
Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1
V. Optik in Halbleiterbauelementen
V.1: Einführung V. Optik in Halbleiterbauelementen 1. Kontakt 1. 3.. 1. Kontakt Abb. VI.1: Spontane Emission an einem pn-übergang Rekombination in der LED: - statistisch auftretender Prozess - Energie
Warum Halbleiter verstehen?
7.1 Warum Halbleiter verstehen? In der Vorlesung Elektronische Schaltungen haben Sie die Kennlinien verschiedener Halbleiterbauelemente kennen gelernt: Dioden, Bipolare Transistoren, Feldeffekttransistoren
Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur
Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche
