Medizinische Biophysik
|
|
|
- Friederike Kurzmann
- vor 9 Jahren
- Abrufe
Transkript
1 2. Gasförmiger Aggregatzustand a) Makroskopische Beschreibung b) Mikroskopische Beschreibung Medizinische Biophysik c) Kinetische Deutung der Temperatur d) Maxwell-Boltzmann-Verteilung e) Barometrische Höhenformel (Gas im Gravitationsfeld) f) Boltzmann-Verteilung. Flüssiger Aggregatzustand a) Makroskopische Beschreibung b) Mikroskopische Beschreibung c) Oberflächenspannung Struktur der Materie Aggregatzustände: Gase, Flüssigkeiten, feste Körper d) Wasser und seine günstige 4. Fester Aggregatzustand - Kristalle a) Makroskopische Beschreibung b) Mikroskopische Beschreibung c) Kristalltypen d) Apatit e) Gitterfehler 2. Vorlesung f) Elektronenstruktur (Bändermodell) Hausaufgaben: Neue Aufgabensammlung 1.4, 6, 8, 40, 4, 47, 49, 50, Gasförmiger Aggregatzustand a) Makroskopische Beschreibung: Kein Eigenvolumen und keine Eigenform Isotrop Temperatur Messbare Größen: b) Mikroskopische Beschreibung: Ungeordnet Starke und fast freie Bewegungen p, V,, T pv RT (für ideale Gase) Druck Volumen Stoffmenge c) Kinetische Deutung der Temperatur: durchschnittliche kinetische Energie eines Teilchens E kin 1 mv Masse eines Geschwindigkeit Teilchens des Teilchens Boltzmann-Konstante k = 1, J/K Temperatur allgemeine Gaskonstante R = 8,1 J/(molK) = thermische Energie 2 Eine andere Form: durchschnittliche kinetische Energie von einem Mol E kin, mol 1 Mv 2 RT 2 2 Molare Masse d) Maxwell-Boltzmann-Verteilung Allgemeine Gaskonstante R = 8,4 J/(mol K) RT = molare thermische Energie e) Barometrische Höhenformel (Gas im Gravitationsfeld) Gravitation (ohne Bewegungen, d. h. T = 0) Bewegung (ohne Gravitation) Druck bei h = 0 p 0 p e mgh Nur im thermischen Gleichgewicht!! 4 1
2 f) Boltzmann-Verteilung Die Verteilung der Teilchen auf die Energiezustände im thermischen Gleichgewicht (T = konstant). normale Besetzung siehe Besetzungsinversion später bei dem Laser n i 0 i n0 e n0 n i n 0 e E RT e E NA R k N A Anwendungen der Boltzmann-Verteilung: Barometrische Höhenformel Thermische Elektronenemission von Metallen Konzentrationselemente, Nernst-Gleichung Chemische Reaktionen (Geschwindigkeits- und Gleichgewichtskonstante) Konzentration von thermischen Punktdefekten (in Kristallen und Makromolekülen) Elektrische Leitfähigkeit von Halbleitern.... Flüssiger Aggregatzustand a) Makroskopische Beschreibung: Eigenvolumen aber keine Eigenform Isotrop Viskosität (s. später bei Transportprozessen) flüssig Keine Eigenform: Nach Deformieren bleibt so, es gibt keine rückstellende Scherkräfte. b) Mikroskopische Beschreibung: Dynamische Nahordnung Mittelstarke Bewegungen H-Brücken (Gilt aber nicht z. B. bei der Besetzung der Elektronenschalen in einem Atom!) 5 Isotropie 6 Wasser fest Eigenform: Nach Deformieren stellt sich zurück, da es rückstellende Scherkräfte gibt. c) Oberflächenspannung Die hohe Oberflächenspannung des Wassers kann Probleme verursachen! Neonatales Atemnotsyndrom RDS=respiratory distress syndrome Oberflächenspannung, oder spezifische Oberflächenenergie (): E A Zur Flächenvergrößerung von A nötige Energie J 2 m N m Oberflächenvergrößerung Stoff (J/m 2 )* Wasser 0,07 Blut 0,06 Speichel 0,05 Alkohol 0,02 Quecksilber 0,484 * In Bezug auf Luft, 20 C 7 8 2
3 d) Wasser und seine günstige : feste Stoffe hohe spezifische Wärmekapazität, Schmelzwärme und Verdampfungswärme hohe Oberflächenspannung gutes Lösungsmittel für viele Stoffe Kristalle (Festkörper) amorphe Stoffe Wassermolekül 4. Fester Aggregatzustand - Kristalle - + Dipol H-Brücke a) Makroskopische Beschreibung: Eigenvolumen, Eigenform Einkristalle: oft anisotrop; Polykristalle: isotrop z. B. Al 2 O Polykristall Einkristall Polykristall z. B. Tantal (Metall) Einkristall 9 (besteht aus mehreren Kristallen) 10 Mikrokristalline Stoffe b) Mikroskopische Beschreibung: Fernordnung Periodizität Kristallgitter Schwache Bewegungen (Schwingungen) ein Korn Unter dem Mikroskop mehrere Körner Nanokristalline Stoffe Zum Beispiel: kubisch hexagonal oft anisotrop oft isotrop 11 12
4 c) Kristalltypen: Atomkristall (kovalente Bindung) Ionenkristall (Ionenbindung) d) Apatit X = OH : Hydroxiapatit F : Fluorapatit Ca 10 (PO 4 ) 6 (X) 2 Ca 5 (PO 4 ) X Diamant Metallkristall (Metallbindung) Salz Molekülkristall (sekundäre Bindung) ein hexagonales Ionenkristall anorganische Substanz der harten Gewebe (Knochen, Dentin, Zahnschmelz) etwa 2/ des Knochengewebes Gold Eis Bindungsenergie (E 0 ), wie Schmelzpunkt, Schmelzwärme, Steifigkeit, Wärmeausdehnungskoeffizient, 1 Dentin, Knochen: nm x 6 nm große Kristalle Zahnschmelz: nm x 0 nm große Kristalle 14 e) Gitterfehler: Punktfehler Thermische Fehler Leerstelle (Vakanz, Schottky-Defekt) Interstitium (Zwischengitteratom) Frenkel-Defekt Fremdatome (chemische Fehler, Dotierung) Substitutionsatom Interstitielles Atom (Interstitium) Zahl der Schottky- Defekte (n S ): Aktivierungsenergie ( Bindungsenergie) n N e S S Zahl der besetzten Gitterstelle ( Zahl der Atome) Thermische Fehler in biologischen Makromolekülen: Zahl der aufgespalteten H- Brücken n N e S S Zahl der intakten H- Brücken Versetzungen (Dislokationen)
5 Gitterfehler!! z. B. optische Al 2 O z. B. mechanische + Cr + + V2+ Fe 2+ +Ti 4+ +Fe 2+ z. B. chemische Rubin siehe Rubinlaser NaI NaI + Tl Ca 10 (PO 4 ) 6 (OH) 2 Hydroxiapatit Ca 10 (PO 4 ) 6 F 2 Fluorapatit Kleinere Löslichkeit in Säuren z. B. elektrische siehe reine und dotierte Halbleiter (unter Röntgenbestrahlung) siehe Szintillationskristall in der Nuklearmedizin Praktikum Nukleare Grundmessung f) Elektronenstruktur (Bändermodell): Elektrische der Festkörper Leitungsband: Von oben gesehen das unterste Energieband, das nicht vollbesetzt ist. Elektrischer Strom = kollektive Wanderung von elektrischen Ladungsträgern (Elektronen, Ionen, ) Dazu sind freie (quasifreie) Ladungsträger nötig. Z. B. Bewegung von Elektronen in einem Metallgitter: zufällige thermische Bewegung + kollektive Wanderung Valenzband: Von unten gesehen das oberste Energieband, das noch Elektronen enthält. elektrische Kraft + abwechselnd: Beschleunigung, Abbremsen ständige Energieaufnahme, -abgabe + U elektrische Spannung Elektrischer Strom, elektrische Leitung ist nur dann möglich, wenn die Elektronen Ihren Energiezustand um eine geringe Energiemenge ständig ändern können
6 Bei T = 0 K : Eigenhalbleiter (intrinsic Halbleiter) Bei T = 0 K : keine elektrische Leitung Licht Photoleitung Bei T = 27 K : Breite der Bandlücke (verbotenen Zone): z.b. Al 2 O : = 6,5 ev NaI: = 5 ev z.b. Si: = 1,1 ev Ge: = 0,7 ev Annähernd Boltzmann-Verteilung! Elektronen (negative Ladungsträger) elektrische Leitfähigkeit konst. e 2 siehe die optischen später 21 Defektelektronen, Löcher (virtuelle positive Ladungsträger) 22 Dotierte Halbleiter Grundkristall z.b. Si Anwendungen der dotierten Halbleiter n-halbleiter 14Si: 1s 2 2s 2 2p 6 s 2 p 2 p-halbleiter z. B. + P z. B. + B 15P: 1s 2 2s 2 2p 6 s 2 p 5B: 1s 2 2s 2 2p 1 o Halbleiterdiode o Photodiode Licht entleerte Zone (Sperrschicht) p n angeregtes negatives Elektron zurückgebliebenes positives Loch Halbleiterkristall (z.b. Si) U Sperrichtung + Durchlaßrichtung + Photostrom/Photoleitung (J ~ Lichtintensität) Elektronenleitung (n-leitung) U + Sperrichtung Löcherleitung (p-leitung) 2 siehe Lichtdetektoren (Es gibt auch lichtemittierende Dioden siehe Leuchtdioden, LED) 24 6
Medizinische Biophysik
2. Gasförmiger Aggregatzustand Medizinische Biophysik c) Kinetische Deutung der Temperatur: d) Maxwell-Boltzmann-Verteilung e) Barometrische Höhenformel (Gas im Gravitationsfeld) f) Boltzmann-Verteilung
Biophysik für Pharmazeuten I Struktur der Materie Tölgyesi Ferenc
Biophysik für Pharmazeuten I. 014. 09.. Struktur der Materie Tölgyesi Ferenc Atomarer Aufbau der Materie o Demokritos 5.Jht v.chr. o Daltonsches Gesetz 180 o Moderne Mikroskope: Hausaufgaben: Neue Aufgabensammlung
Flüssigkeiten. Viskosität (h) v h. A h. víz. (Fluidität~ 1/h) [h] = Pa s. Newtonsches Reibungsgesetz: Dynamische Nahordnung.
Flüssigkeiten flüssig Keine Eigenform (nach Deformieren bleibt so, es gibt keine rückstellende cherkräfte) fest Eigenform (nach Deformieren stellt sich zurück, da es rückstellende cherkräftegibt ) Physikalische
Grenzflächenphänomene. Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie. J m. N m. 1. Oberflächenspannung
Grenzflächenphänomene 1. Oberflächenspannung Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie Grenzflächenphänomene Phase/Phasendiagramm/Phasenübergang Schwerpunkte: Oberflächenspannung
Hier: Beschränkung auf die elektrische Eigenschaften
IV. Festkörperphysik Hier: Beschränkung auf die elektrische Eigenschaften 3 Aggregatzustände: fest, flüssig, gasförmig: Wechselspiel Anziehungskräfte der Teilchen gegen die thermische Energie kt. Zustand
4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:
Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar
1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)
1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip
Grundlagen der statistischen Physik und Thermodynamik
Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die
1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen!
1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen! Aggregatzustände Fest, flüssig, gasförmig Schmelz -wärme Kondensations -wärme Die Umwandlung von Aggregatzuständen
Anorganische Chemie III
Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2013/14 Christoph Wölper Universität Duisburg-Essen # Elektronengas # Bändermodell Bindungsmodelle Metallbindung > Bindungsmodelle Elektronengas
Skript zur Vorlesung
Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für
1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen
IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche
1 Leitfähigkeit in Festkörpern
1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener
Materie ist die Gesamtheit aller Stoffe: Energie bei chemischen Reaktionen:
A.1.1 1 Stoffbegriff / Materie / Energie Materie ist die Gesamtheit aller Stoffe: Jeder Stoff füllt einen Raum V (Einheit: m³) aus Jeder Stoff besitzt eine Masse m (Einheit: kg) Dichte = Masse / Volumen
2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl
2.4 Metallische Bindung und Metallkristalle Li Be B C N O F Na Mg Al Si P S Cl K Ca Ga Ge As Se Br Rb Sr In Sn Sb Te I Cs Ba Tl Pb Bi Po At Unterteilung in Metalle, Halbmetalle, Nicht metalle Metalle etwa
O. Sternal, V. Hankele. 5. Thermodynamik
5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe
Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen
Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 284 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer
f) Ideales Gas - mikroskopisch
f) Ideales Gas - mikroskopisch i) Annahmen Schon gehabt: Massenpunkte ohne Eigenvolumen Nur elastische Stöße, keine Wechselwirkungen Jetzt dazu: Wände vollkommen elastisch, perfekte Reflektoren Zeitliches
Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen
1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen
Vorlesung Allgemeine Chemie (CH01)
Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut
Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme
Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere
1. Wärmelehre 1.1. Temperatur Wiederholung
1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber
Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.
(c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 14. 05. 2007 Othmar Marti [email protected] Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.
Allgemeines Gasgesetz. PV = K o T
Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,
1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!
1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang lektrotechnik - kinetische Gastheorie - Prof. Dr. Ulrich Hahn WS 008/09 Molekularbewegung kleine sichtbare Teilchen in Flüssigkeiten oder Gasen: unregelmäß äßige Zitterbewegung
16 Festkörper Physik für E-Techniker. 16 Festkörper
16 Festkörper 16.1 Arten der Festkörper 16.2 Kristalle 16.3 Bindungskräfte im Festkörper 16.3.1 Van der Waals-Bindung 16.3.2 Ionenbindung 16.3.3 Atombindung 16.3.4 Metallbindung 16.4 Vom Atom zum Festkörper
Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik
Halbleiter Das Herz unserer multimedialen Welt Inhalt Bisherig Bekanntes Das Bändermodell Halbleiter und ihre Eigenschaften Dotierung Anwendungsbeispiel: Funktion der Diode Bisher Bekanntes: Leiter Isolatoren
Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik
Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik - Festkörper - Prof. Dr. Ulrich Hahn WS 2008/2009 Grundtypen Gläser, amorphe Festkörper Nahordnung der Teilchen 5 10 Atom- unterkühlte Flüssigkeiten
Grundlagen der Allgemeinen und Anorganischen Chemie. Atome
Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 361 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer
Wiederholung der letzten Vorlesungsstunde: Thema: Metallbindung / Salzstrukturen
Wiederholung der letzten Vorlesungsstunde: Thema: Metallbindung / Salzstrukturen Der metallische Zustand, Dichtestpackung von Kugeln, hexagonal-, kubischdichte Packung, Oktaeder-, Tetraederlücken, kubisch-innenzentrierte
3. Struktur des Festkörpers
3. Struktur des Festkörpers 3.1 Kristalline und amorphe Strukturen Amorphe Struktur - Atombindung ist gerichtet - unregelmäßige Anordnung der Atome - keinen exakten Schmelzpunkt, sondern langsames Erweichen,
Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren
Wechselwirkung geladener Teilchen in Materie Physik VI Sommersemester 2008 Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Szintillationsdetektoren
4. Fehleranordnung und Diffusion
4. Fehleranordnung und Diffusion 33 4. Fehleranordnung und Diffusion Annahme: dichtes, porenfreies Oxid Materialtransport nur durch Festkörperdiffusion möglich Schematisch: Mögliche Teilreaktionen:. Übergang
Temperatur. Gebräuchliche Thermometer
Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!
Physikalische Chemie 0 Klausur, 22. Oktober 2011
Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden
3. Halbleiter und Elektronik
3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden
2.3 Intermolekulare Anziehungskräfte und Molekülkristalle
2.3 Intermolekulare Anziehungskräfte und Molekülkristalle Kinetische Energie der Moleküle / Aggregatzustand Bau und Struktur der Moleküle Intermolekulare Anziehungskräfte Kräfte zwischen Molekülen Van-der-Waals-Kräfte
Festkörper. Flüssigkristalle. Festkörper = Kristalle. Gitterstruktur. Elementarzelle
Festkörper. Flüssigkristalle Festkörper = Kristalle och höhere Dichte periodische Struktur i große Bereiche, Ferordug stark begrezte Bewegug freie Schwigug ud Rotatio, aber fast keie Traslatio Volume-
Vorlesung Physik für Pharmazeuten PPh Wärmelehre
Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild
BIOPHYSIK Damjanovich, Fidy, Szöllősi:
BIOPHYSIK 2017 Wintersemester Technische Einleitung: Persönliche Information Skript/Hilfsmittel und Vorlesungs Informationen weiter Bemerkungen Si Einheiten, Grössenordnungen, Gr. Alphabet, Phys. Konstanten
= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden
2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte
Grundlagen der Technischen Informatik
Grundlagen der Technischen Informatik Dr. Wolfgang Koch Friedrich Schiller Universität Jena Fakultät für Mathematik und Informatik Rechnerarchitektur [email protected] Inhalt Grundlagen der Techn.
3.4. Leitungsmechanismen
a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie
E 2 Temperaturabhängigkeit elektrischer Widerstände
E 2 Temperaturabhängigkeit elektrischer Widerstände 1. Aufgaben 1. Für die Stoffe - Metall (Kupfer) - Legierung (Konstantan) - Halbleiter (Silizium, Galliumarsenid) ist die Temperaturabhängigkeit des elektr.
Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung
Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung a) Wärmestrahlung b) Wärmeleitung c) Wärmeströmung d) Diffusion 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) Versuche: Wärmeleitung
Kinetische Energie der Moleküle / Aggregatzustand
2.3 Intermolekulare Anziehungskräfte und Molekülkristalle Kräfte zwischen Molekülen - Van-der-Waals-Kräfte Orientierungskräfte bzw. Dipol-Dipol-Kräfte Induktionskräfte bzw. induzierte Dipole Dispersionskräfte
Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie
Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele
F02. Bandabstand von Germanium
F02 Bandabstand von Germanium Im Versuch wird der elektrische Widerstand eines Halbleiterstücks aus Germanium in Abhängigkeit von der Temperatur gemessen. Mit höherer Temperatur werden gemäß Gleichung
Buch Seite 3-5. WIW - HTL St. Pölten
Aufbau der Materie Aggregatzustände Buch Seite 3-5 A.1.1 1 Stoffbegriff / Materie / Energie Materie ist die Gesamtheit aller Stoffe: Jeder Stoff füllt einen Raum V (Einheit: m³) aus Jeder Stoff besitzt
Chemiefüringenieure. von Dr. rer. nat. Angelika Vinke, Prof. Dr.Gerolf Marbach, Prof. Dr. rer. nat. Johannes Vinke 2., überarbeitete Auflage
Chemiefüringenieure von Dr. rer. nat. Angelika Vinke, Prof. Dr.Gerolf Marbach, Prof. Dr. rer. nat. Johannes Vinke 2., überarbeitete Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Einführung 1 2
Vorlesung Allgemeine Chemie (CH01)
Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut
Typische Eigenschaften von Metallen
Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls
Die kovalente Bindung
Die kovalente Bindung Atome, die keine abgeschlossene Elektronenschale besitzen, können über eine kovalente Bindung dieses Ziel erreichen. Beispiel: 4 H H + C H H C H H Die Wasserstoffatome erreichen damit
Atomverband mit festem Atomzahlverhältnis. Anzahl der Atome veränderlich? (bei festem Atomzahlverhältnis) Elektrisch Leitend?
L3 1 Atomverband mit festem Atomzahlverhältnis. Ja Anzahl der Atome veränderlich? (bei festem Atomzahlverhältnis) Nein Ja Elektrisch Leitend? Nur in der Schmelze? Nein Ionenkristall Beliebig erweiterbar
Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik
13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.
Onsagersche Gleichung. Energetische Beziehungen
Onsagersche Gleichung. Energetische Beziehungen R I 4 V t t 1 r 8... D A p l J LX c x Zustandsgrössen sind Grössen, die zur Beschreibung des Zustandes eines stofflichen Systems dienen, T, V, p, m,... T,
Opto-elektronische. Materialeigenschaften VL # 4
Opto-elektronische Materialeigenschaften VL # 4 Vladimir Dyakonov [email protected] Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,
INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11
INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Halleffekt 1 Ziel Durch Messungen des Stroms und der Hallspannung
Hochschule Düsseldorf University of Applied Sciences. 26. April 2017 HSD. Energiespeicher Wärme
Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger
Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007
Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,
Elektrischer Strom S.Alexandrova 1
Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches
Klaus Stierstadt. Physik. der Materie VCH
Klaus Stierstadt Physik der Materie VCH Inhalt Vorwort Tafelteil hinter Inhaltsverzeichnis (Seiten TI-T XVII) V Teil I Mikrophysik - Die Bausteine der Materie... l 1 Aufbau und Eigenschaften der Materie
Kristallstruktur 1 Tetraederwinkel Die Millerschen Indizes Die hcp-struktur Bravais-Gitter 3
In ha Itsverzeichn is Vorwort V 1 ALl Al.2 A1.3 Al.4 Al.5 Al.6 Al.7 Al.8 Kristallstruktur 1 Tetraederwinkel.............................................................. 1 Die Millerschen Indizes......................................................
9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität
9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,
Inhaltsverzeichnis. Vorwort. Wie man dieses Buch liest. Periodensystem der Elemente
Inhaltsverzeichnis Vorwort Wie man dieses Buch liest Periodensystem der Elemente v vii xiv 1 Flüssigkristalle 1 1.1 Motivation und Phänomenologie.................. 1 1.2 Was ist ein Flüssigkristall?.....................
Name: Punktzahl: von 57 Note:
Testen Sie Ihr Wissen! Übungsprobe zu den Tertia-Themen und Säure-Base-Reaktionen Name: Punktzahl: von 57 Note: Für die folgenden Fragen haben Sie 60 Minuten Zeit. Viel Erfolg! Hilfsmittel: das ausgeteilte
Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K
Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala
Wärmelehre/Thermodynamik. Wintersemester 2007
Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #7 am 18.01.006 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.
Konzepte der anorganischen und analytischen Chemie II II
Konzepte der anorganischen und analytischen Chemie II II Marc H. Prosenc Inst. für Anorganische und Angewandte Chemie Tel: 42838-3102 [email protected] Outline Einführung in die Chemie fester
Grundpraktikum für Biologen 2016
Grundpraktikum für Biologen 2016 31.03.2016 Übersicht # 2 Kovalente Bindung Freies Elektronenpaar Einzelnes Elektron Oktett erfüllt Einzelne Chloratome haben einen Elektronenmangel Reaktion zu Cl 2 erfüllt
Dielektrizitätskonstante
Dielektrizitätskonstante Spannung am geladenen Plattenkondensator sinkt, wenn nichtleitendes Dielektrikum eingeschoben wird Ladung bleibt konstant : Q = C 0 U 0 = C D U D Q + + + + + + + + + + + - - -
(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik
Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff
Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid
R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Halbleiter Widerstandsbestimmung durch Strom - Spannungsmessung Versuch: Widerstandsbestimmung durch Strom und Spannungsmessung. 1. Leiter : Wendel
Physikalische Chemie 1
Physikalische Chemie 1 Christian Lehmann 31. Januar 2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Teilgebiete der Physikalischen Chemie............... 2 1.1.1 Thermodynamik (Wärmelehre)............... 2 1.1.2
15. Vom Atom zum Festkörper
15. Vom Atom zum Festkörper 15.1 Das Bohr sche Atommodell 15.2 Quantenmechanische Atommodell 15.2.1 Die Hauptquantenzahl n 15.2.2 Die Nebenquantenzahl l 15.2.3 Die Magnetquantenzahl m l 15.2.4 Die Spinquantenzahl
Alles was uns umgibt!
Was ist Chemie? Womit befasst sich die Chemie? Die Chemie ist eine Naturwissenschaft, die sich mit der Materie (den Stoffen), ihren Eigenschaften und deren Umwandlung befasst Was ist Chemie? Was ist Materie?
Grundlagen der Chemie Lösungen Prof. Annie Powell
Lösungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Inhalte Konzentrationsmaße Wasser als Lösungsmittel Solvatation,
Halbleiter, Dioden. wyrs, Halbleiter, 1
Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten
Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen
Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen III.1 Halbleiter: Einzelne Atome eines chemischen Elements besitzen nach dem Bohrschen Atommodell einen positiv geladenen
PROBLEME AUS DER PHYSIK
Helmut Vogel PROBLEME AUS DER PHYSIK Aufgaben und Lösungen zur 16. Auflage von Gerthsen Kneser Vogel Physik Mit über 1100 Aufgaben, 158 Abbildungen und 16 Tabellen Springer-Verlag Berlin Heidelberg New
Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung
- Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,
Lernmaterial Lernfeld 1 Grundlagen Physik und Chemie. Chemische Grundlagen, Bindungsarten. Zu Erinnerung : Schematischer Aufbau eines Wasserstoffatoms
Chemische Grundlagen, Bindungsarten Zu Erinnerung : Schematischer Aufbau eines Wasserstoffatoms Hier ist ein Lithiumatom schematisch dargestellt. Elektronen umkreisen den Kern in diskreten Bahnen IQ Technikum
Modul: Allgemeine Chemie
Modul: Allgemeine Chemie 5. Grundlagen der chemischen Bindung Ionenbindung Eigenschaften, Ionengitter, Kugelpackung Strukturtypen, Kreisprozesse Kovalente Bindung Lewis Formeln, Oktettregel, Formalladungen
4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse
4.2 Metallkristalle - 75 % aller Elemente sind Metalle - hohe thermische und elektrische Leitfähigkeit - metallischer Glanz - Duktilität (Zähigkeit, Verformungsvermögen): Fähigkeit eines Werkstoffs, sich
Basiswissen Physikalische Chemie
Claus Czeslik Heiko Seemann Roland.Winter Basiswissen Physikalische Chemie 4., aktualisierte Auflage STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis Vorwort Liste der wichtigsten Symbole V XI 1 Aggregatzustände.
8. Vorlesung EP. EP WS 2009/10 Dünnweber/Faessler
8. Vorlesung EP I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität Versuche: Dehnung eines Drahtes und
8. Vorlesung EP. EP WS 2008/09 Dünnweber/Faessler
8. Vorlesung EP I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität Versuche: Dehnung eines Drahtes und
Zustandsbeschreibungen
Aggregatzustände fest Kristall, geordnet Modifikationen Fernordnung flüssig teilgeordnet Fluktuationen Nahordnung gasförmig regellose Bewegung Unabhängigkeit ngigkeit (ideales Gas) Zustandsbeschreibung
Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2
Thermochemie Energie ist die Fähigkeit, Arbeit zu leisten. E pot = m g h E kin = ½ m v 2 Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Eine wirkende Kraft
Festkörperphys i. Einführung in die Grundlagen
Harald Ibach Hans Lüth Festkörperphys i Einführung in die Grundlagen 1. Die chemische Bindung in Festkörpern 1 1.1 Das Periodensystem 1 1.2 Kovalente Bindung 4 1.3 DieIonenbindung 9 1.4 Metallische Bindung
