8. Die Schrödinger-Gleichung und ein-dimensionale Potentiale

Größe: px
Ab Seite anzeigen:

Download "8. Die Schrödinger-Gleichung und ein-dimensionale Potentiale"

Transkript

1 Die Schrödinger-Gleichung und ein-dimensionale Potentiale 8.1 Mathematische Form der Schrödinger-Gleichung Newton sche Bewegungsgleichungen: partielle Differential-Gleichungen für Ort und Impuls, können nicht hergeleitet werden, es gibt nur Plausibilitätsbetrachtungen Schrödinger-Gleichung: kann ebenfalls nicht hergeleitet werden Zeitabhängige Schrödinger-Gleichung in einer Dimension: i (x,t) t = 2 2 (x,t) + V (x)(x,t) 2m x 2 Dabei ist V(x) die potentielle Energie Zweite räumliche Ableitung wird in Beziehung gesetzt zur ersten zeitlichen Ableitung der Wellenfunktion i: Wellenfunktionen als Lösungen der Schrödinger-Gleichung müssen nicht reell sein Die Wellenfunktion selbst, (x,t), ist nicht messbar, messbar ist nur die Wahrscheinlichkeitsdichte (x,t) 2 Stehende Wellen in einem Potentialtopf: A sin(kx) cos(t + ) Jede stehende Welle kann aus einem Produkt einer zeitlich und einer räumlich veränderlichen Funktion dargestellt werden Allgemein: (x,t) =(x)e it mit e it = cost + isint Mit diesem Ansatz lässt sich die zeitliche Ableitung der Wellenfunktion wie folgt schreiben: i (x,t) = i t t (x)eit = i(i)(x)e it = (x)e it = E (x)e it Dabei ist E = die Energie des Teilchens Damit ergibt sich die zeitunabhängige Schrödingergleichung: 2 2 (x) + V (x) (x) = E (x) 2m x 2 Die potentielle Energie V(x) hänge nur vom Ort und nicht von der Zeit ab Berechnung stationärer Zustände (=stehender Wellen) in einem zeitunabhängigen Potential: es genügt die Lösung der (x)zu bestimmen Randbedingungen werden auch durch die Form von V(x) bestimmt. Zusätzlich gibt es immer noch die Normierungsbedingung: (x) 2 dx =1 Falls die Lösungen der zeitunabhängigen Schrödingergleichung bekannt sind, so ergibt sich für die Zeitabhängigkeit: n (x,t) = n (x) e i E n t

2 Teilchen im Kasten mit unendlich hohen Wänden 0 für 0 < x < d Betrachte folgendes Potential: V (x) = für x < 0 oder x > d Innerhalb des Kastens: potentielle Energie verschwindet, d.h. V=0 Damit ergibt sich für die Schrödinger-Gleichung 2 2 (x) = E (x) mit den Randbedingungen (x) = 0 für x=0 und x=d 2m x 2 mit der Abkürzung k 2 = 2mE 2 lässt sich die Schrödinger-Gleichung folgendermassen schreiben: d 2 (x) + k 2 (x) = 0 dx 2 Allgemeine Lösung: (x) = Asinkx + Bcoskx, wobei A und B Konstanten sind, die durch die Randbedingungen (x = 0) = 0 =(x = d) festgelet sind: (0) = Asin0 + Bcos0 = 0 + B = 0, d.h. (x) = Asinkx mit (x = d) = 0 = Asinkd folgt kd = n bzw. k n = n d Normierung: A n = 2 d Allgemeine Lösung für die Wellenfunktion: n = Energie: E n = 2 2 k n 2m = 2 n 2m d 2 h 2 = n 2 = n 2 E 8md nx sin d d Mit E 1 = h 2 8md 2 Diese Lösungen entsprechen genau denjenigen, die wir über die Überlegungen für eine eingespannte Saite gefunden haben. 8.3 Teilchen im Kasten mit endlich hohem Potential Betrachten wir ein Teilchen, das in einem Gebiet eingeschlossen ist, dessen Wände nicht unendlich hoch sind. Das Potential ist dann wie folgt: 0 für 0 < x < d V (x) = V für x < 0 oder x > d Dieses Potential ist bei x=0 und bei x=d unstetig, aber überall endlich. Betrachten wir hier den Fall des eingesperrten Teilchens, d.h. E<V

3 8.3 Innerhalb des Kastens, 0<x<d, ist die Schrödingergleichung dieselbe wie im Falle des Kastens mit unendlich hohen Wänden: 2 2 (x) = E (x) bzw. d 2 (x) + k 2 (x) = 0, k 2 = 2mE > 0 2m x 2 dx 2 2 Allgemeine Lösung: (x) = Asinkx + Bcoskx Aber hier: andere Randbedingungen Ausserhalb des Kastens: 2 2 (x) + V (x) = E (x) 2m x 2 Oder d 2 (x) k 2 (x) = 0 mit k 2 = 2m ( V E)> 0 dx 2 2 Im folgenden müssen beide Gleichungen gelöst werden mit einer Wellenfunktion, die am Übergang x=0 und x=d stetig ist, ebenso ihre Ableitung Im Topf: oszillierende Lösungen, e ±ikx Ausserhalb des Topfes: exponentiell abklingende Lösungen, e ±k x Die exponentiell anwachsenden Lösungen sind unphysikalisch, weil die entsprechenden Wellenfunktionen nicht normierbar sind. Im folgenden diskutieren wir allgemein die Eigenschaften von Wellenfunktionen. 8.4 Wellenfunktionen in eindimensionalen Potentialen Orthogonalität Zwei Wellenfunktionen, die zu verschiedenen Energieeigenwerten gehören, müssen zueinander orthogonal sein: * 1 2 = 0 Beweis: 2m * 1 2 dx + * 1 V (x) 2 dx = E 2 * 1 2 dx 2 2m 2 * 1 dx + 2 V (x) * 1 dx = E 1 2 * 1 dx 2 Die ersten beiden Terme auf der linken Seite sind jeweils gleich: 0 = ( E 2 E 1 ) 2 * 1 dx Falls die Energieeigenwerte verschieden sind, so verschwindet das Integral. Was passiert, falls die beiden Energieeigenwerte entartet sind? 0 = E 2 E 1 Dann lassen sich durch lineare Überlagerung der Original-Funktionen zwei zueinander orthogonale Funktionen konstruieren:

4 8.4 + = = 1 2 * + d 3 r = Eindimensionale Barrieren Potential und Wellenfunktion hängen nur von einer Raumrichtung ab. Schrödingergleichung: i (x,t) t = 2 2 (x,t) + V (x)(x,t) 2m x 2 Stationäre Zustände, da das Potential V(x) nicht von der Zeit abhängt: 2 2 (x,t) + V (x)(x,t) = E(x,t) 2m x 2 Differentialgleichung zweiter Ordnung: - 2 linear unabhängige Lösungen - 2 (x,t) x 2 muss begrenzt sein, falls V(x), E und (x,t) begrenzt sind - (x,t) und (x,t) x sind stetig Falls V(x)=V eine Konstante ist, unabhängig von x, dann lautet die allgemeine Lösung: (x,t) = Ae ip / + Be ip /, mit p = 2m(E V ) Die Lösung ist eine Linearkombination von Wellen mit Impuls p und p Was passiert bei einer Potentialbarriere? 0, x 0 V (x) = V > 0, x 0 Unterscheide zwei verschiedene Fälle: 1.E>V: p = 2m(E V ) ist eine reele Zahl, d.h. klassisch kann sich das Teilchen sowohl bei x>0 wie bei x<0 aufhalten 2. E<V: p = 2m(E V ) ist imaginär, d.h. exponentiell gedämpfte oder wachsende Welle für x>0 klassisch hat das Teilchen nicht genügend Energie, um sich im Gebiet x>0 aufzuhalten.

5 8.5 Fall 1: Eine ebene Welle mit Impuls p = (x) = Aeipx / + Be ipx / für x < 0 Ce ip x / für x > 0 2mE laufe von links nach rechts A: Amplitude der einfallenden Welle B: Amplitude der reflektierten Welle C: Amplitude der transmittierten Welle p = 2m(E V ) p = 2mE Stetigkeit der Wellenfunktion (x) an der Stelle x=0: A+B=C Stetigkeit der Ableitung: Ap Bp = Cp B = p p p + p A C = 2p p + p A Teilweise Reflektion der Welle ist analog zu der Reflektion einer optischen Welle an einem Spiegel Für ein Teilchen ist die Möglichkeit einer Reflektion ein rein quantenmechanischer Effekt, falls die Energie klassisch ausreichen würde, um die Barriere zu überqueren. Wie sieht die Reflektion und Transmission für Wellenpakete aus? Betrachte Wellenpaket: (x,t) = (x,t) = 0 dp 2 f ( p) e ipx + p p p + p eipx e iet / für x<0 dp 2 p f ( p) 2 p + p eip x e iet / für x>0 0 Das so definierte Wellenpaket (x,t) löst die zeitabhängige Schrödingergleichung für die Potentialstufe Integration erfolgt von 0 bis unendlich, damit die einlaufende Welle nur Komponenten enthält, die nach rechts laufen x<0: einlaufend (x,t) = dp f (p)e i( pxet )/, reflektiert (x,t) = dp 2 f ( p) p p p + p ei( pxet ) / X>0: transmittiert (x,t) = 0 dp 2p f (p) 2 p + p ei( p xet ) /

6 8.6 Wie bewegen sich diese Wellenpakete? Nehmen wir an, dass f(p) ein Maximum hat um einen Wert p 0, f ( p = p 0 ) sei eine reele Zahl t<0: reflektiertes und transmittiertes Wellenpaket sind vernachlässigbar d.h. die einfallende Welle wird zentriert sein um x = p 0 t solange x<0. m Für t>0 sei das einfallende Wellenpaket vernachlässigbar klein d.h. die reflektierte Welle ist zentriert um x = p 0 t solange x<0. m Die transmittierte Welle ist zentriert um x = p 0 t solange x>0 m Vorstellung: die einlaufende Welle trifft die Stufe bei t=0 und verwandelt sich dann in ein reflektiertes und transmittiertes Wellenpaket Wichtig: Das Teilchen zerfällt nicht in zwei Teilchen, nur seine Wahrscheinlichkeitsamplitude teilt sich in zwei beim Auftreffen auf die Potentialstufe. Das Problem der scharfen Kante hat keinen klassischen Grenzwert. Im klassischen Regime braucht es eine sanft ansteigende Potentialbarriere mit l p >>, wobei l die Distanz ist, über die die Stufe ansteigt. Fall 2: E<V Lösung wie im vorherigen Fall (x) = Aeipx / + Be ipx / für x < 0 Ce ip x / für x > 0 mit p = 2m(E V ), p = 2mE, B = p p p + p A, C = 2p p + p A p = 2m(E V ) ist komplex, d.h. mit k reel, p = ik Die Lösung p = ik unphysikalisch führt zu einer exponentiell wachsenden Welle für x>0 und ist damit

7 8.7 Amplitude der reflektierten Welle: B 2 = p p 2 p + p ( )( p + ik) ( )( p ik) A 2 = A 2 A 2 = p ik p + ik die ganze einfallende Welle wird reflektiert, es gibt keine Transmission Ansatz: B A = e2i (E ) = N(E), sei eine reele Funktion B A = e2i (E ) = p ik p + ik -> k = pcot 2i (E ) Die reflektierte Welle ist in ihrer Phase bei x=0 gegenüber der einfallenden Welle um e p 0 e 2i (E ) 1 Für den Fall E>V gibt es keine Phasenverschiebung zwischen einfallender und reflektierter Welle, dafür sind die Amplituden verschieden Lösung für x>0: (x) = Ce ip x / = Ce kx / Dies deutet an, dass es eine endliche Wahrscheinlichkeit gibt, das Teilchen im klassisch verbotenen Bereich zu finden. Was passiert mit der Energieerhaltung? Potentielle Energie > totale Energie? Falls das Teilchen im verbotenen Gebiet experimentell beobachtet wird, dann wird es nicht länger in einem Zustand mit der Energie E>V sein. Der Vorgang der Ortsmessung führt zu einer Unschärfe der Energie. Teilchen dringt in die Barriere ein auf einer typischen Länge 1 k Die Ortsunschärfe ist also x 1 k Impulsunschärfe: p x k Unschärfe in der kinetischen Energie: ( p) 2 2m > 2 k 2 2m = V E Totale Energie = E + kinetische Energie durch experimentelle Lokalisierung des Teilchens Energieunschärfe ist gross genug, dass die totale Energie des Teilchens nicht kleiner ist als V! Falls wir mit Sicherheit sagen können, dass sich das Teilchen im Bereich x>0 aufhält, dann können wir nicht sagen, dass seine Energie kleiner ist als V Falls wir mit Sicherheit sagen können, dass die Teilchenenergie kleiner ist als V, dann gibt es eine Wahrscheinlichkeitsamplitude für das Teilchen im Bereich x<0.

8 Tunnelbarrieren Die Tatsache, dass Teilchen in klassisch verbotene Bereiche eindringen können. Führt zu dem wichtigen Phänomen des Tunnelns. Potentialbarriere der Höhe V>0 zwischen x=0 und x=a Betrachte Teilchen, das von links x<0 mit Energie E<V einfällt Ae ipx / + Be ipx / für x < 0 Wellenfunktion: (x) = Ce kx / +De kx / für 0 < x < a ip(xx )/ AS(E)e für x > a p = 2mE, k = 2m(V E) Mit e kx / Da die Stufe nur die Länge a hat, wächst die Lösung nicht ins Unendliche und ist damit physikalisch möglich Die Randbedingungen bei x=0 und x=a erfodern, dass A S(E) ungleich Null ist. Konsequenz: Obwohl ein klassisches Teilchen die Barriere nicht durchdringen kann, E<V, kann ein quantenmechanisches Teilchen, das von links auf die Barriere einfällt, mit einer gewissen Wahrscheinlichkeit rechts von der Barriere gefunden werden. Dieses Phänomen nennt man Tunneln. S(E) heisst das Tunnel-Matrix-Element oder die Transmissionsamplitude Entspricht Wahrscheinlichkeitsamplitude, dass ein von links einfallendes Teilchen mit der Energie E die Potentialstufe hindurch tunnelt Stetigkeit der Wellenfunktion: A + B = C + D x=0: Ce ka + De ka = AS(E) x=a: Stetigkeit der Ableitung: x=0: A ip B ip = Ck + Dk

9 8.9 x=a: Cke ka + Dke ka = AS(E) ip 4 Gleichungen, 4 Unbekannte Ergebnis: sinh 2 (ka) T(E) = S(E) 2 = 1+ 4 E V ( 1 E V ) 1 Für E<V nimmt T(E) monoton mit E zu Die Möglichkeit des Tunnels ist von vorne herein in die Schrödingergleichung eingebaut. Tunneln ist das Hineinlecken der Amplitude der Wellenfunktion in eine Potentialbarriere. Wie sieht es jetzt mit der Energieerhaltung aus: Annahme: ein Teilchen mit Energie E<V falle zu einem frühen Zeitpunkt von links auf die Barriere ein, wir beobachten es zu einem späteren Zeitpunkt rechts von der Barriere Welche Zeit hat das Teilchen in der Barriere verbracht? In der Barriere ist seine totale Energie E<V Kann man die Energie des Teilchens messen, so lange es durch die Barriere tunnelt? Et > Benutze Unschärferelation: E :Energie-Unschärfe t : Zeit-Unschärfe, während der das Teilchen tunnelt t Falls lang -> Energie kann sehr genau gemessen werden Die Zeit zwischen dem Einlaufen des Wellenpakets von links und Auslaufen des /(V E) E > V E Wellenpakets nach rechts ist immer kleiner als -> Ergebnis: wir können nie sagen, dass das Teilchen die Energie E<V hat und gleichzeitig in der Barriere war Extreme Situation: V>>E, Barriere sehr lang Die Barriere zerstört die Form des Wellenpakets und es ist schwierig eine Zeit zu definieren, in der das Teilchen durch die Barriere tunnelt

10 8.10 t : allgemeine Interpretation: Zeit, um die Energie zu messen Beispiel freies Teilchen: nur kinetische Energie, kann sehr genau bestimmt werden über Impulsmessung Impulsmessung kann beliebig schnell erfolgen, aber: dabei geht Ortsinformation verloren es ist keine Aussage möglich, wann das Teilchen welchen Vorgang durchführen wird Der Verlust der Möglichkeit, genaue Vorhersagen über Zeitabläufe zu machen, ist begleitet von genauene Energiemessungen Tunnelbarrieren in Festkörpern: 2 Metalle voneinander getrennt durch dünne isolierende Schicht, ca. 10 nm dick Beim Anlegen einer Spannung fliesst ein kleiner Strom, ein sogenannter Tunnelstrom. Der Isolator dient als Tunnelbarriere zwischen den beiden Metallen. 8.7 Experimentell realisierte 1D Potentiale In den letzten 20 Jahren ist es gelungen Schichten von verschiedenen Halbleiter-Materialien mit atomarer Präzision aufeinander aufzuwachsen. Die experimentelle Methode heisst Molekular-Strahl-Epitaxie.

Potentialstufen. Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen.

Potentialstufen. Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen. Potentialstufen Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen. Stetigkeit von ψ(x, ψ (x für stückweise stetiges Potential betrachte

Mehr

8. Eindimensionale (1D) quantenmechanische Probleme. 8.1 Potentialtopf mit endlich hohen Wänden:

8. Eindimensionale (1D) quantenmechanische Probleme. 8.1 Potentialtopf mit endlich hohen Wänden: 08. 1D Probleme Page 1 8. Eindimensionale (1D) quantenmechanische Probleme 8.1 Potentialtopf mit endlich hohen Wänden: alle realen Potentialtöpfe haben endlich hohe Wände 1D Potentialtopf mit U = 0 für

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

Übungen Quantenphysik

Übungen Quantenphysik Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Festkörperelektronik 3. Übung

Festkörperelektronik 3. Übung Festkörperelektronik 3. Übung Felix Glöckler 02. Juni 2006 1 Übersicht Themen heute: Motivation Ziele Rückblick Quantenmechanik Aufgabentypen/Lösungsmethoden in der QM Stückweise konstante Potentiale Tunneln

Mehr

2.6 Der endliche Potentialtopf

2.6 Der endliche Potentialtopf .6 Der endliche Potentialtopf W E Ψ 3 3.38 ev V() Ψ 1.5 ev Ψ 1.38 ev L = 1 nm - Beim Übergang vom unendlichen zum endlichen Potentialtopf ändern sich die Lösungen qualitativ. Eine wichtige Rolle spielen

Mehr

T2 Quantenmechanik Lösungen 3

T2 Quantenmechanik Lösungen 3 T2 Quantenmechanik Lösungen LMU München, WS 1/18.1. Wellenfunktion und Wahrscheinlichkeit Prof. D. Lüst / Dr. A. Schmidt-May version: 2. 11. Es seien x 1, x 2, N drei reelle Konstanten und x 2 > x 1 >.

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

Musterlösung 01/09/2014

Musterlösung 01/09/2014 Musterlösung 1/9/14 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 1km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Der Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 3. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 3. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 3. Vorlesung Pawel Romanczuk WS 2017/18 1 Zusammenfassung letzte VL Quantenzustände als Wellenfunktionen (Normierung) Operatoren (Orts-, Impuls

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle?

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? FK Ex 4-07/09/2015 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Potentialtöpfe und Potentialbarrieren

Potentialtöpfe und Potentialbarrieren Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /

Mehr

Kapitel 10. Potentiale Elektronen im Potentialtopf

Kapitel 10. Potentiale Elektronen im Potentialtopf Kapitel 10 Potentiale 10.1 Elektronen im Potentialtopf Mit dem Aufstellen der Schrödinger-Gleichung ist man der realistischen Beschreibung von Quantenobjekten ein großes Stück nähergekommen. Unser Interesse

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

6.7 Delta-Funktion Potentialbarriere

6.7 Delta-Funktion Potentialbarriere Skript zur 9. Vorlesung Quantenmechanik, Montag den 6. Mai, 0. 6.7 Delta-Funktion Potentialbarriere Betrachten wir nun eine negative) δ-funktion Potentialbarriere mit dem Potential V) = v 0 δ a). V 0 a

Mehr

Relativistische Quantenmechanik und die Klein-Gordon Gleichung

Relativistische Quantenmechanik und die Klein-Gordon Gleichung Relativistische Quantenmechanik und die Klein-Gordon Gleichung Oliver Smith o smit01 wwu.de) 17. Februar 2015 Wir wollen die Klein-Gordon Gleichung untersuchen und Formalismen einführen, um Parallelen

Mehr

8.2. Der harmonische Oszillator, quantenmechanisch

8.2. Der harmonische Oszillator, quantenmechanisch 8.. Der harmonische Oszillator, quantenmechanisch Quantenmechanische Behandlung Klassisch: Rückstellkraft für ein Teilchen der Masse m sei zur Auslenkung : 0.5 0.0 0.5 D m Bewegungsgleichung: m D F -D

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Theoretische Physik mit Maple, WS 2010/ Übungsblatt (Besprechung am ) R( ) ( ( ( ) ( ))) ( ) u ( x)

Theoretische Physik mit Maple, WS 2010/ Übungsblatt (Besprechung am ) R( ) ( ( ( ) ( ))) ( ) u ( x) Theoretische Physik mit Maple, WS 2010/2011 9. Übungsblatt (Besprechung am 24.1.2011) Quantenmechanische Streuung am Kastenpotential Wir betrachten die zeitunabhängige Schrödinger-Gleichung (ZuSG) und

Mehr

1 Die Schrödinger Gleichung

1 Die Schrödinger Gleichung 1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit

Mehr

Wellenfunktion. Kapitel 1. 1.1 Schrödinger - Gleichung

Wellenfunktion. Kapitel 1. 1.1 Schrödinger - Gleichung Kapitel 1 Wellenfunktion Diejenigen, die nicht schockiert sind, wenn sie zum ersten mal mit Quantenmechanik zu tun haben,habensie nicht verstanden. ( If you are not confusedby quantum physics then you

Mehr

III.3 Freie Schrödinger-Gleichung

III.3 Freie Schrödinger-Gleichung III.3 Freie Schrödinger-Gleichung 43 III.3 Freie Schrödinger-Gleichung In Abwesenheit von Potential V (x), d.h. für ein freies Teilchen mit Masse m, wird die zeitabhängige Schrödinger-Gleichung (III.b)

Mehr

Der Tunneleffekt Jan Lukas Becker. Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I

Der Tunneleffekt Jan Lukas Becker. Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I Der Tunneleffekt Jan Lukas Becker Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I Übersicht 1) Herleitung des Tunneleffekts 2) Der Tunneleffekt in Metallen 3) Einzel-Elektronen-Tunneln

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 2. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 2. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 2. Vorlesung Pawel Romanczuk WS 2017/18 1 Eine kurze Exkursion in die Wahrscheinlichkeitstheorie 2 Diskrete Variable Wahrscheinlichkeit Wert

Mehr

ist (ϕ,a,b reell), gibt es die beiden Wurzeln e iϕ/2 = a+ib

ist (ϕ,a,b reell), gibt es die beiden Wurzeln e iϕ/2 = a+ib UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Georg Maret (Experimentalphysik) Raum P 1009, Tel. (07531)88-4151 E-mail: Georg.Maret@uni-konstanz.de Prof. Dr. Matthias Fuchs (Theoretische Physik) Raum

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Probeklausur zu Physikalische Chemie II für Lehramt

Probeklausur zu Physikalische Chemie II für Lehramt Department Chemie Dr. Don C. Lamb http://www.cup.uni-muenchen.de/pc/lamb Probeklausur zu Physikalische Chemie II für Lehramt Zur Bearbeitung der Klausur ist nur der freie Platz dieser vor Ihnen liegenden

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Zeichnen Sie die Geraden mit den Gleichungen: a) y = 4 x + 1; b) 2y + 3x = 7; c) f(x) = 1 x 3 ; d) x -2 x + 3

Zeichnen Sie die Geraden mit den Gleichungen: a) y = 4 x + 1; b) 2y + 3x = 7; c) f(x) = 1 x 3 ; d) x -2 x + 3 Zusättzlliiche Übungen zu lliinearren Funkttiionen Aufgabe Zeichnen Sie die Geraden mit den Gleichungen: a) y = x + ; b) y + x = ; c) f(x) = x ; d) x - x + e) + =. Was fällt bei der Gerade e) auf? Aufgabe

Mehr

Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop

Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop 2. Februar 2011 Prof. Dr. Halfmann, Prof. Dr. Walser Quantenoptik und nichtlineare

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Die Schrödinger Gleichung

Die Schrödinger Gleichung Die Schrödinger Gleichung Eine Einführung Christian Hirsch Die Schrödinger Gleichung p. 1/16 Begriffserklärung Was ist die Schrödingergleichung? Die Schrödinger Gleichung p. 2/16 Begriffserklärung Was

Mehr

2m x + U(x) ψ(x) = Eψ(x),

2m x + U(x) ψ(x) = Eψ(x), 4. Woche 4.1 Beispiel der Lösung der Schrödinger-Gleichung: Das Rechteckpotential. Die stationäre Schrödinger-Gl. ist ) ( 2 2 2m x + U(x) ψ(x) = Eψ(x), 2 mit Parametern: Längenskala L, Energieskala U 0.

Mehr

Teil II: Quantenmechanik

Teil II: Quantenmechanik Teil II: Quantenmechanik Historisches [Weinberg 1] Den ersten Hinweis auf die Unmöglichkeit der klassischen Physik fand man in der Thermodynamik des elektromagnetischen Feldes: Das klassische Strahulungsfeld

Mehr

10.Einführung in die Festkörperphysik

10.Einführung in die Festkörperphysik 1.1 1.Einführung in die Festkörperphysik Die Festkörperphysik ist ein Zweig der modernen Physik, in dem mittlerweile ca. 5% aller Physiker arbeiten. Viele moderne Anwendungen insbesondere im Bereich der

Mehr

Strahlungsformel von M. Planck (1900) E = h ν = ω E = Energie ν = Frequenz ω = 2πν h = Wirkungsquantum 6.62608 10 34 Js = h/2π

Strahlungsformel von M. Planck (1900) E = h ν = ω E = Energie ν = Frequenz ω = 2πν h = Wirkungsquantum 6.62608 10 34 Js = h/2π Max Planck (1858 1947, Nobelpreis 1918) Hypothetische Erklärung des (klassisch nicht erklärbaren) Strahlungsverhaltens schwarzer Körper : eletromagnetische Strahlung wird nur in diskreten Portionen ( Quanten

Mehr

Ferienkurs Quantenmechanik Sommer 2009

Ferienkurs Quantenmechanik Sommer 2009 Physikdepartment Technische Universität München Max Knötig Blatt 4 Ferienkurs Quantenmechanik Sommer 009 Quantenmechanik mit Näherungsmethoden Mehrteilchensystem(** Zwei identische Bosonen werden in einem

Mehr

6 Eigenlösungen der eindimensionalen Wellengleichung

6 Eigenlösungen der eindimensionalen Wellengleichung 39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

(27) (28) 16. Büsching, F.: Küsteningenieurwesen 2002/13.1

(27) (28) 16. Büsching, F.: Küsteningenieurwesen 2002/13.1 . 8. Wellenenergien Für die nergie einer fortschreitenden regulären Sinuswelle liefert die Wellentheorie von AIRY-APAC einfache rgebnisse. s wird dabei die Gesamtenergie aus den Anteilen der potentiellen

Mehr

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit Lösungsvorschlag Übung 8 Aufgabe : Wellenfunktion und Aufenthaltswahrscheinlichkeit a) Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

7.3 Der quantenmechanische Formalismus

7.3 Der quantenmechanische Formalismus Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts

Mehr

Physik 4, Übung 11, Prof. Förster

Physik 4, Übung 11, Prof. Förster Physik 4, Übung 11, Prof. Förster Christoph Hansen Emailkontakt ieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten - 1 - Gewöhnliche Differentialgleichungen Teil II: Lineare DGLs mit konstanten Koeffizienten Wir wenden uns jetzt einer speziellen, einfachen Klasse von DGLs zu, die allerdings in der Physik durchaus beträchtliche

Mehr

Das Deuteronen Potential

Das Deuteronen Potential Das Deuteronen Potential N. Dorfinger, S. Gerber, G. Heinrich, O. Huber, N. Stevanecz, J. Weingrill 29. Mai 2004 Gesucht ist die Lösung des folgenden Potentials: 1 Aufgabenstellung Abbildung 1: Das Potential

Mehr

2.6. Der endliche Potentialtopf

2.6. Der endliche Potentialtopf .6. Der endliche Potentialtopf Anhand des unendlichen Potentialtopfes können nahezu alle grundsätzlichen Eigenschaften von elektronischen Eigenzuständen diskutiert werden. Aufgrund der Einfachheit der

Mehr

Ferienkurs Theoretische Quantenmechanik 2010

Ferienkurs Theoretische Quantenmechanik 2010 Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Quantenmechanik 010 1 dimensionale Probleme Inhaltsverzeichnis 1 Die Schrödingergleichung 1.1 Wiederholung

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Niedersachsen Übungsbuch für den Grundkurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der Gleichung zur Kurve... 9 Aufstellen

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

1.4. Die Wahrscheinlichkeitsinterpretation

1.4. Die Wahrscheinlichkeitsinterpretation 1.4. Die Wahrscheinlichkeitsinterpretation 1.4.1. Die Heisenbergsche Unschärferelation Wie kann der Welle-Teilchen-Dualismus in der Quantenmechanik interpretiert werden? gibt die Wahrscheinlichkeit an,

Mehr

4.4 Berechnung von Wirkungsquerschnitten

4.4 Berechnung von Wirkungsquerschnitten . Berechnung von Wirkungsquerschnitten. Berechnung von Wirkungsquerschnitten Bei Streuprozessen ist der Wirkungsquerschnitt ein Mass für die Wahrscheinlichkeit einer Streuung je einlaufendem Teilchenpaar

Mehr

Kapitel 6. Variationsrechnung

Kapitel 6. Variationsrechnung Kapitel 6 Variationsrechnung Die vorangegangenen Kapitel waren der relativistischen Kinematik gewidmet, also der Beschreibung der Bewegung von Teilchen, deren Geschwindigkeit nicht vernachlässigbar klein

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

Quantenmechanik I Sommersemester QM Web Page  teaching/ss13/qm1.d.html Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Zusätzliche Übung: Aufgrund des großen Andrangs bieten wir eine zusätzliche

Mehr

1.3. Wellenfunktionen

1.3. Wellenfunktionen 1.3. Wellenfunktionen 1.3.1. Materiewellen Die Welleneigenschaften von Materie legen die Suche nach einer Wellengleichung nahe. Randbedingen für Wellen sind eine Ursache für das Auftreten der Quantisierung.

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 1 Prof Dr Alexander Shnirman Blatt 7 Dr Boris Narozhny, Dr Holger Schmi 25521 1 Die

Mehr

Dieter Suter - 223 - Physik B3, SS03

Dieter Suter - 223 - Physik B3, SS03 Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie

Mehr

5 Der quantenmechanische Hilbertraum

5 Der quantenmechanische Hilbertraum 5 Der quantenmechanische Hilbertraum 5.1 Die Wellenfunktion eines Teilchens Der Bewegungs- Zustand eines Teilchens Elektrons zu einem Zeitpunkt t, in der klassischen Mechanik das Wertepaar r,p von Ort

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2014 Prof. Dr. F. Kremer

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2014 Prof. Dr. F. Kremer Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 04 Prof. Dr. F. Kremer Übersicht der Vorlesung am.6.04 Wiederholung (Drude-Modell ( freies Elektronengas ), Plasmaschwingung, Grenzen des Drude-

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

1 Elektromagnetische Wellen im Vakuum

1 Elektromagnetische Wellen im Vakuum Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0

Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0 Vorlesung 11 Streuung bei nieigen Energien Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen darstellen können σ = 4π k l + 1 sin δ l. 1 l= Allerdings hat diese Reihe

Mehr

Eindimensionale Potentialprobleme

Eindimensionale Potentialprobleme Kapitel 4 Eindimensionale Potentialprobleme Wir werden nun die Schrödingergleichung in der Ortsdarstellung für einige einfache Potentialprobleme lösen. Wir betrachten ein spinloses Teilchen der Masse m,

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Versuch Erzwungene Schwingung

Versuch Erzwungene Schwingung Versuch Erzwungene Schwingung erneuert aus Studiengebühren Vorbereitung: Drehschwingung, Gedämpfte Schwingung, Erzwungene Schwingung, Phasenraumdiagramme, Wirbelstrombremse Literatur: Standard-Lehrbücher

Mehr

7. Materiewellen und Energiequantisierung

7. Materiewellen und Energiequantisierung 7.1 7. Materiewellen und Energiequantisierung 7.1 Energiequantisierung in Atomen Weisses Licht: kontinuierliches Spektrum, d.h. enthält alle Wellenlängen des sichtbaren Bereichs Anregung von Atomen in

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Zweite Projektarbeit Quantenmechanik, SS Schrödingers Wellengleichung

Zweite Projektarbeit Quantenmechanik, SS Schrödingers Wellengleichung Zweite Projektarbeit Quantenmechanik, SS 2008 Gruppe Heisenberg Allmer Philipp Blatnik Matthias Hölzl Bernhard Kuhness David 04allmer@edu.uni-graz.at matthias.blatnik@edu.uni-graz.at 01hoelzl@edu.uni-graz.at

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Glanz und Farbe der Metalle

Glanz und Farbe der Metalle https://www.itp.uni-hannover.de/zawischa.html Glanz und Farbe der Metalle Dietrich Zawischa ITP, Leibniz University Hannover, Germany Ausgehend von den Maxwellgleichungen soll das Reflexionsvermögen von

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (janvoncosel@gmx.de) Haleh

Mehr

Schriftliche Leistungsüberprüfung PC/CBI

Schriftliche Leistungsüberprüfung PC/CBI Abschlusstest - Physikalische Chemie CBI/LSE - SS09 - Blatt 1 Schriftliche Leistungsüberprüfung PC/CBI SS08-31.07.2009 Hörsaal H1/H2/H3 Name: Vorname: geb. am: in: Matrikelnummer: Studienfach: Unterschrift:

Mehr

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind Im Folgenden finden Sie den Text der am 28.7.2010 geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind unter Umständen nicht vollständig oder perfekt, und sie

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 2013/2014

Vorlesung Molekülphysik/Festkörperphysik Wintersemester 2013/2014 Vorlesung "Molekülhysik/Festkörerhysik" Wintersemester 13/14 Prof. Dr. F. Kremer Übersicht der Vorlesung am 8.1.13 Die Schrödingergleichung für einen harmonischen Oszillator Die Nullunktsenergie des harmonischen

Mehr