Elektrodynamik (T3p)
|
|
|
- Hede Zimmermann
- vor 6 Jahren
- Abrufe
Transkript
1 Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe : Maxwell Gleichungen Benutzen Sie die Maxwell Gleichungen sowie die Darstellung der Felder durch die elektromagnetischen Potentiale, um die folgenden Differentialgleichungen herzuleiten a) Kontinuitätsgleichung: t ρ(t, r) + j =. b) Wellengleichung für Vektorpotential: ( c t ) A(t, r) = µ j, wobei Sie die spezielle Eichung (Lorenz-Eichung) c tv (t, r) + A(t, r) = verwenden dürfen. Betrachten Sie nun den ladungs- und stromfreien Fall. c) Zeigen Sie, dass sowohl das elektrische als auch das magnetische Feld eine Wellengleichung der Form ( ) c t F (t, r) = erfüllen. Aufgabe : Poynting-Vektor Die Maxwellschen Gleichungen im Vakuum sind gegeben durch E = t B, B = µ j + c t E. a) Zeigen Sie die folgende Identität ( t c B + E ) = c ( E B) E j. ɛ b) Betrachten Sie ein Teilchen der Ladung q, dass sich mit der Geschwindigkeit v in einem elektromagnetischen Fled bewege. Zeigen Sie, dass die Ableitung seiner kinetischen Energie gegeben ist durch d dt W kin = q v E. Was ist das Äquivalent für eine kontinuierliche Ladungsverteilung? c) Beweisen Sie den Satz von Poynting, [( ) ] ɛ t d 3 r (c B + E ) + W kin V = d x n S, V wobei V ein beliebiges Voulumen und V dessen Oberfläche sei. Setzen Sie für t W kin das Ergebnis aus b) ein. Interpretieren Sie die physikalische Bedeutung eines jeden Terms.
2 Aufgabe 3: Ebene Wellen im leitenden Medium a) Betrachten Sie eine ebene Welle im freien Raum. In Aufgabe haben Sie die Wellengleichungen für das elektrische und magnetische Feld hergeleitet. Zeigen Sie, dass die Ebenen Wellen ( ) [( ) ] E(t, r) E = Re exp(ikz iωt) ; E B(t, r) B, B = const. und R 3. eine Lösung dieser Gleichungen sind und finden Sie die Dispersionsrelation. Was ist die Phasen- und Gruppengeschwindigkeit? b) Nun betrachten wir ein Medium mit endlicher Leitfähigkeit σ >. In einem solchen Medium sind die Stromdichte und das elektrische Feld verbunden über j = σ E. Leiten Sie in diesem Fall die Wellegleichung für das elektromagnetische Feld her und zeigen Sie, dass die Amplitude einer ebenen Welle mit der Eindringtiefe in das Medium abfällt. c) Berechnen Sie für eine niederfrequente Welle die Eindirngtiefe δ, die beschreibt, wie weit eine ebene Welle in das Medium eindringen kann. δ wird per Konvention als die Tiefe definiert, bei der die Amplitude der Welle um einen Faktor e abgefallen ist. Hinweis: i = + i Aufgabe 4: Rayleighstreuung Die Streuung von Licht an einzelnen Atomen kann wie folgt beschrieben werden. Ein Elektron mit Ladung q = e und Masse m e bewege sich in einem harmonischen Oszillatorpotential mit der Frequenz ω. Eine elektromagnetische Welle E(t, r) = E e i(ωt i k r) B(t, r) = k k E(t, r) treffe auf das Elektron. Die Bewegungsgleichung r (t) des Elektrons lautet dann ( m e r + m e ω r = e E e i(ωt i k r ) + r ) c B. Die Geschwindigkeit des Elektrons v = r sei nichtrelativistisch, v/c, sadaß wir die vom Magnetfeld herrührende Kraft vernachlässigen können. Weiter sei die Wellenlänge der einfallenden Welle groãÿ gegenüber der Auslenkung des Elektrons λ r (t). Wegen exp( i k r ) = + O(r /λ) lautet die Bewegungsgleichung nun m e r + m e ω r = e E e iωt. a) Bestimmen Sie die Lösung r (t) der Bewegungsgleichung und bestimmen Sie damit das Dipolmoment p(t) des Elekrons. b) Bestimmen Sie die zeitlich gemittelte, abgestrahlte Leistung P dieses schwingenden Dipols. c) Bestimmen Sie den zeitlich gemittelten Poyntingvektor S der ebenen Welle. Hinweis: Für die abgestrahlte Leistung gilt P (t) = ω p(t r c ) 3c 3.
3 Aufgabe 5: Magnetisches Dipolmoment Betrachten Sie eine lokalisierte Stromdichte j( r) (lokalisiert j = ). Im Falle der Coulomb- Eichung div A = kann man das Vektorpotential berechnen zu: A( r) = µ 4π d 3 r j( r ) r r. a) Führen Sie eine Multipolentwicklung durch, d.h. entwickeln Sie den Integranden für r r bis zur linearen Ordnung. Als Ergebnis sollten Sie finden [ ] A( r) = µ d 3 r j( r ) + ( r r ) j( r ) 4π r r 3. Identifizieren Sie die auftretenden Terme analog der Multipolentwicklung für das elektrische Potential aus der Elektrostatik. b) Zeigen Sie, dass gilt: d 3 r ( r r ) j( r ) = d 3 r ( j( r ) r) r c) Argumentieren Sie mit dem Ergebnis aus Teilaufgabe b), dass damit gilt: ( r r ) j( r ) = r ( j( r ) r ). Hierbei dürfen Sie ohne Beweis die folgende Relation fã 4r Vektoren a, b, c verwenden: a (b c) = b(a c) c(a b). d) Zeigen Sie letztlich, dass Sie den Dipolbeitrag des Vektorpotentials schreiben können zu A Dipol ( r) = µ m r 4π r 3. Durch welchen Integralausdruck ist das magnetische Dipolmoment m gegeben? Vergleichen Sie die Form des mit der Dipolnäherung in der Elektrostatik. Aufgabe 6: Strahlungsdruck Betrachten Sie eine ebene Welle der Form E(t, r) = Ee i(ωt kz) e x mit E, B R. E(t, r) = Be i(ωt kz) e y a) Welche Dispersionsrelation ergibt sich für die ebene Welle? b) Geben Sie den Zusammenhang zwischen den Amplituden E und B an. Um welche Art Welle handelt es sich, d.h. bestimmen Sie ob es eine TE, TM oder TEM Welle ist. Hinweis: Für die jeweiligen Relationen gilt E k, für TE B k, für TM E k und B k, für TEM c) Berechnen Sie den Poyntingvektor S. Wohin fließt die elektromagnetische Energie? 3
4 Betrachten Sie nun eine Metallplatte bei z =. Die elektromagnetische Welle trifft zur Zeit t = auf die Metallplatte und übt auf ein darin enthaltenes Elektron eine Kraft aus. F = m e v = e E(t =, z = ) e v B(t =, z = ) d) Bestimmen Sie die Bewegung des Elektrons für eine kurze Zeit nach dem Zeitnullpunkt. Zeigen Sie weiter, dass das Elektron eine Kraft in z-richtung erfährt welche somit zu einem Strahlungsdruck auf die Metallplatte führt. Aufgabe 7: Separation der Variablen Gesucht ist die Lösung der zweidimensionalen Laplacegleichung Φ = ( x + y)φ = in V mit den Randbedingungen wie im Bild. Die Randbedingungen sind stetig (da Φ in V differenzierbar ist), daher gilt Φ () = = Φ (x ). y Φ(x, y )=Φ (x) y Φ = V Φ = Φ = Benutzen Sie den Separationsansatz Φ(x, y) = f(x)g(y). a) Zeigen Sie, daß f und g die Gleichungen x x d g dy = βg, d f dx = βf erfüllen, wobei β zunächst eine beliebige reelle Konstante ist. b) Vergewissern Sie sich, daß es für β < keine Lösung gibt, die mit den Randbedingungen konsistent ist. Daher können Sie im folgenden β = α setzen. c) Finden Sie damit nun die (eindeutige) Lösung von Φ = in V mit den angegebenen Randbedingungen. Sie sollten ( ) ( ) nπ nπ Φ(x, y) = c n sinh y sin x, x x n= c n = ( ) nπ x sinh x y x ( ) nπ dx Φ (x) sin x x finden, wobei Sie die Orthogonalitätsbedingung x ( ) ( ) nπ mπ dx sin x sin x = x x x δ nm (m, n > ) () verwenden müssen. Hinweis: Benutzen Sie die drei Randbedingungen Φ =, um die mögliche Form der Produktlösungen einzuschränken. d) Zeigen Sie () mit Hilfe der Formel sin θ sin ϕ = [cos(θ ϕ) cos(θ + ϕ)]. 4
5 Aufgabe 8: Elektrostatische Energie a) Das Potential einer homogen geladenen Kugel von Radius R mit der Gesamtladung Q ist gegeben durch V ( r) = Q 4πɛ R 3 (3R r ) für r R, wobei r = x + y + z die Radialkoordinate ist. Berechnen Sie damit die elektrostatische Energie der homogen geladenen Kugel. b) Leiten Sie nun einen Ausdruck für da Potential einer leitenden Kugel von gleicher Gesamtladung und gleichem Radius her, und berechnen Sie die entsprechende Energie. Vergleichen Sie die Ergebnisse der Teilaufgaben a) und b), und begründen Sie kurz, warum es auch ohne Rechnung physikalisch einsichtig ist, dass eine der Kugeln einen größeren Energieinhalt hat. c) Gegeben ist die Ladungsverteilung ρ( r) = { ρ /r für R r R sonst Berechnen Sie die Gesamtladung Q, das elektrische Feld E und das stetige Potential V in Abhängigkeit von ρ, R und R. Anmerkung: Achten Sie darauf, dass Sie alle Gößen und Vektoren die Sie einführen explizit definieren! Aufgabe 9: Kugelförmiger Hohlraum in Metalblock Betrachten Sie einen geerdeten Metallblock. Im Inneren des Metallblocks befindet sich ein kugelförmiger Hohlraum (Radius R, Mittelpunkt im Ursprung). Wir wollen das elektrostatische Potential im Innern des Hohlraums bestimmen. a) Welche Differentialgleichung muss das Potential V im Hohlraum erfüllen? b) Welche Randbedingung muss das Potential am Rand des Hohlraumes erfüllen? c) Nehmen Sie nun an, dass das Potential unabhängig von den Winkelkoordinaten ist. Zeigen Sie damit, dass das Potential die folgende Differentialgleichung erfüllt: ( ) r r + r V (r) = d) Machen Sie für das Potential folgenden Ansatz: V (r) = f(r) r, mit einer beliebigen Funktion f(r). Leiten Sie für f(r) mittels Teilaufgabe c) eine Differentialgleichung her und lösen Sie diese. e) Was ist also die Lösung für das Potential, welche die gegebenen Randbedingungen aus Teilaufgabe b) erfüllt. Wie lässt sich das Ergebnis erklären? Bei Fragen an: [email protected] 5
Elektromagnetische Felder und Wellen: Lösung zur Klausur
Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und
TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern
TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine
Elektromagnetische Felder und Wellen: Klausur
Elektromagnetische Felder und Wellen: Klausur 2014-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Gesamtpunktzahl:
Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen
Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung
Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)
Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?
Lehrstuhl für Technische Elektrophysik Technische Universität München
Lehrstuhl für Technische Elektrophysik Technische Universität München Tutorübungen zu "Elektromagnetische Feldtheorie II" (Prof. Wachutka) SS9 Blatt 1 Aufgabe: Ebene Wellen Im Vakuum, daß heißt die Leitfähigkeit
X.4 Elektromagnetische Wellen im Vakuum
X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen
Wellen und Dipolstrahlung
Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander
Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt
Elektromagnetische Felder Wellen: Lösung zur Klausur Herbst 999 Aufgabe Das Potential einer Punktladungen Q am Ort r lautet V { r} = Q 4πɛɛ 0 r r Hier soll das Potential einer gegebenen Raumladung ρ v
a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile.
Elektromagnetische Wellen 141372 Wintersemester 2016/2017 Prof. Thomas Mussenbrock ID 1/131 Website: http://www.ei.rub.de/studium/lehrveranstaltungen/694/ Übungsaufgaben Aufgabe 1 Diskutieren Sie den Helmholtz-Zerlegungssatz.
Bewegung im elektromagnetischen Feld
Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld
Klassische Theoretische Physik III (Elektrodynamik)
WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18
Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)
Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle
Elektromagnetische Felder und Wellen: Klausur Herbst
Elektromagnetische Felder und Wellen: Klausur Herbst 2006 1 Aufgabe 1 (2 Punkte) Eine Punkladung Q soll durch eine Kugel mit Radius a und der Oberflächenladung ϱ SO ersetzt werden. Wie groß muss ϱ SO gewählt
Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern
Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der
Einführung in die theoretische Physik II Sommersemester 2015
Einführung in die theoretische Physik II Sommersemester 25 [email protected] Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene
Aufgabe 1 (2+8=10 Punkte)
Klausur zu Theoretische Physik 3 Elektrodynamik 21. März 217 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 6 Aufgaben mit insgesamt 5 Punkten. Die Klausur ist
Elektromagnetische Feldtheorie 2
Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 09 Elektromagnetische Feldtheorie 2 Donnerstag, 06. 08. 2009, 12:00 13:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript
1 Elektromagnetische Wellen im Vakuum
Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen
Elektromagnetische Felder (TET 1) Gedächtnisprotokoll
Elektromagnetische Felder (TET 1) Gedächtnisprotokoll 8. August 2017 Dies ist ein Gedächtnisprotokoll. Leider konnte ich mich nicht an alle Details jeder Aufgabe erinnern. Für korrigierte Exemplare dieses
2. Vorlesung Partielle Differentialgleichungen
2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz
Elektromagnetische Felder und Wellen
Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:
Experimentalphysik II Elektromagnetische Schwingungen und Wellen
Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung
KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung
KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die
16 Elektromagnetische Wellen
16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass
Lösung für Blatt 7,,Elektrodynamik
Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert
n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r
Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 22 Aufgabe 3 Punkte) Das elektrische Feld liegt parallel zur Grenzfläche, also ist die Welle TE- polarisiert Der Reflektionsfaktor ist laut Skript
Ferienkurs Teil III Elektrodynamik
Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................
Vorlesung 17. Quantisierung des elektromagnetischen Feldes
Vorlesung 17 Quantisierung des elektromagnetischen Feldes Wir wissen, dass man das elektromagnetische Feld als Wellen oder auch als Teilchen die Photonen beschreiben kann. Die Verbindung zwischen Wellen
Wellen und Dipolstrahlung
Wellen und Dipolstrahlung Florian Hrubesch. März 00 Inhaltsverzeichnis Wellen. Wellen im Vakuum............................. Lösung der Wellengleichung................... Energietransport / Impuls - der
Induktion, Polarisierung und Magnetisierung
Übung 2 Abgabe: 08.03. bzw. 12.03.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser
Die Maxwell Gleichungen
Die Maxwell Gleichungen Die Maxwellschen Gleichungen beschreiben Beziehungen zwischen dem elektrischen Feld E = E( x;t), der magnetischen Flussdichte B = B( x;t), der elektrischen Stromstärke J = J( x;t),
IX.2 Multipolentwicklung
IX. Multipolentwicklung 153 IX. Multipolentwicklung Ähnlich der in Abschn. III.3 studierten Entwicklung des elektrostatischen Skalarpotentials Φ( r) einer Ladungsverteilung ρ el. als Summe der Potentiale
Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13.
13. Makroskopische Felder Teil VI Das elektromagnetische Feld in Materie Im Prinzip erlauben die Maxwell-Gleichungen von Teil III das elektromagnetische Feld beliebiger Materieanordnungen zu berechnen,
WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B
Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion
Aufgabe 1 (2+2+2=6 Punkte)
Klausur zu Theoretische Physik 3 Elektrodynamik 0. Februar 017 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 50 Punkten. Die Klausur ist
Sessionsprüfung Elektromagnetische Felder und Wellen ( S)
Vorname Name Nummer, ITET [email protected] Lfd.Nr.: /150 Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10S) 14. August 2017, 14:00-17:00 Uhr, HIL C15/D15 Prof. Dr. L. Novotny Bitte
Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π]
Datum: 10.04.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Wir betrachten
Induktion, Polarisierung und Magnetisierung
Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser
Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur
Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche
Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu
KAPITEL II Elektrostatik Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu E( r) = ρ el.( r) E( r) = 0. (II.1a) (II.1b) Dabei hängt die Rotation der jetzt zeitunabhängigen
Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [
Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische
Rechenübungen zum Physik Grundkurs 2 im SS 2010
Rechenübungen zum Physik Grundkurs 2 im SS 2010 2. Klausur (Abgabe: Do 16.9.2010 12.00 Uhr Neue Aula) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. ID2= 122 Hinweise: Studentenausweis: Hilfsmittel:
2. Vorlesung Partielle Differentialgleichungen
2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel 2.Transatlantische Vorlesung aus Oaxaca, Mexiko, 20. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg
Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr
Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 2005 1 Aufgabe 1 Wie lautet das elektrostatische Potential V ( r), das durch die Raumladungsdichte ϱ( r) = ϱ 0 e k xxik y y erzeugt wird, wenn
Polarisierung und Magnetisierung
Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische
Elektromagnetische Felder und Wellen: Klausur
Elektromagnetische Felder und Wellen: Klausur 2008-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe
Moderne Theoretische Physik WS 2013/2014
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher
Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Die Ladung in dem Raumbereich resultiert aus der Raumladungsdichte
Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 27 Aufgabe Im freien Raum wird das elektrische Feld E E x a ) 2 ey gemessen. Wie groß ist die elektrische Ladung in einem würfelförmigen
Übungen zu Theoretische Physik II
Physikalisches Institut Übungsblatt 8 Universität Bonn 08.2.206 Theoretische Physik WS 6/7 Übungen zu Theoretische Physik II Prof. Dr. Hartmut Monien, Christoph Liyanage, Manuel Krauß Abgabe: spätestens
5. Grundgleichungen der Magnetostatik
5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen etzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale Gleichungen für die magnetische lussdichte,
Theoretische Physik II
Peter Reineker, Michael Schulz und Beatrix M. Schulz Theoretische Physik II Elektrodynamik mit Aufgaben in Maple WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort XV 1 Einleitung 1
(1,y,0) e y dy + z 2. d) E muß rotationsfrei sein, also konservatives Feld
. a) E = grad ϕ = e r ϕ/ r = ϕ e r/ e r b) ρ = div D = D ( y 2y2 y 2 y ) = 2D y 2 y 3 y 2 y 3 c) J = rot H = H e z ( / )) = d) F = q v B = q v B 5 (3, 4,) e) U = = rb Ed l = r a [ ] E y2 2 r (,,) E y=
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester / Anwesenheitsübung -.November Musterlösung Franziska Konitzer ([email protected]) Aufgabe ( ) ( Punkte) Eine harmonische elektromagnetische
Theoretische Physik I: Weihnachtszettel Michael Czopnik
Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter
Elektromagnetische Felder und Wellen
Elektromagnetische Felder und Wellen Name: Matrikelnummer: Klausurnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe
1 Maxwellgleichungen (S.2) 2 Kontinuitätsgleichung (S.29) 3 Poynting-Vektor (S.33) 4 Grenzbedingungen (S.38) 5 Potentiale statischer Felder (S.
Maxwellgleichungen (S.) Differentialform rot E = B rot H = J + D div D = η div B = 0 Integralform Ed r = Ḃdf F (F ) (F ) (V ) (V ) Hd r = ( J + D)df(= I) F Dd f = V Bd f = 0 ηdv(= Q) Kontinuitätsgleichung
Name der Prüfung: Elektromagnetische Felder und Wellen
K L A U S U R D E C K B L A T T Name der Prüfung: Elektromagnetische Felder und Wellen Datum und Uhrzeit: 09.08.2017, 10:00 Uhr Bearbeitungszeit: 120 min: Institut: Institut für Optoelektronik Prüfer:
6.4 Wellen in einem leitenden Medium
6.4. WELLEN IN EINEM LEITENDEN MEDIUM 227 6.4 Wellen in einem leitenden Medium Unter einem leitenden Medium verstehen wir ein System, in dem wir keine ruhenden Ladungen berücksichtigen, aber Ströme, die
X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes
X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 3. Übungsblatt - 8.November 2010 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (2 Punkte) Berechnen
Klausursammlung Grundlagen der Mechanik und Elektrodynamik
Klausursammlung Grundlagen der Mechanik und Elektrodynamik Fachschaft Physik Stand: Mai 27 Liebe Physik-Studis, hier haltet ihr die Klausursammlung für das Modul Grundlagen der Mechanik und Elektrodynamik
Klausur TET A. 1. August Name: Vorname: Matrikel-Nr.: Prüfungsnr.: Aufgabe HÜ Summe. Punkte
UNIVERSITÄT PADERBORN Fakultät EIM Institut für Elektrotechnik und Informationstechnik Fachgebiet Prof. Dr.-Ing. R. Schuhmann Klausur TET A 1. August 2007 Name: Vorname: Matrikel-: Prüfungsnr.: Aufgabe
Vorbereitung zur Klausur Elektromagnetische Felder und Wellen
Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t
FK Ex 4 - Musterlösung Montag
FK Ex 4 - Musterlösung Montag 1 Wellengleichung Leiten Sie die Wellengleichungen für E und B aus den Maxwellgleichungen her. Berücksichtigen Sie dabei die beiden Annahmen, die in der Vorlesung für den
1-D photonische Kristalle
1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2
Elektromagnetische Felder und Wellen: Klausur
Elektromagnetische Felder und Wellen: Klausur 2015-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Gesamtpunktzahl: Ergebnis: Bemerkungen: Elektromagnetische
Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion
Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a
Elektromagnetische Felder und Wellen: Klausur
Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe
Teilchen im elektromagnetischen Feld
Kapitel 5 Teilchen im elektromagnetischen Feld Ausgearbeitet von Klaus Henrich, Mathias Dubke und Thomas Herwig Der erste Schritt zur Lösung eines quantenmechanischen Problems ist gewöhnlich das Aufstellen
Ferienkurs Elektrodynamik
Ferienkurs Elektrodynamik Zusammenfassung Zeitabhängige Maxwellgleichungen Erhaltungsgrößen Retardierte Potentiale 7. März Bernhard Frank Bisher sind in der Elektro- und Magnetostatik folgende Gesetze
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 214/215 Thomas Maier, Alexander Wolf Lösung 1 Wellengleichung und Polarisation Aufgabe 1: Wellengleichung Eine transversale elektromagnetische Welle im Vakuum
Energietransport durch elektromagnetische Felder
Übung 6 Abgabe: 22.04. bzw. 26.04.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Energietransport durch elektromagnetische Felder
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009
Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner
Technische Universität München SS 004 Zentrum Mathematik 3.5.004 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 4 Implizite Funktionen Die Funktion f : R R, fx, y := e sinxy
Themenschwerpunkt A. Mechanik
Herbst 2011 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Reibung Ein Teilchen der Masse m bewege sich mit der Anfangsgeschwindigkeit v 0 > 0 in x-richtung und soll durch
Elektrodynamische Wellen
Elektrodynamische Wellen Hannah Vogel 23.01.2017 Hannah Vogel Elektrodynamische Wellen 23.01.2017 1 / 33 Inhaltsverzeichnis 1 Elektrische und Magnetische Kräfte und Felder 2 Die Maxwell schen Gleichungen
Klausur zur Vorlesung Experimentalphysik II (SS 2018)
Universität Siegen Sommersemester 218 Naturwissenschaftlich-Technische Fakultät Prof. Dr. Mario Agio Department Physik Klausur zur Vorlesung Experimentalphysik II (SS 218) Aufgabe 1: Kurzfragen Beantworten
Klassische Theoretische Physik III (Elektrodynamik)
WiSe 7/8 Klassische Theoretische Physik III Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 3 Ausgabe: Fr,..7 Abgabe: Fr, 7..7 Besprechung: Mi,..7 Aufgabe 8: Prolate
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1
Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf.
Eichtransformationen i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Beweis: Wirkung S ist unabhängig von Parametrisierung für gegebene physikalische Bahnkurve; folglich haben
Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),
UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c
7. Elektromagnetische Wellen (im Vakuum)
7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen
Elektromagnetische Feldtheorie 2
Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 08 Elektromagnetische Feldtheorie 2 Montag, 28. 07. 2008, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript
Klausur zur T1 (Klassische Mechanik)
Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte
Elektromagnetische Felder und Wellen
Elektromagnetische Felder und Wellen Name : Matrikelnummer : Kurzaufgaben Aufgabe 1.1: Aufgabe 1.2: Aufgabe 1.3: Aufgabe 1.4: Kurzaufgaben: Aufgabe 2: Aufgabe 3: Aufgabe 4: Summe: Note: Elektromagnetische
Strahlungsdruck, Potentiale
Übung 7 Abgabe: 29.04. bzw. 03.05.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Strahlungsdruck, Potentiale 1 Der Brewsterwinkel
Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.
Theoretische Physik C Elektrodynamik
Universität Karlsruhe (TH WS 27/8 Theoretische Physik C Elektrodynamik V: Prof Dr D Zeppenfeld, Ü: Dr S Gieseke Klausur Nr 2 Name/Matrikelnummer/Übungsgruppe: 2 3 4 Σ Aufgabe : Vergütungsschicht 4] Die
Teil III. Grundlagen der Elektrodynamik
Teil III Grundlagen der Elektrodynamik 75 6. Die Maxwellschen Gleichungen 6.1 Konzept des elektromagnetischen eldes Im folgenden sollen die Grundgleichungen für das elektrische eld E( x, t) und für das
